The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito

Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics Jg. 13; H. 10; S. e1007039
Hauptverfasser: Hammond, Andrew M., Kyrou, Kyros, Bruttini, Marco, North, Ace, Galizi, Roberto, Karlsson, Xenia, Kranjc, Nace, Carpi, Francesco M., D’Aurizio, Romina, Crisanti, Andrea, Nolan, Tony
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 04.10.2017
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7404, 1553-7390, 1553-7404
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.
AbstractList Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.
Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications.
Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito. The construct copies itself and the associated genetic disruption from one homologous chromosome to another during gamete formation, a process called homing that ensures the majority of offspring inherit the drive. Such drives have the potential to cause long-lasting, sustainable population suppression, though they are also expected to impose a large selection pressure for resistance in the mosquito. One of these population suppression gene drives showed rapid invasion of a caged population over 4 generations, establishing proof of principle for this technology. In order to assess the potential for the emergence of resistance to the gene drive in this population we allowed it to run for 25 generations and monitored the frequency of the gene drive over time. Following the initial increase of the gene drive we observed a gradual decrease in its frequency that was accompanied by the spread of small, nuclease-induced mutations at the target gene that are resistant to further cleavage and restore its functionality. Such mutations showed rates of increase consistent with positive selection in the face of the gene drive. Our findings represent the first documented example of selection for resistance to a synthetic gene drive and lead to important design recommendations and considerations in order to mitigate for resistance in future gene drive applications. Gene drives are selfish genetic elements that are able to bias their own inheritance among offspring. Starting from very low frequencies they can rapidly invade a population in just a few generations, even when imposing a fitness cost. Gene drives based on the precise DNA cutting enzyme CRISPR have been shown recently to be highly efficient at copying themselves from one chromosome to the other during the process of gamete formation in mosquitoes, resulting in transmission to 99% of offspring instead of the 50% expected for a single gene copy. One proposed use for CRISPR-based gene drives is in the control of mosquitoes by designing the gene drive to target mosquito genes involved in fertility, thereby reducing their overall reproductive output and leading to population suppression. Like any intervention designed to suppress a population these gene drives are expected to select for mutations in the mosquito that are resistant to the drive and restore fertility to mosquitoes. We have analyzed the origin and selection of resistant alleles in caged populations of mosquitoes initiated with a gene drive construct targeting a female fertility gene. We find the selected alleles are in-frame insertions and deletions that are resistant to cleavage and restore female fertility. Our findings allow us to improve predictions on gene drive behaviour and to make concrete recommendations on how to improve future gene drive designs by decreasing the likelihood that they generate resistance.
Audience Academic
Author Hammond, Andrew M.
Crisanti, Andrea
D’Aurizio, Romina
North, Ace
Bruttini, Marco
Nolan, Tony
Kranjc, Nace
Galizi, Roberto
Carpi, Francesco M.
Kyrou, Kyros
Karlsson, Xenia
AuthorAffiliation Institute of Science and Technology Austria (IST Austria), AUSTRIA
4 Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
3 Department of Zoology, University of Oxford, Oxford, England
1 Dept. of Life Sciences, Imperial College London, London, United Kingdom
2 Polo d’Innovazione Genomica, Genetica e Biologia, Siena, Italy
AuthorAffiliation_xml – name: 2 Polo d’Innovazione Genomica, Genetica e Biologia, Siena, Italy
– name: Institute of Science and Technology Austria (IST Austria), AUSTRIA
– name: 3 Department of Zoology, University of Oxford, Oxford, England
– name: 4 Laboratory of Integrative Systems Medicine (LISM), Institute of Informatics and Telematics (IIT), CNR, Pisa, Italy
– name: 1 Dept. of Life Sciences, Imperial College London, London, United Kingdom
Author_xml – sequence: 1
  givenname: Andrew M.
  surname: Hammond
  fullname: Hammond, Andrew M.
– sequence: 2
  givenname: Kyros
  surname: Kyrou
  fullname: Kyrou, Kyros
– sequence: 3
  givenname: Marco
  orcidid: 0000-0003-1063-2522
  surname: Bruttini
  fullname: Bruttini, Marco
– sequence: 4
  givenname: Ace
  orcidid: 0000-0002-4253-396X
  surname: North
  fullname: North, Ace
– sequence: 5
  givenname: Roberto
  orcidid: 0000-0003-3134-7480
  surname: Galizi
  fullname: Galizi, Roberto
– sequence: 6
  givenname: Xenia
  surname: Karlsson
  fullname: Karlsson, Xenia
– sequence: 7
  givenname: Nace
  surname: Kranjc
  fullname: Kranjc, Nace
– sequence: 8
  givenname: Francesco M.
  surname: Carpi
  fullname: Carpi, Francesco M.
– sequence: 9
  givenname: Romina
  orcidid: 0000-0002-1728-6397
  surname: D’Aurizio
  fullname: D’Aurizio, Romina
– sequence: 10
  givenname: Andrea
  surname: Crisanti
  fullname: Crisanti, Andrea
– sequence: 11
  givenname: Tony
  orcidid: 0000-0002-2982-8333
  surname: Nolan
  fullname: Nolan, Tony
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28976972$$D View this record in MEDLINE/PubMed
BookMark eNqVk12L1DAUhousuB_6D0QLgujFjEnTJK0XwrL4MbC4oKu3IZOczmRIm9kkHfTfm850l5llEaUXaXKe9z3JSc5pdtS5DrLsOUZTTDh-t3K976SdrhfQTTFCHJH6UXaCKSUTXqLyaO__ODsNYYUQoVXNn2THRRpYzYuTLFwvIVceZDSuy2Wn8wAW1Hbmmrzt4zYScg_BhCi7mEeXyzwlhVx7s4HcbcAn0EaztrAN-FFjujwm-1Za6Y3MWxduehPd0-xxI22AZ-N4lv349PH64svk8urz7OL8cqJ4weIEinKugFSSQIlIpZs6TTngugRaKaiY5oiyWkJVVHNEUFU0nBRYck0xl4STs-zlzndtXRBjvYLANaOI1zXDiZjtCO3kSqy9aaX_LZw0Yrvg_EJIH42yIBCmpURIVzVWpa7IXGvNGJ0D5ow3VZm8PozZ-nkLWkEXvbQHpoeRzizFwm0EZWVV0GG7b0YD7256CFG0JiiwVnbg-mHfJWcFYuWQ69U99OHTjdRCpgOYrnEprxpMxTnFBeMMUZKo6QNU-jS0RqU315i0fiB4eyBITIRfcSH7EMTs-7f_YL_-O3v185B9vccuQdq4DM7223d3CL7Yv5W767jtgASUO0B5F4KH5g7BSAyNdltaMTSaGBstyd7fkymza5VUPWP_Lv4D9CguEA
CitedBy_id crossref_primary_10_1093_molbev_msab352
crossref_primary_10_1186_s12936_024_04952_9
crossref_primary_10_1186_s13071_025_06905_w
crossref_primary_10_1186_s12936_022_04242_2
crossref_primary_10_2174_0113892010316710240626042205
crossref_primary_10_1038_s41467_023_42183_9
crossref_primary_10_1073_pnas_1816928116
crossref_primary_10_1111_mec_17530
crossref_primary_10_1038_s41598_024_54498_8
crossref_primary_10_1186_s12864_024_10597_4
crossref_primary_10_1080_07853890_2024_2302504
crossref_primary_10_1111_eva_13032
crossref_primary_10_1089_hs_2018_0067
crossref_primary_10_3389_fbioe_2020_00452
crossref_primary_10_3389_finsc_2022_981974
crossref_primary_10_1038_s41598_018_34909_3
crossref_primary_10_1186_s13071_021_04789_0
crossref_primary_10_1038_s41467_020_14960_3
crossref_primary_10_1073_pnas_1901886116
crossref_primary_10_1128_JVI_00802_21
crossref_primary_10_1371_journal_pntd_0006769
crossref_primary_10_1038_s41564_018_0214_7
crossref_primary_10_1080_20477724_2018_1438880
crossref_primary_10_1073_pnas_1713825115
crossref_primary_10_5802_crbiol_182
crossref_primary_10_1038_s41467_024_46479_2
crossref_primary_10_1016_j_amjmed_2021_08_036
crossref_primary_10_1038_s41598_020_77544_7
crossref_primary_10_1038_s42003_024_07254_7
crossref_primary_10_1073_pnas_2107413118
crossref_primary_10_1186_s12864_024_11127_y
crossref_primary_10_1038_nrg_2017_91
crossref_primary_10_1016_j_tibtech_2018_09_010
crossref_primary_10_1016_j_jglr_2021_10_018
crossref_primary_10_1371_journal_pcbi_1009660
crossref_primary_10_1093_g3journal_jkab086
crossref_primary_10_1007_s12033_025_01482_w
crossref_primary_10_1038_s41467_024_51225_9
crossref_primary_10_7554_eLife_51701
crossref_primary_10_1186_s13071_018_3209_6
crossref_primary_10_3389_fagro_2023_1290781
crossref_primary_10_1534_g3_117_300557
crossref_primary_10_1016_j_jia_2022_11_003
crossref_primary_10_1016_j_jtbi_2021_110831
crossref_primary_10_1016_j_meegid_2023_105419
crossref_primary_10_7554_eLife_65939
crossref_primary_10_1089_crispr_2021_0129
crossref_primary_10_1371_journal_pgen_1009321
crossref_primary_10_1038_s41467_021_21771_7
crossref_primary_10_1186_s40694_019_0065_x
crossref_primary_10_1038_s41598_022_10327_4
crossref_primary_10_1093_g3journal_jkac081
crossref_primary_10_1073_pnas_1713139115
crossref_primary_10_1073_pnas_2312456121
crossref_primary_10_1146_annurev_genet_031623_105059
crossref_primary_10_1093_g3journal_jkae025
crossref_primary_10_1038_s41467_019_13977_7
crossref_primary_10_1016_j_jgg_2024_04_001
crossref_primary_10_1038_s41598_019_51181_1
crossref_primary_10_1242_bio_037762
crossref_primary_10_1093_molbev_msaf048
crossref_primary_10_1002_bies_202100279
crossref_primary_10_1038_s41467_021_24790_6
crossref_primary_10_1186_s12936_025_05243_7
crossref_primary_10_1186_s12915_022_01292_5
crossref_primary_10_1371_journal_pgen_1011226
crossref_primary_10_1016_j_cois_2020_03_007
crossref_primary_10_1016_j_jenvman_2025_126189
crossref_primary_10_1038_s41467_024_53065_z
crossref_primary_10_1038_s42003_024_06848_5
crossref_primary_10_1089_vbz_2019_2606
crossref_primary_10_1002_moda_30
crossref_primary_10_2903_j_efsa_2020_6297
crossref_primary_10_1371_journal_pgen_1010370
crossref_primary_10_1038_s41434_024_00468_8
crossref_primary_10_1038_s41467_024_53631_5
crossref_primary_10_1111_eva_12945
crossref_primary_10_1111_eva_13119
crossref_primary_10_1073_pnas_2200567119
crossref_primary_10_1371_journal_pntd_0008876
crossref_primary_10_1016_j_ijbiomac_2025_146574
crossref_primary_10_1089_crispr_2018_29001_tno
crossref_primary_10_1111_eva_13358
crossref_primary_10_1038_s41576_021_00386_0
crossref_primary_10_1186_s12915_020_00834_z
crossref_primary_10_7554_eLife_79121
crossref_primary_10_1073_pnas_1805278115
crossref_primary_10_1111_conl_12593
crossref_primary_10_1111_jen_13314
crossref_primary_10_1534_g3_119_400985
crossref_primary_10_1038_s41467_024_50992_9
crossref_primary_10_1073_pnas_2414207122
crossref_primary_10_3389_fbioe_2022_856981
crossref_primary_10_7554_eLife_71809
crossref_primary_10_1073_pnas_1805874115
crossref_primary_10_1093_genetics_iyac055
crossref_primary_10_1073_pnas_1720354115
crossref_primary_10_3389_fgene_2022_891218
crossref_primary_10_1038_nbt_4245
crossref_primary_10_1089_crispr_2022_0026
crossref_primary_10_1016_j_cois_2018_07_014
crossref_primary_10_1016_j_semcdb_2019_04_008
crossref_primary_10_1186_s13071_020_04170_7
crossref_primary_10_1038_s41598_020_69259_6
crossref_primary_10_1186_s12936_021_03682_6
crossref_primary_10_1038_s41467_021_27333_1
crossref_primary_10_1371_journal_pntd_0008971
crossref_primary_10_3389_finsc_2025_1618382
crossref_primary_10_1016_j_isci_2023_108027
crossref_primary_10_1089_crispr_2023_0029
crossref_primary_10_1007_s11248_021_00262_x
crossref_primary_10_1038_s42003_024_06348_6
crossref_primary_10_7554_eLife_93142
crossref_primary_10_7554_eLife_41439
crossref_primary_10_1007_s11569_023_00439_0
crossref_primary_10_1093_jme_tjab030
crossref_primary_10_1038_s41467_022_34739_y
crossref_primary_10_1038_s42003_019_0717_7
crossref_primary_10_1051_jbio_2019006
crossref_primary_10_1371_journal_pgen_1008440
crossref_primary_10_1146_annurev_micro_011320_025557
crossref_primary_10_1016_j_pt_2017_10_012
crossref_primary_10_1111_pim_12762
crossref_primary_10_1089_crispr_2017_0012
crossref_primary_10_1080_21550085_2020_1848197
crossref_primary_10_1093_g3journal_jkab201
crossref_primary_10_1038_s41467_024_44956_2
crossref_primary_10_1038_s42003_023_05224_z
crossref_primary_10_1073_pnas_2004838117
crossref_primary_10_1038_s41598_020_80436_5
crossref_primary_10_1534_genetics_119_302037
crossref_primary_10_1042_BST20180076
crossref_primary_10_1016_j_pt_2024_04_010
crossref_primary_10_1007_s41649_018_0071_y
crossref_primary_10_1038_s41467_020_18678_0
crossref_primary_10_1111_mec_70028
crossref_primary_10_1016_j_cois_2025_101437
crossref_primary_10_1371_journal_pcbi_1009526
crossref_primary_10_1038_s41467_021_24654_z
crossref_primary_10_1038_s41467_021_24214_5
crossref_primary_10_1139_cjfas_2018_0153
crossref_primary_10_70749_ijbr_v2i02_385
crossref_primary_10_1016_j_cois_2025_101430
crossref_primary_10_1007_s11673_022_10172_0
crossref_primary_10_1111_eva_12878
crossref_primary_10_1371_journal_pgen_1010060
crossref_primary_10_1073_pnas_2004373117
crossref_primary_10_1186_s12985_022_01859_2
crossref_primary_10_1186_s13071_018_3218_5
crossref_primary_10_1016_j_tig_2022_02_013
crossref_primary_10_1186_s12915_020_0761_2
crossref_primary_10_3389_finsc_2022_1063789
crossref_primary_10_3389_finsc_2022_957570
crossref_primary_10_1007_s10592_019_01165_5
crossref_primary_10_1016_j_pt_2019_03_004
crossref_primary_10_1111_eea_13093
crossref_primary_10_1111_jeb_13693
crossref_primary_10_1007_s44297_024_00038_9
crossref_primary_10_1038_d41586_019_02087_5
crossref_primary_10_1007_s40290_019_00276_1
crossref_primary_10_1098_rspb_2018_0776
crossref_primary_10_1146_annurev_ento_020117_043154
crossref_primary_10_1016_j_cois_2018_10_009
crossref_primary_10_1038_s41467_018_06580_9
crossref_primary_10_1371_journal_pgen_1009740
crossref_primary_10_1016_j_jtbi_2023_111654
crossref_primary_10_1371_journal_pgen_1008898
crossref_primary_10_1371_journal_ppat_1006898
crossref_primary_10_1016_j_jtbi_2019_06_024
crossref_primary_10_1038_s41467_020_19426_0
crossref_primary_10_1186_s13059_024_03455_9
Cites_doi 10.1534/genetics.108.089037
10.1038/nature15535
10.1126/science.aaa5945
10.1534/genetics.116.197285
10.7717/peerj.2584
10.1371/journal.pgen.1006796
10.1126/science.1258522
10.1038/nbt.3439
10.1093/bioinformatics/btu170
10.1093/jmedent/31.1.10
10.1038/nature09937
10.1093/genetics/143.4.1653
10.1098/rspb.2002.2319
10.1126/sciadv.1601964
10.1086/281969
10.1186/1471-2199-10-65
10.1073/pnas.1521077112
10.1038/218368a0
10.1073/pnas.1110717108
10.1093/bioinformatics/btt593
10.1073/pnas.1213431110
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. (2017) The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet13(10): e1007039. https://doi.org/10.1371/journal.pgen.1007039
2017 Hammond et al 2017 Hammond et al
2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. (2017) The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet13(10): e1007039. https://doi.org/10.1371/journal.pgen.1007039
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. (2017) The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet13(10): e1007039. https://doi.org/10.1371/journal.pgen.1007039
– notice: 2017 Hammond et al 2017 Hammond et al
– notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. (2017) The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet13(10): e1007039. https://doi.org/10.1371/journal.pgen.1007039
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1007039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic


MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Gene drive resistance in mosquito
EISSN 1553-7404
ExternalDocumentID 1965079961
oai_doaj_org_article_0154a00d891c4d83bddd665be1767f84
PMC5648257
A512676053
28976972
10_1371_journal_pgen_1007039
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
ID FETCH-LOGICAL-c726t-e24bce38a3e4038df9bce7e194e58ce86d70569ae828b03082f7321a7d517a373
IEDL.DBID M7P
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414161300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Sun Apr 03 16:02:32 EDT 2022
Fri Oct 03 12:50:56 EDT 2025
Tue Nov 04 01:51:44 EST 2025
Wed Oct 01 14:10:24 EDT 2025
Sat Nov 29 14:53:58 EST 2025
Tue Nov 11 10:09:45 EST 2025
Tue Nov 04 17:32:46 EST 2025
Thu Nov 13 15:25:57 EST 2025
Thu Nov 13 15:30:30 EST 2025
Thu Nov 13 15:18:30 EST 2025
Thu May 22 21:18:11 EDT 2025
Wed Feb 19 02:43:43 EST 2025
Sat Nov 29 06:03:45 EST 2025
Tue Nov 18 21:10:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-e24bce38a3e4038df9bce7e194e58ce86d70569ae828b03082f7321a7d517a373
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-1063-2522
0000-0002-1728-6397
0000-0002-2982-8333
0000-0002-4253-396X
0000-0003-3134-7480
OpenAccessLink https://www.proquest.com/docview/1965079961?pq-origsite=%requestingapplication%
PMID 28976972
PQID 1965079961
PQPubID 1436339
ParticipantIDs plos_journals_1965079961
doaj_primary_oai_doaj_org_article_0154a00d891c4d83bddd665be1767f84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5648257
proquest_miscellaneous_1947620644
proquest_journals_1965079961
gale_infotracmisc_A512676053
gale_infotracacademiconefile_A512676053
gale_incontextgauss_ISR_A512676053
gale_incontextgauss_ISN_A512676053
gale_incontextgauss_IOV_A512676053
gale_healthsolutions_A512676053
pubmed_primary_28976972
crossref_primary_10_1371_journal_pgen_1007039
crossref_citationtrail_10_1371_journal_pgen_1007039
PublicationCentury 2000
PublicationDate 20171004
PublicationDateYYYYMMDD 2017-10-04
PublicationDate_xml – month: 10
  year: 2017
  text: 20171004
  day: 4
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References VM Gantz (ref8) 2015; 112
RL Unckless (ref13) 2017; 205
LN Truong (ref16) 2013; 110
A Deredec (ref19) 2011; 108
M Vella (ref23) 2017
A Miles (ref22) 2016
CC Hong (ref15) 1996; 143
A Burt (ref1) 2003; 270
JM Marshall (ref20) 2016
AM Bolger (ref24) 2014; 30
JM Ribeiro (ref3) 1994; 31
A Deredec (ref18) 2008; 179
S Bhatt (ref5) 2015; 526
J Zhang (ref25) 2014; 30
KM Esvelt (ref12) 2014
T Rognes (ref26) 2016; 4
CF Curtis (ref2) 1968; 218
J Champer (ref10) 2017; 13
L Sandler (ref4) 1957; 91
PA Papathanos (ref17) 2009; 10
N Windbichler (ref9) 2011; 473
ref6
DE Neafsey (ref21) 2015; 347
VM Gantz (ref7) 2015; 348
A Hammond (ref11) 2016; 34
C Noble (ref14) 2017; 3
28727785 - PLoS Genet. 2017 Jul 20;13(7):e1006796
23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5
18660532 - Genetics. 2008 Aug;179(4):2013-26
24142950 - Bioinformatics. 2014 Mar 1;30(5):614-20
25908821 - Science. 2015 Apr 24;348(6233):442-4
28630470 - Sci Rep. 2017 Jun 19;7(1):3776
27781170 - PeerJ. 2016 Oct 18;4:e2584
21976487 - Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):E874-80
26598698 - Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):E6736-43
26641531 - Nat Biotechnol. 2016 Jan;34(1):78-83
24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20
28435878 - Sci Adv. 2017 Apr 05;3(4):e1601964
25035423 - Elife. 2014 Jul 17;3
29062055 - Nat Rev Genet. 2017 Dec;18(12 ):704
19573226 - BMC Mol Biol. 2009 Jul 02;10:65
8158612 - J Med Entomol. 1994 Jan;31(1):10-6
26375008 - Nature. 2015 Oct 8;526(7572):207-211
28887462 - Sci Rep. 2017 Sep 8;7(1):11038
5649682 - Nature. 1968 Apr 27;218(5139):368-9
12803906 - Proc Biol Sci. 2003 May 7;270(1518):921-8
27941126 - Genetics. 2017 Feb;205(2):827-841
8844153 - Genetics. 1996 Aug;143(4):1653-61
21508956 - Nature. 2011 May 12;473(7346):212-5
25554792 - Science. 2015 Jan 2;347(6217):1258522
References_xml – volume: 179
  start-page: 2013
  issue: 4
  year: 2008
  ident: ref18
  article-title: The population genetics of using homing endonuclease genes in vector and pest management
  publication-title: Genetics
  doi: 10.1534/genetics.108.089037
– volume: 526
  start-page: 207
  issue: 7572
  year: 2015
  ident: ref5
  article-title: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015
  publication-title: Nature
  doi: 10.1038/nature15535
– start-page: 144097
  year: 2017
  ident: ref23
  article-title: Evaluating Strategies For Reversing CRISPR-Cas9 Gene Drives
  publication-title: bioRxiv
– volume: 348
  start-page: 442
  issue: 6233
  year: 2015
  ident: ref7
  article-title: Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations
  publication-title: Science
  doi: 10.1126/science.aaa5945
– volume: 205
  start-page: 827
  issue: 2
  year: 2017
  ident: ref13
  article-title: Evolution of Resistance Against CRISPR/Cas9 Gene Drive
  publication-title: Genetics
  doi: 10.1534/genetics.116.197285
– volume: 4
  start-page: e2584
  year: 2016
  ident: ref26
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– start-page: 3
  year: 2014
  ident: ref12
  article-title: Concerning RNA-guided gene drives for the alteration of wild populations
  publication-title: Elife
– volume: 13
  start-page: e1006796
  issue: 7
  year: 2017
  ident: ref10
  article-title: Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006796
– volume: 347
  start-page: 1258522
  issue: 6217
  year: 2015
  ident: ref21
  article-title: Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes
  publication-title: Science
  doi: 10.1126/science.1258522
– volume: 34
  start-page: 78
  issue: 1
  year: 2016
  ident: ref11
  article-title: A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3439
– volume: 30
  start-page: 2114
  issue: 15
  year: 2014
  ident: ref24
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 31
  start-page: 10
  issue: 1
  year: 1994
  ident: ref3
  article-title: Transposable elements as population drive mechanisms: specification of critical parameter values
  publication-title: J Med Entomol
  doi: 10.1093/jmedent/31.1.10
– volume: 473
  start-page: 212
  issue: 7346
  year: 2011
  ident: ref9
  article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito
  publication-title: Nature
  doi: 10.1038/nature09937
– volume: 143
  start-page: 1653
  issue: 4
  year: 1996
  ident: ref15
  article-title: The maternal nudel protein of Drosophila has two distinct roles important for embryogenesis
  publication-title: Genetics
  doi: 10.1093/genetics/143.4.1653
– volume: 270
  start-page: 921
  issue: 1518
  year: 2003
  ident: ref1
  article-title: Site-specific selfish genes as tools for the control and genetic engineering of natural populations
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2002.2319
– volume: 3
  start-page: e1601964
  issue: 4
  year: 2017
  ident: ref14
  article-title: Evolutionary dynamics of CRISPR gene drives
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1601964
– volume: 91
  start-page: 105
  issue: 857
  year: 1957
  ident: ref4
  article-title: Meiotic Drive as an Evolutionary Force
  publication-title: The American Naturalist
  doi: 10.1086/281969
– start-page: 096289
  year: 2016
  ident: ref22
  article-title: Natural diversity of the malaria vector Anopheles gambiae
  publication-title: bioRxiv
– ident: ref6
– volume: 10
  start-page: 65
  year: 2009
  ident: ref17
  article-title: The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies
  publication-title: BMC Mol Biol
  doi: 10.1186/1471-2199-10-65
– volume: 112
  start-page: E6736
  issue: 49
  year: 2015
  ident: ref8
  article-title: Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521077112
– volume: 218
  start-page: 368
  issue: 5139
  year: 1968
  ident: ref2
  article-title: Possible use of translocations to fix desirable genes in insect pest populations
  publication-title: Nature
  doi: 10.1038/218368a0
– volume: 108
  start-page: E874
  issue: 43
  year: 2011
  ident: ref19
  article-title: Requirements for effective malaria control with homing endonuclease genes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1110717108
– volume: 30
  start-page: 614
  issue: 5
  year: 2014
  ident: ref25
  article-title: PEAR: a fast and accurate Illumina Paired-End reAd mergeR
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt593
– volume: 110
  start-page: 7720
  issue: 19
  year: 2013
  ident: ref16
  article-title: Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1213431110
– start-page: 088427
  year: 2016
  ident: ref20
  article-title: Overcoming evolved resistance to population-suppressing homing-based gene drives
  publication-title: biorXiv
– reference: 27941126 - Genetics. 2017 Feb;205(2):827-841
– reference: 18660532 - Genetics. 2008 Aug;179(4):2013-26
– reference: 8844153 - Genetics. 1996 Aug;143(4):1653-61
– reference: 21976487 - Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):E874-80
– reference: 25908821 - Science. 2015 Apr 24;348(6233):442-4
– reference: 29062055 - Nat Rev Genet. 2017 Dec;18(12 ):704
– reference: 24142950 - Bioinformatics. 2014 Mar 1;30(5):614-20
– reference: 28727785 - PLoS Genet. 2017 Jul 20;13(7):e1006796
– reference: 25035423 - Elife. 2014 Jul 17;3:
– reference: 26641531 - Nat Biotechnol. 2016 Jan;34(1):78-83
– reference: 27781170 - PeerJ. 2016 Oct 18;4:e2584
– reference: 26598698 - Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):E6736-43
– reference: 24695404 - Bioinformatics. 2014 Aug 1;30(15):2114-20
– reference: 23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5
– reference: 8158612 - J Med Entomol. 1994 Jan;31(1):10-6
– reference: 28630470 - Sci Rep. 2017 Jun 19;7(1):3776
– reference: 19573226 - BMC Mol Biol. 2009 Jul 02;10:65
– reference: 28435878 - Sci Adv. 2017 Apr 05;3(4):e1601964
– reference: 12803906 - Proc Biol Sci. 2003 May 7;270(1518):921-8
– reference: 26375008 - Nature. 2015 Oct 8;526(7572):207-211
– reference: 28887462 - Sci Rep. 2017 Sep 8;7(1):11038
– reference: 25554792 - Science. 2015 Jan 2;347(6217):1258522
– reference: 5649682 - Nature. 1968 Apr 27;218(5139):368-9
– reference: 21508956 - Nature. 2011 May 12;473(7346):212-5
SSID ssj0035897
Score 2.625126
Snippet Gene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1007039
SubjectTerms Alleles
Amino Acid Sequence
Animals
Anopheles - genetics
Anopheles gambiae
Bioinformatics
Biology and life sciences
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
Control
Culicidae
Female
Fertility
Fertility - genetics
Fitness
Gene Frequency
Gene Library
Gene mutation
Genes
Genes, Essential
Genetic aspects
Genetic Engineering
Genetic research
Genetics
Genetics, Population
Genomics
Haplotypes
Heredity
High-Throughput Nucleotide Sequencing
Homing
Homology
Insect Vectors - genetics
Life sciences
Malaria
Malaria - prevention & control
Male
Medicine and Health Sciences
Methods
Models, Genetic
Mosquito Control - methods
Mosquitoes
Mutation
Nuclease
Population
Positive selection
Reproductive fitness
Research and Analysis Methods
Selection, Genetic
Sequence Analysis, RNA
Technology assessment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QCSReEN8rGxAQEk9l7SVN0seBmODlQHxpb1WapHDSrr1dWyT-e-ykra5o0vbAY89O1LNd-2fFsQl5VXFh8QAoLqUTMYcQE2ulqpgZy1KTVbnOwrAJuVqps7P8896oL6wJC-2Bg-COMcbrJLEqTw23ipXWWiGy0qVSyEr5TqCAesZkKvhglqkwViXLWAxvkgyX5phMjwcdvdmCgnyNQIKDwveCku_dP3noxfa8aS-Dn_9WUe6FpdO75M6AJ-lJ-B_3yA1X3ye3woTJPw9IC2ZAR2BIdW1p6wff4FNT0U0fTuJbClk3Ism6o11DNYW3dtTuwBVSrPGkY92hJ-yGNeuaAnykGw3Z8VrTTdNe9OAgHpLvp--_vfsQD3MWYiOXoovdkpfGMaWZ4wlTtsrhUbo05y5TxilhJcCkXDvIzkrf36aSbJlqabNUaibZI7Kom9odEAp4BRCNNsJVnJdMKtgPNqvSxFqd2zIibBR0YYYm5DgL47zwJ2sSkpEgtwLVUwzqiUg8rdqGJhxX8L9FHU682ELb_wCGVQyGVVxlWBF5jhZQhPuokyMoTgAiCQlZIIvIS8-BbTRqrNP5qfu2LT5--nENpq-r6zB9mTG9HpiqBmRm9HCBAiSPPbxmnEczTvAYZkY-QKMeRdcW2FUykZD5prByNPTLyS8mMm6KBXq1a3rk4RBWAd-C3B6H72ISP-T0UuRyGRE5-2Jm-plT6vUv3-o8E1xBUHnyPxR6SG4vEZNh9Qc_Iotu17un5Kb53a3b3TPvP_4CTHx0SQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDI5gAIkLb9jCAgEhcSq0TZqkxwUxAgkNK17aW5QmKYy00w7TFol_j90XdLUrlmMbJ62c2P4sOzYhzwouHAaAwlx6EXIwMaFRqgiZdSy2aZGZtG82IVcrdXSUHf5xFE9E8JmMXw48fbEFhnYx_YhlF8mlhAmBKVzLw_ej5mWpyuRwPe6smTPz01Xpn3TxYntc1acBzZP5kn8ZoOX1__31G-TaADXpQX82bpILvrxFrvTNJ3_dJjWcEDpiRmpKR-uuJw4-VQXdtH2QvqbgkCPILBvaVNRQ-IqnbgdakmL6Jx1TEruB3TBnXVJAlnRjwHFeG7qp6h8t6I475MvyzefXb8OhBUNoZSKa0Cc8t54pwzyPmHJFBo_Sxxn3qbJeCScBQWXGg-OWd6VvCsmS2EiXxtIwye6SRVmVfo9QgDIAdowVvuA8Z1LBerBYEUfOmczlAWHjzmg71CfHNhnHugu6SfBTer5pZKce2BmQcJq17etz_IP-FW76RIvVtbsXsG96EFaNuNJEkVNZbLlTLHfOCZHmPpZCFooH5DEeGd1fVZ10hD4A9CQkOIgsIE87CqywUWIKzzfT1rV-9-HrOYg-rc5D9HFG9HwgKirgmTXD3QrgPJb3mlHuzyhBmdjZ8B5Kwci6WmPByUiCUxzDzFEyTh9-Mg3jopi7V_qqRRoOFhegL_DtXi9IE_vB3Zcik0lA5EzEZvszHynX37sq6KngCuzN_bP_-AG5miAIw3QPvk8Wza71D8ll-7NZ17tHner4DRrtbww
  priority: 102
  providerName: Public Library of Science
Title The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito
URI https://www.ncbi.nlm.nih.gov/pubmed/28976972
https://www.proquest.com/docview/1965079961
https://www.proquest.com/docview/1947620644
https://pubmed.ncbi.nlm.nih.gov/PMC5648257
https://doaj.org/article/0154a00d891c4d83bddd665be1767f84
http://dx.doi.org/10.1371/journal.pgen.1007039
Volume 13
WOSCitedRecordID wos000414161300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: PLOS
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMKoxiExFNYEjux84Q2tIpJUKLxofEUObEzKq1J17RI_PfcOU5Y0ASTeImU3DlK7s7nn-3zHSEvSx5r3ADycmFij8MQ4ykpS48VmgVFVCYqaotNiNlMnpwkqVtwa1xYZecTraPWdYFr5HuY-c4XgM6DN8tzD6tG4e6qK6GxRbYxSwKzoXtp54lZJNviKlHEPPge3x2dYyLYc5p6vQQ12UgBH8uFXxiabAb_3k-Plmd1cxkI_TOW8sLgNL39v791h9xysJTut3Z0l1wz1T1yoy1U-fM-acCaaIcvqao0bWz9HLyrS7rYtBv6DYXJOwLSak3XNVUUfttQvQKPSjFUlHbhi5awcm3mFQUUShcKJtlzRRd1c74BP_OAfJkefn77znPlGrxChPHaMyHPC8OkYob7TOoygVthgoSbSBZGxloA2kqUgUlebtPklIKFgRI6CoRigj0ko6quzA6hAHsAGKkiNiXnORMS3gcvKwNfa5XofExYp6mscLnMsaTGWWY36ATMaVq5ZajfzOl3TLy-1bLN5fEP_gM0gp4XM3HbB_XqNHMdO0MMqnxfyyQouJYs11rHcZSbQMSilHxMnqEJZe2x1t6fZPuAtGIBk0k2Ji8sB2bjqDDc51RtmiY7-vj1CkyfZldhOh4wvXJMZQ0yK5Q7hwGSx1RgA87dASc4nmJA3sFe0YmuyX7bMrTsrP1y8vOejC_FOL_K1Bvk4TA6A0wGuT1qO1Yv_hB6c5yIcEzEoMsN9DOkVPPvNmN6FHMJY9Pjv3_WE3IzRNCG4SF8l4zWq415Sq4XP9bzZjUhW-JE2KuckO2Dw1l6PLErOHCdpu8n1vUAJT36kH77BS6iido
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAQX3tBAoQsCcTK1vWvv-oBQeVSN2oYKWlROZr27LpESO7UTUP8Uv5EZP0KNKuilB47OzK6S8Ty-yc7OEPIs5aHBAyAnETZ0OIQYR0mZOkwb5ukgjVRQD5sQw6E8PIz2lsjP9i4MllW2PrFy1CbX-B_5Ona-cwWgc-_19NjBqVF4utqO0KjVYtue_ICUrXw1eAfv97nvb77ff7vlNFMFHC38cOZYnyfaMqmY5S6TJo3gUVhI5m0gtZWhEQAKImUhF0mqbi6pYL6nhAk8oZhgsO8lssxB2WWPLO8Ndve-tL6fBbIe5xIEzAEJuM1lPSa89UY3Xk5BMaraBBcHlJ8KhtXMgEVk6E3HeXkW7P2zevNUONy88b8J8ia53gBvulFbyi2yZLPb5Eo9ivPkDinBXmiLoKnKDC2rCUH4lKd0Mq9LFkpa2BIhdzajs5wqCmK21BQQMygWw9K2QLMiFM2aUUYBZ9OJGiuwdzrJy-M5eNK75OBCfvE90svyzK4QCsAOoJ_SoU05T5iQsB9slnquMSoySZ-wVjNi3XRrx6Eh47g6ghSQtdVyi1Gf4kaf-sRZrJrW3Ur-wf8GlW7Bi73Gqw_y4ihuXFeMKFu5rpGRp7mRLDHGhGGQWE-EIpW8T9ZQZeP64u7CY8YbgCVDAeky65OnFQf2G8mwoOlIzcsyHnz4fA6mT8PzMH3sML1omNIcZKZVc9MEJI_Nzjqcqx1OcK26Q15BK2xFV8a_bQdWttZ1NvnJgoybYiVjZvM58nDAH5AIgNzu14a8EL8P3iOMhN8nomPinffTpWSjb1VP-CDkEqLvg79_rTVydWt_dyfeGQy3H5JrPkJULIbhq6Q3K-b2Ebmsv89GZfG4cWyUfL1oF_ALiAngiw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdG-RAvfMMKgxkE4ik0iZPYeUBoMCqqoVIBQ3sLju2MSm3SJS1o_xp_HXdOUhY0wV72wGN6Z6u93Mfv6vMdIU-zINJ4AOSk3EROACHGkUJkDlOaeSrMYhnWwyb4eCwODuLJBvnZ3oXBssrWJ1pHrQuF_5EPsPOdywGde4OsKYuY7A5fLY4cnCCFJ63tOI1aRfbM8Q9I36qXo1141898f_j285t3TjNhwFHcj5aO8YNUGSYkM4HLhM5ieOQGEnsTCmVEpDkAhFgayEtS29kl48z3JNehxyXjDPa9QC5ybFpuywYnbRRgoagHu4Qhc0AWbnNtj3Fv0GjJiwWoiK1ScHFU-YmwaKcHrGNEbzErqtMA8J91nCcC4_D6_yzSG-RaA8fpTm0_N8mGyW-Ry_WAzuPbpAIroi2upjLXtLJzg_CpyOh8VRcyVLQ0FQLxfEmXBZUURG6oLiGSUCyRpW3ZpiWUzZppTgF907mcSfACdF5URyvwr3fI_rn84ruklxe52SQU4B4AQqkikwVByriA_WCzzHO1lrFO-4S1WpKopoc7jhKZJfZgkkMuV8stQd1KGt3qE2e9alH3MPkH_2tUwDUvdiC3HxTlYdI4tASxt3RdLWJPBVqwVGsdRWFqPB7xTAR9so3qm9TXedd-NNkBhBlxSKJZnzyxHNiFJEflO5SrqkpGH76cgenT-CxMHztMzxumrACZKdncPwHJYwu0DudWhxMcruqQN9EiW9FVyW87gpWtpZ1Ofrwm46ZY35ibYoU8AaASSA9Abvdqo16L3wdPEsXc7xPeMffO--lS8uk32yk-jAIBMfn-37_WNrkCdp-8H433HpCrPuJWrJAJtkhvWa7MQ3JJfV9Oq_KR9XCUfD1v-_8FcE3nyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+creation+and+selection+of+mutations+resistant+to+a+gene+drive+over+multiple+generations+in+the+malaria+mosquito&rft.jtitle=PLoS+genetics&rft.au=Hammond%2C+Andrew+M.&rft.au=Kyrou%2C+Kyros&rft.au=Bruttini%2C+Marco&rft.au=North%2C+Ace&rft.date=2017-10-04&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=13&rft.issue=10&rft.spage=e1007039&rft_id=info:doi/10.1371%2Fjournal.pgen.1007039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1007039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon