Canonical correlation analysis for multi-omics: Application to cross-cohort analysis

Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method desi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS genetics Ročník 19; číslo 5; s. e1010517
Hlavní autoři: Jiang, Min-Zhi, Aguet, François, Ardlie, Kristin, Chen, Jiawen, Cornell, Elaine, Cruz, Dan, Durda, Peter, Gabriel, Stacey B., Gerszten, Robert E., Guo, Xiuqing, Johnson, Craig W., Kasela, Silva, Lange, Leslie A., Lappalainen, Tuuli, Liu, Yongmei, Reiner, Alex P., Smith, Josh, Sofer, Tamar, Taylor, Kent D., Tracy, Russell P., VanDenBerg, David J., Wilson, James G., Rich, Stephen S., Rotter, Jerome I., Love, Michael I., Raffield, Laura M., Li, Yun
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 22.05.2023
Public Library of Science (PLoS)
Témata:
ISSN:1553-7404, 1553-7390, 1553-7404
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features–referred to as canonical variables (CVs)–within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for more than two assays. Effective application of SMCCA to the two real datasets reveals important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associations between blood cell counts and protein abundance, suggesting that adjustment of blood cell composition should be considered in protein-based association studies. Importantly, CVs obtained from two independent cohorts also demonstrate transferability across the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA, explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful relationships between multi-omics data and phenotypic traits.
AbstractList Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features–referred to as canonical variables (CVs)–within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for more than two assays. Effective application of SMCCA to the two real datasets reveals important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associations between blood cell counts and protein abundance, suggesting that adjustment of blood cell composition should be considered in protein-based association studies. Importantly, CVs obtained from two independent cohorts also demonstrate transferability across the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA, explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful relationships between multi-omics data and phenotypic traits.
Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features–referred to as canonical variables (CVs)–within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for more than two assays. Effective application of SMCCA to the two real datasets reveals important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associations between blood cell counts and protein abundance, suggesting that adjustment of blood cell composition should be considered in protein-based association studies. Importantly, CVs obtained from two independent cohorts also demonstrate transferability across the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA, explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful relationships between multi-omics data and phenotypic traits. Comprehensive understanding of human complex traits may benefit from incorporation of molecular features from multiple biological layers such as genome, epigenome, transcriptome, proteome, and metabolome. CCA is a correlation-based method for multi-omics data which reduces the dimension of each omic assay to several orthogonal components–commonly referred to as canonical variables (CVs). The widely-used SMCCA method allows effective dimension reduction and integration of multi-omics data, but suffers from potentially highly correlated CVs when applied to high-dimensional omics data. Here, we improve the statistical independence among the CVs by adopting a variation of the GS algorithm. We applied our SMCCA-GS method to proteomic and methylomic data from two cohort studies, MESA and JHS. Our results reveal a pronounced effect of blood cell counts on protein abundance, suggesting blood cell composition adjustment in protein-based association studies may be necessary. Finally, we present SSMCCA which allows supervised CCA analysis for the association between one phenotype of interest and more than two assays. We anticipate that SMCCA-GS would help reveal meaningful system-level factors from biological processes involving features from multiple assays; and SSMCCA would further empower interrogation of these factors for phenotypic traits related to health and diseases.
Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features-referred to as canonical variables (CVs)-within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for more than two assays. Effective application of SMCCA to the two real datasets reveals important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associations between blood cell counts and protein abundance, suggesting that adjustment of blood cell composition should be considered in protein-based association studies. Importantly, CVs obtained from two independent cohorts also demonstrate transferability across the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA, explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful relationships between multi-omics data and phenotypic traits.Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features-referred to as canonical variables (CVs)-within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available. Here, we adapted sparse multiple CCA (SMCCA), a widely-used derivative of CCA, to proteomics and methylomics data from the Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS). To tackle challenges encountered when applying SMCCA to MESA and JHS, our adaptations include the incorporation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among CVs, and the development of Sparse Supervised Multiple CCA (SSMCCA) to allow supervised integration analysis for more than two assays. Effective application of SMCCA to the two real datasets reveals important findings. Applying our SMCCA-GS to MESA and JHS, we identified strong associations between blood cell counts and protein abundance, suggesting that adjustment of blood cell composition should be considered in protein-based association studies. Importantly, CVs obtained from two independent cohorts also demonstrate transferability across the cohorts. For example, proteomic CVs learned from JHS, when transferred to MESA, explain similar amounts of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS and 38.9% ~ 49.1% in MESA. Similar transferability was observed for other omics-CV-trait pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by CVs. We anticipate that applying our SMCCA-GS and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful relationships between multi-omics data and phenotypic traits.
Audience Academic
Author Wilson, James G.
Sofer, Tamar
Li, Yun
Cornell, Elaine
Love, Michael I.
Taylor, Kent D.
Johnson, Craig W.
Lappalainen, Tuuli
Kasela, Silva
Smith, Josh
Raffield, Laura M.
Cruz, Dan
Chen, Jiawen
VanDenBerg, David J.
Liu, Yongmei
Durda, Peter
Guo, Xiuqing
Jiang, Min-Zhi
Gerszten, Robert E.
Lange, Leslie A.
Rotter, Jerome I.
Aguet, François
Tracy, Russell P.
Rich, Stephen S.
Gabriel, Stacey B.
Ardlie, Kristin
Reiner, Alex P.
AuthorAffiliation 7 Department of Pathology & Laboratory Medicine, University of Vermont, Colchester, Vermont, United States of America
15 Northwest Genomic Center, University of Washington, Seattle, Washington, United States of America
11 New York Genome Center, New York, New York, United States of America
20 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
2 Illumina Artificial Intelligence Laboratory, Illumina, Inc., San Diego, California, United States of America
6 Department of Medicine, Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
16 Department of Biostatistics, Harvard Medical School, Medicine-Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
1 Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
18 Center for Public Health Genomics, Department of Public Health Scien
AuthorAffiliation_xml – name: 9 Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, University of California at Los Angeles, Torrance, California, United States of America
– name: 20 Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
– name: 7 Department of Pathology & Laboratory Medicine, University of Vermont, Colchester, Vermont, United States of America
– name: 16 Department of Biostatistics, Harvard Medical School, Medicine-Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
– name: 10 Department of Biostatistics, University of Washington at Seattle, Seattle, Washington, United States of America
– name: 8 Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
– name: 1 Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
– name: 6 Department of Medicine, Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
– name: 3 The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
– name: 13 Department of Medicine, Cardiology and Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
– name: The University of Melbourne, AUSTRALIA
– name: 2 Illumina Artificial Intelligence Laboratory, Illumina, Inc., San Diego, California, United States of America
– name: 15 Northwest Genomic Center, University of Washington, Seattle, Washington, United States of America
– name: 4 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
– name: 18 Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
– name: 19 Department of Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, University of California at Los Angeles, Torrance, California, United States of America
– name: 5 Laboratory for Clinical Biochemistry Research, University of Vermont, Burlington, Vermont, United States of America
– name: 11 New York Genome Center, New York, New York, United States of America
– name: 12 Department of Epidemiology, Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, Lifecourse Epidemiology of Adiposity & Diabetes Center, Aurora, Colorado, United States of America
– name: 14 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
– name: 17 Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
Author_xml – sequence: 1
  givenname: Min-Zhi
  orcidid: 0000-0001-5502-063X
  surname: Jiang
  fullname: Jiang, Min-Zhi
– sequence: 2
  givenname: François
  surname: Aguet
  fullname: Aguet, François
– sequence: 3
  givenname: Kristin
  surname: Ardlie
  fullname: Ardlie, Kristin
– sequence: 4
  givenname: Jiawen
  surname: Chen
  fullname: Chen, Jiawen
– sequence: 5
  givenname: Elaine
  surname: Cornell
  fullname: Cornell, Elaine
– sequence: 6
  givenname: Dan
  surname: Cruz
  fullname: Cruz, Dan
– sequence: 7
  givenname: Peter
  surname: Durda
  fullname: Durda, Peter
– sequence: 8
  givenname: Stacey B.
  surname: Gabriel
  fullname: Gabriel, Stacey B.
– sequence: 9
  givenname: Robert E.
  surname: Gerszten
  fullname: Gerszten, Robert E.
– sequence: 10
  givenname: Xiuqing
  surname: Guo
  fullname: Guo, Xiuqing
– sequence: 11
  givenname: Craig W.
  surname: Johnson
  fullname: Johnson, Craig W.
– sequence: 12
  givenname: Silva
  surname: Kasela
  fullname: Kasela, Silva
– sequence: 13
  givenname: Leslie A.
  surname: Lange
  fullname: Lange, Leslie A.
– sequence: 14
  givenname: Tuuli
  surname: Lappalainen
  fullname: Lappalainen, Tuuli
– sequence: 15
  givenname: Yongmei
  surname: Liu
  fullname: Liu, Yongmei
– sequence: 16
  givenname: Alex P.
  surname: Reiner
  fullname: Reiner, Alex P.
– sequence: 17
  givenname: Josh
  surname: Smith
  fullname: Smith, Josh
– sequence: 18
  givenname: Tamar
  surname: Sofer
  fullname: Sofer, Tamar
– sequence: 19
  givenname: Kent D.
  surname: Taylor
  fullname: Taylor, Kent D.
– sequence: 20
  givenname: Russell P.
  surname: Tracy
  fullname: Tracy, Russell P.
– sequence: 21
  givenname: David J.
  surname: VanDenBerg
  fullname: VanDenBerg, David J.
– sequence: 22
  givenname: James G.
  surname: Wilson
  fullname: Wilson, James G.
– sequence: 23
  givenname: Stephen S.
  surname: Rich
  fullname: Rich, Stephen S.
– sequence: 24
  givenname: Jerome I.
  orcidid: 0000-0001-7191-1723
  surname: Rotter
  fullname: Rotter, Jerome I.
– sequence: 25
  givenname: Michael I.
  surname: Love
  fullname: Love, Michael I.
– sequence: 26
  givenname: Laura M.
  orcidid: 0000-0002-7892-193X
  surname: Raffield
  fullname: Raffield, Laura M.
– sequence: 27
  givenname: Yun
  orcidid: 0000-0002-9275-4189
  surname: Li
  fullname: Li, Yun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37216410$$D View this record in MEDLINE/PubMed
BookMark eNqVk1tv0zAYhiM0xLbCP0AQCQnBRYqPtbMbVFUcKk1MgsGt5ThO68mNi-0g9u9x2qxqpgmBcpHIed7X3_E8O2ldq7PsOQRTiBl8d-M630o73a50O4UAAgrZo-wMUooLRgA5Ofo-zc5DuAEAU16yJ9kpZgjOCARn2fVCJl-jpM2V815bGY1rc5mcb4MJeeN8vulsNIXbGBUu8vl2axO-o6LLlXchFMqtnY8H1dPscSNt0M-G9yT7_vHD9eJzcXn1abmYXxaKIRYLmIIAUjYUlABK1JAKkAohiRHUgECKS1LNiESS1QoDqhCghGhUwbpUilcET7KXe9-tdUEMBQkCccwx5gDARCz3RO3kjdh6s5H-VjhpxO7A-ZWQPhpltSi5qhitatqkMBTkHEPOEIKyJDUlsyp5vR9u66qNrpVuo5d2ZDr-05q1WLlfAgKE2Yyw5PBmcPDuZ6dDFBsTlLZWttp1feCQpxxnKYFJ9uoe-nB6A7WSKQPTNi5drHpTMWeUYEwZ78s0fYBKT61TT9NUNSadjwRvR4LERP07rmQXglh--_of7Jd_Z69-jNnXR-xaSxvXwdmuH7wwBl8ct-XQj7sZTwDZA7tZ9bo5IBCIfpXuSiv6VRLDKiXZxT2ZMnE396l6xv5d_Ac0ECHn
CitedBy_id crossref_primary_10_1038_s41386_024_01938_8
crossref_primary_10_1007_s13167_025_00410_x
crossref_primary_10_1038_s41588_023_01506_8
crossref_primary_10_1093_bib_bbae288
crossref_primary_10_1016_j_artmed_2024_102787
crossref_primary_10_1016_j_bbadis_2024_167120
crossref_primary_10_3389_fpls_2025_1597030
crossref_primary_10_1093_gigascience_giae083
crossref_primary_10_1016_j_media_2025_103566
crossref_primary_10_1016_j_dcmed_2024_09_003
crossref_primary_10_1016_j_imu_2025_101679
crossref_primary_10_1186_s12859_024_05900_9
crossref_primary_10_1016_j_ymeth_2023_07_007
crossref_primary_10_1097_TP_0000000000004925
crossref_primary_10_1146_annurev_biodatasci_102523_103801
crossref_primary_10_1109_ACCESS_2024_3362647
Cites_doi 10.1056/NEJMsr1809937
10.1038/s41586-018-0175-2
10.15252/msb.20178124
10.1002/gepi.21896
10.1093/bioinformatics/btu684
10.1038/s41588-022-01051-w
10.1126/science.aaz1776
10.1186/s13148-022-01279-7
10.1038/s41591-019-0665-2
10.1038/s42255-020-00287-2
10.1371/journal.pgen.1000360
10.18632/aging.102173
10.1038/s41576-018-0004-3
10.1186/1471-2105-14-245
10.1371/journal.pone.0132771
10.1161/CIRCULATIONAHA.121.055117
10.1038/s41588-021-00913-z
10.1038/s41467-021-27387-1
10.1038/s41586-021-03205-y
10.1037/h0058165
10.1093/bioinformatics/btt684
10.1093/bioinformatics/btw052
10.1038/s41467-021-21542-4
10.1038/s41591-019-0673-2
10.1089/omi.2011.0118
10.1093/nar/28.1.27
10.1186/s13148-021-01194-3
10.1002/pmic.201900278
10.3389/fendo.2021.727004
10.1097/00000441-200409000-00001
10.1182/blood.V90.4.1345
10.1038/nature20784
10.1002/pro.3715
10.1016/j.cell.2020.06.045
10.1093/nar/gkaa1113
10.1016/j.cell.2020.06.004
10.1182/blood.V83.3.799.799
10.1126/science.abj1541
10.1186/s13059-014-0503-2
10.1093/bib/bbx167
10.1093/bioinformatics/bts163
10.2202/1544-6115.1470
10.1093/bioinformatics/btq340
10.1371/journal.pone.0264341
10.1186/1471-2105-13-86
10.3389/fimmu.2020.578314
10.1016/j.ophtha.2006.12.021
ContentType Journal Article
Copyright Copyright: © 2023 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Jiang et al 2023 Jiang et al
Copyright_xml – notice: Copyright: © 2023 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Jiang et al 2023 Jiang et al
CorporateAuthor NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Analysis Working Group
CorporateAuthor_xml – name: NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Analysis Working Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1010517
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


Publicly Available Content Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Multi-Omics CCA
EISSN 1553-7404
ExternalDocumentID 2838338001
oai_doaj_org_article_98cb75bd5fb04c1883187221a94d546b
PMC10237647
A754335784
37216410
10_1371_journal_pgen_1010517
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HHSN268201300048C
– fundername: NHLBI NIH HHS
  grantid: N01 HC095160
– fundername: NHLBI NIH HHS
  grantid: R01 HL120393
– fundername: NHLBI NIH HHS
  grantid: N01 HC095168
– fundername: NCATS NIH HHS
  grantid: UL1 TR001881
– fundername: NHLBI NIH HHS
  grantid: N02 HL064278
– fundername: NHLBI NIH HHS
  grantid: 75N92020D00002
– fundername: NHLBI NIH HHS
  grantid: N01 HC095165
– fundername: NHLBI NIH HHS
  grantid: HHSN268201100037C
– fundername: NHLBI NIH HHS
  grantid: 75N92020D00005
– fundername: ;
  grantid: KL2TR002490
– fundername: ;
  grantid: R01AG075884
– fundername: ;
  grantid: R01HL146500
– fundername: ;
  grantid: T32HL129982
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c727t-12160aaf50901a2f4b04b22a321e0415394b64a2a7dc305c20544e2b1d9cc8b43
IEDL.DBID BENPR
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995799200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Sun Aug 06 00:39:00 EDT 2023
Fri Oct 03 12:52:10 EDT 2025
Tue Nov 04 02:06:29 EST 2025
Sun Nov 09 09:53:06 EST 2025
Sat Nov 29 14:48:24 EST 2025
Tue Nov 11 10:39:12 EST 2025
Tue Nov 04 18:45:00 EST 2025
Wed Nov 26 11:14:43 EST 2025
Wed Nov 26 11:14:54 EST 2025
Wed Nov 26 11:15:13 EST 2025
Thu May 22 21:22:26 EDT 2025
Mon Jul 21 06:07:03 EDT 2025
Sat Nov 29 05:47:14 EST 2025
Tue Nov 18 21:50:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2023 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c727t-12160aaf50901a2f4b04b22a321e0415394b64a2a7dc305c20544e2b1d9cc8b43
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have the following competing interests: LMR is a consultant for the TOPMed Administrative Coordinating Center (through Westat).
Members are listed in S1 Acknowledgement.
ORCID 0000-0001-7191-1723
0000-0002-9275-4189
0000-0001-5502-063X
0000-0002-7892-193X
OpenAccessLink https://www.proquest.com/docview/2838338001?pq-origsite=%requestingapplication%
PMID 37216410
PQID 2838338001
PQPubID 1436339
PageCount e1010517
ParticipantIDs plos_journals_2838338001
doaj_primary_oai_doaj_org_article_98cb75bd5fb04c1883187221a94d546b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10237647
proquest_miscellaneous_2818054628
proquest_journals_2838338001
gale_infotracmisc_A754335784
gale_infotracacademiconefile_A754335784
gale_incontextgauss_ISR_A754335784
gale_incontextgauss_ISN_A754335784
gale_incontextgauss_IOV_A754335784
gale_healthsolutions_A754335784
pubmed_primary_37216410
crossref_primary_10_1371_journal_pgen_1010517
crossref_citationtrail_10_1371_journal_pgen_1010517
PublicationCentury 2000
PublicationDate 20230522
PublicationDateYYYYMMDD 2023-05-22
PublicationDate_xml – month: 5
  year: 2023
  text: 20230522
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Gene Ontology Consortium (pgen.1010517.ref029) 2021; 49
T Wu (pgen.1010517.ref059) 2021; 2
M Kanehisa (pgen.1010517.ref063) 2022
M. Kanehisa (pgen.1010517.ref062) 2019; 28
L Kjeldsen (pgen.1010517.ref027) 1994; 83
CJ Willer (pgen.1010517.ref057) 2010; 26
WL Do (pgen.1010517.ref045) 2021; 13
R Schubert (pgen.1010517.ref023) 2022; 17
D Taliun (pgen.1010517.ref025) 2021; 590
G Yu (pgen.1010517.ref058) 2015; 31
E Parkhomenko (pgen.1010517.ref010) 2009
U Võsa (pgen.1010517.ref005) 2021; 53
MA Carpenter (pgen.1010517.ref043) 2004; 328
SB Zaghlool (pgen.1010517.ref020) 2021; 12
pgen.1010517.ref046
S Horvath (pgen.1010517.ref016) 2018; 19
NEB Saidu (pgen.1010517.ref032) 2020; 11
JG Wilson (pgen.1010517.ref042) 2005; 15
J Piñero (pgen.1010517.ref030) 2020; 48
JA Sanford (pgen.1010517.ref036) 2020; 181
MP Conomos (pgen.1010517.ref048) 2015; 39
R Argelaguet (pgen.1010517.ref003) 2018; 14
All of Us Research Program Investigators (pgen.1010517.ref035) 2019; 381
AA Shabalin (pgen.1010517.ref056) 2012; 28
HA Taylor (pgen.1010517.ref041) 2005; 15
H Chen M- (pgen.1010517.ref047) 2020; 182
GTEx Consortium (pgen.1010517.ref004) 2020; 369
G Yu (pgen.1010517.ref060) 2012; 16
BB Sun (pgen.1010517.ref007) 2018; 558
L Folkersen (pgen.1010517.ref006) 2020; 2
SJ Woo (pgen.1010517.ref033) 2015; 10
VC Broudy (pgen.1010517.ref026) 1997; 90
M Pietzner (pgen.1010517.ref038) 2021; 374
A Rahman (pgen.1010517.ref031) 2021; 12
H. Hotelling (pgen.1010517.ref009) 1935; 26
G Tini (pgen.1010517.ref013) 2019; 20
D Traxl (pgen.1010517.ref054) 2016
P Fortin J- (pgen.1010517.ref052) 2014; 15
B Lehallier (pgen.1010517.ref021) 2019; 25
SA Williams (pgen.1010517.ref039) 2019; 25
BC Brown (pgen.1010517.ref040) 2022
DM Witten (pgen.1010517.ref001) 2009; 8
G Png (pgen.1010517.ref037) 2021; 12
TJ Morris (pgen.1010517.ref051) 2014; 30
EF Lock (pgen.1010517.ref002) 2013; 7
DH Katz (pgen.1010517.ref022) 2022; 145
A Signorell (pgen.1010517.ref055) 2017
LM Raffield (pgen.1010517.ref024) 2020; 20
M Kanehisa (pgen.1010517.ref061) 2000; 28
M Kikuchi (pgen.1010517.ref034) 2007; 114
D Reich (pgen.1010517.ref049) 2009; 5
N Kurniansyah (pgen.1010517.ref050) 2022
S Wahl (pgen.1010517.ref019) 2017; 541
D Lin (pgen.1010517.ref011) 2013; 14
L Woojoo (pgen.1010517.ref014) 2011; 10
M Ashburner (pgen.1010517.ref028) 2000; 25
E Gatev (pgen.1010517.ref017) 2021; 49
OA Grant (pgen.1010517.ref018) 2022; 14
AT Lu (pgen.1010517.ref044) 2019; 11
A Cichonska (pgen.1010517.ref012) 2016; 32
EA Houseman (pgen.1010517.ref015) 2012; 13
W Zhou (pgen.1010517.ref053) 2017; 45
J Zhang (pgen.1010517.ref008) 2022; 54
References_xml – year: 2017
  ident: pgen.1010517.ref055
  publication-title: DescTools: Tools for Descriptive Statistics
– volume: 381
  start-page: 668
  year: 2019
  ident: pgen.1010517.ref035
  article-title: The “All of Us” Research Program.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMsr1809937
– ident: pgen.1010517.ref046
– volume: 558
  start-page: 73
  year: 2018
  ident: pgen.1010517.ref007
  article-title: Genomic atlas of the human plasma proteome
  publication-title: Nature
  doi: 10.1038/s41586-018-0175-2
– volume: 14
  start-page: e8124
  year: 2018
  ident: pgen.1010517.ref003
  article-title: Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20178124
– volume: 15
  year: 2005
  ident: pgen.1010517.ref042
  article-title: Study design for genetic analysis in the Jackson Heart Study.
  publication-title: Ethn Dis
– volume: 45
  start-page: e22
  year: 2017
  ident: pgen.1010517.ref053
  article-title: Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes
  publication-title: Nucleic Acids Res
– volume: 39
  start-page: 276
  year: 2015
  ident: pgen.1010517.ref048
  article-title: Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21896
– volume: 31
  start-page: 608
  year: 2015
  ident: pgen.1010517.ref058
  article-title: DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu684
– volume: 54
  start-page: 593
  year: 2022
  ident: pgen.1010517.ref008
  article-title: Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/s41588-022-01051-w
– year: 2016
  ident: pgen.1010517.ref054
  article-title: Deep Graphs—a general framework to represent and analyze heterogeneous complex systems across scales
  publication-title: arXiv [physics.data-an].
– volume: 369
  start-page: 1318
  year: 2020
  ident: pgen.1010517.ref004
  article-title: The GTEx Consortium atlas of genetic regulatory effects across human tissues
  publication-title: Science
  doi: 10.1126/science.aaz1776
– volume: 14
  start-page: 62
  year: 2022
  ident: pgen.1010517.ref018
  article-title: Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-022-01279-7
– volume: 25
  start-page: 1851
  year: 2019
  ident: pgen.1010517.ref039
  article-title: Plasma protein patterns as comprehensive indicators of health
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0665-2
– volume: 2
  start-page: 1135
  year: 2020
  ident: pgen.1010517.ref006
  article-title: Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  publication-title: Nat Metab.
  doi: 10.1038/s42255-020-00287-2
– volume: 5
  start-page: e1000360
  year: 2009
  ident: pgen.1010517.ref049
  article-title: Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000360
– volume: 11
  start-page: 5895
  year: 2019
  ident: pgen.1010517.ref044
  article-title: DNA methylation-based estimator of telomere length
  publication-title: Aging
  doi: 10.18632/aging.102173
– volume: 19
  start-page: 371
  year: 2018
  ident: pgen.1010517.ref016
  article-title: DNA methylation-based biomarkers and the epigenetic clock theory of ageing
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0004-3
– volume: 14
  start-page: 245
  year: 2013
  ident: pgen.1010517.ref011
  article-title: Group sparse canonical correlation analysis for genomic data integration
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-245
– volume: 10
  start-page: e0132771
  year: 2015
  ident: pgen.1010517.ref033
  article-title: Analysis of Genetic and Environmental Risk Factors and Their Interactions in Korean Patients with Age-Related Macular Degeneration.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0132771
– start-page: 2022
  year: 2022
  ident: pgen.1010517.ref050
  article-title: An integrated multi-omics analysis of sleep-disordered breathing traits across multiple blood cell types
  publication-title: medRxiv
– volume: 2
  start-page: 100141
  year: 2021
  ident: pgen.1010517.ref059
  article-title: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
  publication-title: Innovation (Camb).
– volume: 145
  start-page: 357
  year: 2022
  ident: pgen.1010517.ref022
  article-title: Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.055117
– volume: 53
  start-page: 1300
  year: 2021
  ident: pgen.1010517.ref005
  article-title: Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression
  publication-title: Nat Genet
  doi: 10.1038/s41588-021-00913-z
– year: 2022
  ident: pgen.1010517.ref063
  article-title: KEGG for taxonomy-based analysis of pathways and genomes
  publication-title: Nucleic Acids Res
– start-page: 8
  year: 2009
  ident: pgen.1010517.ref010
  article-title: Sparse canonical correlation analysis with application to genomic data integration
  publication-title: Stat Appl Genet Mol Biol
– volume: 12
  start-page: 7042
  year: 2021
  ident: pgen.1010517.ref037
  article-title: Mapping the serum proteome to neurological diseases using whole genome sequencing
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27387-1
– volume: 590
  start-page: 290
  year: 2021
  ident: pgen.1010517.ref025
  article-title: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
  publication-title: Nature
  doi: 10.1038/s41586-021-03205-y
– volume: 26
  start-page: 139
  year: 1935
  ident: pgen.1010517.ref009
  article-title: The most predictable criterion
  publication-title: J Educ Psychol
  doi: 10.1037/h0058165
– volume: 30
  start-page: 428
  year: 2014
  ident: pgen.1010517.ref051
  article-title: ChAMP: 450k Chip Analysis Methylation Pipeline
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt684
– volume: 32
  start-page: 1981
  year: 2016
  ident: pgen.1010517.ref012
  article-title: metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw052
– volume: 12
  start-page: 1279
  year: 2021
  ident: pgen.1010517.ref020
  article-title: Revealing the role of the human blood plasma proteome in obesity using genetic drivers
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21542-4
– volume: 25
  start-page: 1843
  year: 2019
  ident: pgen.1010517.ref021
  article-title: Undulating changes in human plasma proteome profiles across the lifespan
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0673-2
– volume: 16
  start-page: 284
  year: 2012
  ident: pgen.1010517.ref060
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 10
  start-page: 1
  year: 2011
  ident: pgen.1010517.ref014
  article-title: Sparse Canonical Covariance Analysis for High-throughput Data
  publication-title: Stat Appl Genet Mol Biol
– volume: 28
  start-page: 27
  year: 2000
  ident: pgen.1010517.ref061
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 13
  start-page: 230
  year: 2021
  ident: pgen.1010517.ref045
  article-title: Associations between DNA methylation and BMI vary by metabolic health status: a potential link to disparate cardiovascular outcomes
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-021-01194-3
– volume: 20
  start-page: e1900278
  year: 2020
  ident: pgen.1010517.ref024
  article-title: Comparison of Proteomic Assessment Methods in Multiple Cohort Studies
  publication-title: Proteomics
  doi: 10.1002/pmic.201900278
– volume: 25
  start-page: 25
  year: 2000
  ident: pgen.1010517.ref028
  article-title: Gene ontology: tool for the unification of biology.
– volume: 12
  start-page: 727004
  year: 2021
  ident: pgen.1010517.ref031
  article-title: Profiling of Insulin-Like Growth Factor Binding Proteins (IGFBPs) in Obesity and Their Association With Ox-LDL and Hs-CRP in Adolescents.
  publication-title: Front Endocrinol.
  doi: 10.3389/fendo.2021.727004
– volume: 328
  start-page: 131
  year: 2004
  ident: pgen.1010517.ref043
  article-title: Laboratory, reading center, and coordinating center data management methods in the Jackson Heart Study
  publication-title: Am J Med Sci
  doi: 10.1097/00000441-200409000-00001
– volume: 90
  start-page: 1345
  year: 1997
  ident: pgen.1010517.ref026
  article-title: Stem Cell Factor and Hematopoiesis
  publication-title: Blood
  doi: 10.1182/blood.V90.4.1345
– start-page: 2022
  year: 2022
  ident: pgen.1010517.ref040
  article-title: Multiset correlation and factor analysis enables exploration of multi-omic data.
  publication-title: bioRxiv.
– volume: 541
  start-page: 81
  year: 2017
  ident: pgen.1010517.ref019
  article-title: Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity
  publication-title: Nature
  doi: 10.1038/nature20784
– volume: 7
  start-page: 523
  year: 2013
  ident: pgen.1010517.ref002
  article-title: JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES.
  publication-title: Ann Appl Stat.
– volume: 28
  start-page: 1947
  year: 2019
  ident: pgen.1010517.ref062
  article-title: Toward understanding the origin and evolution of cellular organisms
  publication-title: Protein Sci
  doi: 10.1002/pro.3715
– volume: 182
  start-page: 1198
  year: 2020
  ident: pgen.1010517.ref047
  article-title: Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations.
  publication-title: Cell.
  doi: 10.1016/j.cell.2020.06.045
– volume: 49
  start-page: 9097
  year: 2021
  ident: pgen.1010517.ref017
  article-title: Autosomal sex-associated co-methylated regions predict biological sex from DNA methylation
  publication-title: Nucleic Acids Res
– volume: 49
  start-page: D325
  year: 2021
  ident: pgen.1010517.ref029
  article-title: The Gene Ontology resource: enriching a GOld mine.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1113
– volume: 15
  year: 2005
  ident: pgen.1010517.ref041
  article-title: Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study
  publication-title: Ethn Dis
– volume: 181
  start-page: 1464
  year: 2020
  ident: pgen.1010517.ref036
  article-title: Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise.
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.004
– volume: 83
  start-page: 799
  year: 1994
  ident: pgen.1010517.ref027
  article-title: Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils
  publication-title: Blood
  doi: 10.1182/blood.V83.3.799.799
– volume: 374
  start-page: eabj1541
  year: 2021
  ident: pgen.1010517.ref038
  article-title: Mapping the proteo-genomic convergence of human diseases
  publication-title: Science
  doi: 10.1126/science.abj1541
– volume: 15
  start-page: 503
  year: 2014
  ident: pgen.1010517.ref052
  article-title: Functional normalization of 450k methylation array data improves replication in large cancer studies
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0503-2
– volume: 20
  start-page: 1269
  year: 2019
  ident: pgen.1010517.ref013
  article-title: Multi-omics integration-a comparison of unsupervised clustering methodologies
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx167
– volume: 48
  start-page: D845
  year: 2020
  ident: pgen.1010517.ref030
  article-title: The DisGeNET knowledge platform for disease genomics: 2019 update
  publication-title: Nucleic Acids Res
– volume: 28
  start-page: 1353
  year: 2012
  ident: pgen.1010517.ref056
  article-title: Matrix eQTL: ultra fast eQTL analysis via large matrix operations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts163
– volume: 8
  year: 2009
  ident: pgen.1010517.ref001
  article-title: Extensions of sparse canonical correlation analysis with applications to genomic data
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1470
– volume: 26
  start-page: 2190
  year: 2010
  ident: pgen.1010517.ref057
  article-title: METAL: fast and efficient meta-analysis of genomewide association scans
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 17
  start-page: e0264341
  year: 2022
  ident: pgen.1010517.ref023
  article-title: Protein prediction for trait mapping in diverse populations.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0264341
– volume: 13
  start-page: 86
  year: 2012
  ident: pgen.1010517.ref015
  article-title: DNA methylation arrays as surrogate measures of cell mixture distribution
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-86
– volume: 11
  start-page: 578314
  year: 2020
  ident: pgen.1010517.ref032
  article-title: New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions.
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2020.578314
– volume: 114
  start-page: 1722
  year: 2007
  ident: pgen.1010517.ref034
  article-title: Elevated C-reactive protein levels in patients with polypoidal choroidal vasculopathy and patients with neovascular age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2006.12.021
SSID ssj0035897
Score 2.523479
Snippet Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1010517
SubjectTerms Arteriosclerosis
Associations
Biological analysis
Biology and life sciences
Blood
Body mass index
Canonical Correlation Analysis
Cohort analysis
Cohort Studies
Correlation analysis
Data mining
Datasets
DNA methylation
Genetic research
Genetic variation
Humans
Leukocytes
Medical genetics
Methods
Multiomics
Multivariate analysis
Phenotypic variations
Physical Sciences
Proteomics
Proteomics - methods
Research and Analysis Methods
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQCiQuiHcDBQJC4mS6fsUOt6WigsuCoKDeLNublEpVstpkkfj3zNjZ0KBK7YFrPI6SmfHkG2XmG0JeQ-YfXC0lVZ47Kp131BhVUACvXtcFwLlaxmETerk0JyfllwujvrAmLNEDJ8UdlCZ4rfxK1X4uAzMGnFBzzlwpV0oWHqMvoJ5dMpVisFAmjVVRSlANaf3QNCc0Oxhs9HYNBsLcFUmqJh-lyN0_RujZ-rztLoOf_1ZRXvgsHd0ldwY8mS_Se9wjN6rmPrmVJkz-fkCOD13TxtbHPOAcjlT5lruBiiQHyJrHmkKK3cndu3zx94d23rd5fF6KU3Q3_bjrIfl-9OH48CMdBinQAPCkp4yzYu5cDeBgzhyvJajSc-4EZxW26ItS-kI67vQqwPkPHHCcrLhnqzIE46V4RGbwsNUeyQFOMjOvguJOSfBCb-oAWZATjlVaFz4jYqdJGwaWcRx2cW7jrzMN2UZSjEX920H_GaHjrnVi2bhC_j0aaZRFjux4ATzHDp5jr_KcjLxAE9vUcDqedLvQSgokAZIZeRUlkCejwUKcU7ftOvvp849rCH1bXkfo60TozSBUt6Cz4IYOCdA8knRNJPcnkhASwmR5D712p7rOAoY0QkBuwGDnzpMvX345LuNNsQKvqdotyoDdFXYyZ-RxcvxR_QIZoCSbZ8RMjsTEPtOV5uxn5DJH5hBdSP3kf1j0KbnN4X5Y3MH5Ppn1m231jNwMv_qzbvM8Rog_Ic1nwQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgAYkLb2igQEBInFziV-xwWypWIKGlgoJ6s2xvApWqzWqTReLfM5N4U1K1olzjz5EzHk9m5JlvCHkFkX9wlZRUee6odN5RY1ROwXn1usrBnatk12xCz-fm6Kg4OA0Uz9zgC83eRJnurUCgGGsiqdRVco2LPMcUrtnBp63lFcoUOpbHXTRz9PvpWPoHWzxZndTNeY7m2XzJv35As9v_u_Q75FZ0NdNprxt3yZVyeY_c6JtP_r5PDvfdsu6qItOALTr6pLjURZaSFLzZtEs3pFi43LxNp6d33Wlbp90HUmywu26HWQ_It9n7w_0PNPZYoAE8l5YyzvLMuQr8how5XkmfSc-5E5yVWL0vCulz6bjTiwCmIXBw8WTJPVsUIRgvxUMygcWWOyQFT5OZrAyKOyVBQb2pAgRITjhWap37hIit6G2IBOTYB-PEdrdqGgKRXjAW5WWjvBJCh1mrnoDjH_h3uKsDFumzuwewMTaeRluY4LXyC1XB5wZmDFg2zTlzhVwoiUt9jjph-1rUwQjYqVZSID-QTMjLDoEUGkvM0fnhNk1jP37-fgnQ1_llQF9GoNcRVNUgs-Bi8QRIHvm7RsjdERKsRRgN76Cab0XXWHAvjRAQNjCYuVX984dfDMP4UkzOW5b1BjGw7wqLnBPyqD8pg_gFkkNJliXEjM7QaH_GI8vjnx3NOZKK6Fzqxxcv-Qm5yQGF2Ryc75JJu96UT8n18Ks9btbPOuPwB2PpYsE
  priority: 102
  providerName: Public Library of Science
Title Canonical correlation analysis for multi-omics: Application to cross-cohort analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/37216410
https://www.proquest.com/docview/2838338001
https://www.proquest.com/docview/2818054628
https://pubmed.ncbi.nlm.nih.gov/PMC10237647
https://doaj.org/article/98cb75bd5fb04c1883187221a94d546b
http://dx.doi.org/10.1371/journal.pgen.1010517
Volume 19
WOSCitedRecordID wos000995799200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMKowSExJNZ7dixywvqplVMghKNgcpTZDvJmDQ1pWmR-O-5c9yMoAkm8ZKH-lzZvvP5zr77HSEvwfN3phSCSssNFcYaqrVMKBivVpUJmHOl8MUm1HSqZ7NRGi7c6hBWudGJXlHnlcM78j04BjW4U6BV3y6-U6waha-roYTGFtlGpDLRI9v7h9P0eKOLY6mb8ipSxlSBex-S52LF9gKvXi-AUejDIlhV53DyGP6tpu4tzqv6MjP0z2jK346nye3_ndgdcisYptG4kaS75Foxv0duNKUqf94nJwdmXvkcyshhQY8mhC4yAdMkAts38sGJFNOc6zfR-OJlPFpVkZ8wxXK8y1Xb6wH5PDk8OXhHQ0UG6sDOWVHGWTI0pgQrY8gML4UdCsu5iTkrMNc_HgmbCMONyh0oEsfBIBQFtywfOaetiB-SHgy22CER2KVMDwsnuZECxNnq0oE7ZWLDCqUS2yfxhhWZC3DlWDXjPPNvcArclmZhMmRgFhjYJ7TttWjgOv5Bv49cbmkRbNv_UC1Ps7B3s5F2VkmbyxKm65jWoAcV58yMRC4FDvUZykjWZK62KiMbKyliRBMSffLCUyDgxhwjek7Nuq6zo49frkD0aXoVouMO0atAVFawZs6EVAtYeUT76lDudihBt7hO8w6K_Wbp6uxCWKHnRpwvb37eNuOfYijfvKjWSAN8l5gS3SePmp3TLn-MUFKCDftEd_ZUhz_dlvnZNw-KjhAkKhHq8d_H9YTc5ECJ8R-c75LearkunpLr7sfqrF4OyJaaKf_Vg6BKBv6WBr6T9P0AI4NTaEmPPqRffwER-H4h
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL37DCYAGBeDKLHTt2kBAqg2nTRkFQUN-M7SZj0tSUpgXtn-Jv5C5fI2iCveyB1_ocJef7rO9-R8hjyPy9zYSg0nFLhXWWai1jCsGrU1kM4VwmymETajjU43HyfoX8bHphsKyysYmloZ7kHv8j3wA3qCGdAqv6cvaN4tQovF1tRmhUYrGbHv2AlK14sfMazvcJ51tvRpvbtJ4qQD346gVlnMWhtRl4ypBZngkXCse5jThLsV89SoSLheVWTTwog-cQ1IiUOzZJvNdORPDcc-Q82HGFJWRq3CZ4kdTVMBcpI6qiJKxb9SLFNmrJeDYDscCMGaGxOq6wnBjQ-oXe7DAvTgp6_6zd_M0Zbl3939h4jVypw-5gUOnJdbKSTm-Qi9UgzqObZLRpp3nZIRp4HFdSFQgGtkZsCSCyD8rSS4pN3MXzYHB87x8s8qBkMMVhw_NFu-sW-XQmn3Sb9OBl01USQNTNdJh6ya0UoKxOZx6SRRtZlioVuz6JmqM3vgZjx5kgh6a8YVSQlFWMMSgwphaYPqHtrlkFRvIP-lcoVS0tQomXP-TzfVNbJpNo75R0E5nB53qmNVh5xTmziZhIga-6jjJpqr7c1iCagZIiQqwk0SePSgqEE5livdK-XRaF2Xn3-RREH4enIfrQIXpaE2U58MzbupEEOI9YZh3KtQ4lWE7fWV5FNWtYV5hj5YCdjfqcvPywXcaHYqHiNM2XSAPnLrHhu0_uVJrasj9CoCzBwj7RHR3unE93ZXrwtYR8R4AVFQt19-_vtU4ubY_e7pm9neHuPXKZwy6sdOF8jfQW82V6n1zw3xcHxfxBabgC8uWsVfwX5VbQiQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGB4gXvmGFwQIC8WQWO3bsIiHUfYlqqFRjQ3sLtpuMSVNTmha0f42_jrvEyQiaYC974LU-R875Ppu73xHyAjJ_ZzIhqLTcUGGsoVrLmELwalUWQziXiXLYhBoO9eFhb7REfta9MFhWWdvE0lCPc4f_ka-DG9SQTiFiUObLIkZbO--m3yhOkMIvrfU4jUpEdtPTH5C-FW8HW3DXLznf2d7ffE_9hAHqwG_PKeMsDo3JwGuGzPBM2FBYzk3EWYq961FP2FgYbtTYgWI4DgGOSLll455z2ooInnuFLCsIMkC7lje2h6O92g9EUlejXaSMKFCEvnEvUmzdy8nrKQgJ5s8IlNVyjOX8gMZLdKYneXFeCPxnJedvrnHn1v_M1Nvkpg_Ig36lQXfIUjq5S65VIzpP75H9TTPJy97RwOEgk6p0MDAeyyWAmD8oizIptncXb4L-WUVAMM-DktkUxxDP5s2u--TgUl7pAenAYdMVEkA8znSYOsmNFKDGVmcO0kgTGZYqFdsuiWoxSJyHacdpISdJ-e1RQbpWMSZB4Um88HQJbXZNK5iSf9BvoIQ1tAgyXv6Qz44Sb7OSnnZWSTuWGbyuY1qD_VecM9MTYynwqGson0nVsduYyqSvpIgQRUl0yfOSAoFGJihdR2ZRFMng4-cLEH0aXoRor0X0yhNlOfDMGd9iApxHlLMW5WqLEmyqay2voMrVrCuSM0WBnbUqnb_8rFnGh2IJ4yTNF0gD9y6xFbxLHlZa27A_QggtwcIu0S19bt1Pe2Vy_LUEg0foFRUL9ejv51oj10Gzkw-D4e5jcoPDJiyB4XyVdOazRfqEXHXf58fF7Km3YgH5ctk6_gv9Pdqq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+correlation+analysis+for+multi-omics%3A+Application+to+cross-cohort+analysis&rft.jtitle=PLoS+genetics&rft.au=Jiang%2C+Min-Zhi&rft.au=Aguet%2C+Fran%C3%A7ois&rft.au=Ardlie%2C+Kristin&rft.au=Chen%2C+Jiawen&rft.date=2023-05-22&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=19&rft.issue=5&rft.spage=e1010517&rft_id=info:doi/10.1371%2Fjournal.pgen.1010517&rft.externalDBID=ISR&rft.externalDocID=A754335784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon