Vascular occlusion by neutrophil extracellular traps in COVID-19

Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. Samples were donated from hospitalized patients. Sera, plasma, and autopsy-deri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:EBioMedicine Ročník 58; s. 102925
Hlavní autori: Leppkes, Moritz, Knopf, Jasmin, Naschberger, Elisabeth, Lindemann, Aylin, Singh, Jeeshan, Herrmann, Irmgard, Stürzl, Michael, Staats, Léonie, Mahajan, Aparna, Schauer, Christine, Kremer, Anita N., Völkl, Simon, Amann, Kerstin, Evert, Katja, Falkeis, Christina, Wehrfritz, Andreas, Rieker, Ralf J., Hartmann, Arndt, Kremer, Andreas E., Neurath, Markus F., Muñoz, Luis E., Schett, Georg, Herrmann, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.08.2020
Elsevier
Predmet:
ISSN:2352-3964, 2352-3964
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung
AbstractList Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung
AbstractBackgroundCoronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. MethodsSamples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. Patient findingsHere, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. InterpretationThese data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. FundingDeutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung
Background: Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. Methods: Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. Patient findings: Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. Interpretation: These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. Funding: Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung
Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood.BACKGROUNDCoronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood.Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry.METHODSSamples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry.Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage.PATIENT FINDINGSHere, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage.These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage.INTERPRETATIONThese data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage.Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.FUNDINGDeutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.
Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood. Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry. Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage. These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage. Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.
ArticleNumber 102925
Author Stürzl, Michael
Hartmann, Arndt
Herrmann, Martin
Völkl, Simon
Schett, Georg
Evert, Katja
Herrmann, Irmgard
Lindemann, Aylin
Kremer, Anita N.
Muñoz, Luis E.
Mahajan, Aparna
Wehrfritz, Andreas
Rieker, Ralf J.
Naschberger, Elisabeth
Singh, Jeeshan
Knopf, Jasmin
Neurath, Markus F.
Staats, Léonie
Amann, Kerstin
Leppkes, Moritz
Kremer, Andreas E.
Schauer, Christine
Falkeis, Christina
Author_xml – sequence: 1
  givenname: Moritz
  orcidid: 0000-0003-2311-090X
  surname: Leppkes
  fullname: Leppkes, Moritz
  email: moritz.leppkes@uk-erlangen.de
  organization: Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 2
  givenname: Jasmin
  surname: Knopf
  fullname: Knopf, Jasmin
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 3
  givenname: Elisabeth
  surname: Naschberger
  fullname: Naschberger, Elisabeth
  organization: Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 4
  givenname: Aylin
  surname: Lindemann
  fullname: Lindemann, Aylin
  organization: Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 5
  givenname: Jeeshan
  surname: Singh
  fullname: Singh, Jeeshan
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 6
  givenname: Irmgard
  surname: Herrmann
  fullname: Herrmann, Irmgard
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 7
  givenname: Michael
  surname: Stürzl
  fullname: Stürzl, Michael
  organization: Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 8
  givenname: Léonie
  surname: Staats
  fullname: Staats, Léonie
  organization: Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 9
  givenname: Aparna
  surname: Mahajan
  fullname: Mahajan, Aparna
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 10
  givenname: Christine
  surname: Schauer
  fullname: Schauer, Christine
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 11
  givenname: Anita N.
  surname: Kremer
  fullname: Kremer, Anita N.
  organization: Department of Internal Medicine 5, Hematology and Oncology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 12
  givenname: Simon
  surname: Völkl
  fullname: Völkl, Simon
  organization: Department of Internal Medicine 5, Hematology and Oncology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 13
  givenname: Kerstin
  surname: Amann
  fullname: Amann, Kerstin
  organization: Department of Nephropathology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 14
  givenname: Katja
  surname: Evert
  fullname: Evert, Katja
  organization: Institute of Pathology, University Medical Center Regensburg, Germany
– sequence: 15
  givenname: Christina
  surname: Falkeis
  fullname: Falkeis, Christina
  organization: Institut of Pathology, Klinikum Bayreuth, Germany
– sequence: 16
  givenname: Andreas
  surname: Wehrfritz
  fullname: Wehrfritz, Andreas
  organization: Department of Anaesthesiology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 17
  givenname: Ralf J.
  surname: Rieker
  fullname: Rieker, Ralf J.
  organization: Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 18
  givenname: Arndt
  surname: Hartmann
  fullname: Hartmann, Arndt
  organization: Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 19
  givenname: Andreas E.
  surname: Kremer
  fullname: Kremer, Andreas E.
  organization: Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 20
  givenname: Markus F.
  surname: Neurath
  fullname: Neurath, Markus F.
  organization: Department of Internal Medicine 1, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 21
  givenname: Luis E.
  surname: Muñoz
  fullname: Muñoz, Luis E.
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 22
  givenname: Georg
  surname: Schett
  fullname: Schett, Georg
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
– sequence: 23
  givenname: Martin
  surname: Herrmann
  fullname: Herrmann, Martin
  organization: Department of Internal Medicine 3, University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32745993$$D View this record in MEDLINE/PubMed
BookMark eNqFUktrGzEQXkpK82h-QaHssRe7eq4sSkOL-zIEcmibq5C0s4lcWXKk3VD_-2jtNCSB4pOG0feQ5pvj6iDEAFX1BqMpRrh5v5yCcXE1JYiMHSIJf1EdEcrJhMqGHTyqD6vTnJcIIcxZac5eVYeUCMalpEfVp0ud7eB1qqO1fsguhtps6gBDn-L62vka_vZJW_B-iyr1Otcu1POLy8WXCZavq5ed9hlO78-T6ve3r7_mPybnF98X88_nEytI00-sRG1rZsJIwJrIxjDEUdMa3iHGJBWdMZQZ0nLKMWqBI206LGaiBasl7RA9qRY73TbqpVont9Jpo6J2atuI6Urp1DvrQQnCWkuF1R3nTFgqETSIEE2wASqwKFpnO631YFbQWgjlW_6J6NOb4K7VVbxVgkohEC8C7-4FUrwZIPdq5fI4Ix0gDlkRRlFxopwV6NvHXg8m_yIoALoD2BRzTtA9QDBSY9ZqqbZZqzFrtcu6sOQzlnW97kt85cHO7-F-3HGh5HXrIKlsHQQLrUtg-zJQt4d_9oxvvQvOav8HNpCXcUihrILCKhOF1M9xE8dFJKhMBW3H9-H_Anvt7wCi0Oz8
CitedBy_id crossref_primary_10_3389_fimmu_2022_726153
crossref_primary_10_3390_ijms23115966
crossref_primary_10_2217_epi_2021_0057
crossref_primary_10_1111_bjh_18019
crossref_primary_10_1515_cclm_2020_1414
crossref_primary_10_3390_ijms252111791
crossref_primary_10_1016_j_envres_2022_112890
crossref_primary_10_1111_joim_13585
crossref_primary_10_3389_fimmu_2023_1259879
crossref_primary_10_3390_cells10102545
crossref_primary_10_3389_fimmu_2023_1324021
crossref_primary_10_1016_j_mam_2021_100996
crossref_primary_10_3389_fimmu_2021_689966
crossref_primary_10_3389_fimmu_2022_872695
crossref_primary_10_1093_oxfimm_iqaa005
crossref_primary_10_1038_s41598_024_71419_x
crossref_primary_10_3390_immuno3010007
crossref_primary_10_1016_j_heliyon_2024_e30760
crossref_primary_10_3389_fphar_2021_808797
crossref_primary_10_1016_j_heliyon_2023_e16982
crossref_primary_10_1093_hmg_ddaf008
crossref_primary_10_3390_ijms22168854
crossref_primary_10_3389_fphys_2020_616552
crossref_primary_10_1007_s00018_022_04224_2
crossref_primary_10_3390_cells10061469
crossref_primary_10_1007_s43440_022_00438_0
crossref_primary_10_1253_circrep_CR_24_0157
crossref_primary_10_1177_08850666241237715
crossref_primary_10_1007_s00018_022_04126_3
crossref_primary_10_1016_j_lfs_2021_119341
crossref_primary_10_1097_CM9_0000000000002359
crossref_primary_10_3390_cells10081891
crossref_primary_10_3390_ijms22179612
crossref_primary_10_3390_ijms232315126
crossref_primary_10_1139_gen_2020_0135
crossref_primary_10_15252_emmm_202216351
crossref_primary_10_1111_jth_15566
crossref_primary_10_1371_journal_pone_0257376
crossref_primary_10_1016_j_bja_2025_06_046
crossref_primary_10_1039_D1BM01591E
crossref_primary_10_1055_s_0044_1782660
crossref_primary_10_1111_jth_15327
crossref_primary_10_1186_s12959_023_00504_4
crossref_primary_10_1007_s00292_020_00899_1
crossref_primary_10_1016_j_virusres_2022_198853
crossref_primary_10_1183_16000617_0240_2020
crossref_primary_10_3389_fphar_2022_899198
crossref_primary_10_1038_s41575_021_00480_y
crossref_primary_10_1055_s_0040_1722309
crossref_primary_10_1161_ATVBAHA_120_315633
crossref_primary_10_1016_j_ebiom_2021_103622
crossref_primary_10_3390_cells10071817
crossref_primary_10_3390_cells12131712
crossref_primary_10_3389_fimmu_2020_594849
crossref_primary_10_3390_cancers13164205
crossref_primary_10_1002_path_5860
crossref_primary_10_1016_j_mehy_2021_110684
crossref_primary_10_1038_s41577_021_00522_1
crossref_primary_10_3390_biomedicines10010031
crossref_primary_10_1111_jfbc_14079
crossref_primary_10_1186_s12014_022_09377_7
crossref_primary_10_1161_ATVBAHA_121_316930
crossref_primary_10_3389_fimmu_2023_1270081
crossref_primary_10_3389_fmed_2024_1496966
crossref_primary_10_1007_s10456_021_09805_6
crossref_primary_10_1016_j_ajpath_2021_04_010
crossref_primary_10_1126_scitranslmed_abd3876
crossref_primary_10_1080_17476348_2025_2507207
crossref_primary_10_1038_s41419_024_06892_3
crossref_primary_10_3390_ijms232112855
crossref_primary_10_1002_advs_202506028
crossref_primary_10_1007_s00428_022_03319_2
crossref_primary_10_1016_j_isci_2023_108289
crossref_primary_10_1210_jendso_bvaa199
crossref_primary_10_1177_11779322211055891
crossref_primary_10_3390_cells10092208
crossref_primary_10_1186_s12929_021_00741_7
crossref_primary_10_3390_brainsci14020180
crossref_primary_10_3390_cells9122676
crossref_primary_10_3390_ijms22031283
crossref_primary_10_2147_JBM_S365218
crossref_primary_10_1016_j_jtha_2023_02_033
crossref_primary_10_1371_journal_pone_0253476
crossref_primary_10_3389_fimmu_2023_1254838
crossref_primary_10_3389_fcvm_2022_1003104
crossref_primary_10_1155_2021_5566826
crossref_primary_10_3389_fimmu_2024_1452788
crossref_primary_10_3390_microorganisms8121925
crossref_primary_10_1016_j_clim_2021_108849
crossref_primary_10_1007_s12026_022_09293_w
crossref_primary_10_1016_j_atherosclerosis_2021_02_009
crossref_primary_10_1038_s41467_023_37567_w
crossref_primary_10_1182_bloodadvances_2021004816
crossref_primary_10_1186_s12959_022_00421_y
crossref_primary_10_3390_ijms241311038
crossref_primary_10_3390_biom11050644
crossref_primary_10_3389_fmicb_2022_1037469
crossref_primary_10_3390_ijms221910386
crossref_primary_10_3390_ijms26168059
crossref_primary_10_1124_pharmrev_120_000096
crossref_primary_10_1186_s13287_022_02796_1
crossref_primary_10_1016_j_ccc_2022_03_003
crossref_primary_10_1007_s12026_023_09449_2
crossref_primary_10_3389_fimmu_2021_778913
crossref_primary_10_1186_s10020_020_00215_w
crossref_primary_10_3389_fimmu_2022_880961
crossref_primary_10_3390_cancers15194850
crossref_primary_10_3389_fimmu_2024_1281263
crossref_primary_10_3389_fimmu_2021_652470
crossref_primary_10_3389_fimmu_2021_767175
crossref_primary_10_1093_cid_ciab437
crossref_primary_10_3390_v16020213
crossref_primary_10_1136_annrheumdis_2020_219484
crossref_primary_10_1016_j_bcp_2021_114847
crossref_primary_10_1038_s41577_021_00665_1
crossref_primary_10_1055_s_0040_1718735
crossref_primary_10_3390_ijms241411695
crossref_primary_10_1038_s41569_021_00665_7
crossref_primary_10_1016_j_yjmcc_2021_11_010
crossref_primary_10_1186_s12985_023_02116_w
crossref_primary_10_1007_s00277_023_05164_y
crossref_primary_10_3389_fmed_2022_965790
crossref_primary_10_3390_cells11182901
crossref_primary_10_3389_fcimb_2024_1450196
crossref_primary_10_1080_08830185_2023_2222769
crossref_primary_10_3390_ijms25105451
crossref_primary_10_3389_fimmu_2024_1287132
crossref_primary_10_1111_bph_15452
crossref_primary_10_3389_fendo_2021_626842
crossref_primary_10_1002_JLB_1MR1221_345R
crossref_primary_10_3389_fimmu_2021_614347
crossref_primary_10_1016_j_cca_2025_120180
crossref_primary_10_1128_CMR_00133_20
crossref_primary_10_1111_prd_12490
crossref_primary_10_3389_fcimb_2021_679878
crossref_primary_10_3390_ijms22105368
crossref_primary_10_1016_j_biopha_2022_114082
crossref_primary_10_3389_fcvm_2021_785738
crossref_primary_10_3390_microorganisms12040737
crossref_primary_10_1016_j_coph_2023_102379
crossref_primary_10_1016_j_shpsa_2022_01_007
crossref_primary_10_3389_fimmu_2021_689866
crossref_primary_10_1002_2211_5463_13500
crossref_primary_10_3389_fmed_2021_676554
crossref_primary_10_7554_eLife_89740
crossref_primary_10_1016_j_jtauto_2025_100280
crossref_primary_10_1371_journal_pcbi_1009892
crossref_primary_10_1111_imr_13175
crossref_primary_10_1161_CIRCRESAHA_123_321750
crossref_primary_10_3390_cells10010151
crossref_primary_10_1002_jbm4_10576
crossref_primary_10_1055_s_0043_1768969
crossref_primary_10_3390_pathogens10091091
crossref_primary_10_4252_wjsc_v13_i6_568
crossref_primary_10_1177_1076029620977702
crossref_primary_10_3389_fimmu_2021_652252
crossref_primary_10_1016_j_intimp_2020_107233
crossref_primary_10_1136_rmdopen_2020_001549
crossref_primary_10_3390_nano14010006
crossref_primary_10_1136_thoraxjnl_2020_216243
crossref_primary_10_1007_s11239_021_02468_6
crossref_primary_10_3390_ijms24021266
crossref_primary_10_1097_SHK_0000000000001825
crossref_primary_10_1007_s11239_024_03057_z
crossref_primary_10_3390_math11020289
crossref_primary_10_1182_blood_2021013438
crossref_primary_10_3389_fimmu_2021_680134
crossref_primary_10_1093_bib_bbab339
crossref_primary_10_1515_jtim_2025_0035
crossref_primary_10_3390_ijms24065711
crossref_primary_10_1016_j_ebiom_2020_102942
crossref_primary_10_3390_biology12101332
crossref_primary_10_1016_j_thromres_2022_03_022
crossref_primary_10_1038_s41581_025_00944_3
crossref_primary_10_3389_fphys_2021_793251
crossref_primary_10_1002_eji_202250010
crossref_primary_10_3390_cells11213420
crossref_primary_10_1016_j_berh_2024_101962
crossref_primary_10_1080_09537104_2021_1887842
crossref_primary_10_1016_j_rpth_2022_100025
crossref_primary_10_1080_14789450_2021_1908894
crossref_primary_10_1038_s41467_023_40522_4
crossref_primary_10_1136_gutjnl_2021_324725
crossref_primary_10_1016_j_clp_2023_07_002
crossref_primary_10_1016_j_cjca_2024_03_018
crossref_primary_10_1007_s12326_021_00438_6
crossref_primary_10_1038_s41598_023_29334_0
crossref_primary_10_3390_biomedicines10030702
crossref_primary_10_1161_ATVBAHA_120_315267
crossref_primary_10_1080_17474086_2022_2110061
crossref_primary_10_3390_pathogens9100785
crossref_primary_10_1007_s11560_022_00611_9
crossref_primary_10_1016_j_ebiom_2021_103357
crossref_primary_10_3389_fcvm_2021_649922
crossref_primary_10_1186_s12575_021_00142_y
crossref_primary_10_3389_fimmu_2023_1283595
crossref_primary_10_3389_fmed_2021_754667
crossref_primary_10_1016_j_crmeth_2025_101022
crossref_primary_10_1016_j_plipres_2021_101092
crossref_primary_10_1016_j_immuni_2020_11_017
crossref_primary_10_1016_j_ccell_2020_10_006
crossref_primary_10_3390_children11030295
crossref_primary_10_3389_fimmu_2021_640842
crossref_primary_10_1016_j_jaut_2023_103070
crossref_primary_10_1038_s41418_022_01015_x
crossref_primary_10_1097_CCE_0000000000000374
crossref_primary_10_1007_s10067_021_05790_9
crossref_primary_10_1007_s10753_024_02102_6
crossref_primary_10_1016_j_lfs_2023_122027
crossref_primary_10_1093_femsre_fuae023
crossref_primary_10_1016_j_critrevonc_2021_103529
crossref_primary_10_1038_s41390_025_04200_z
crossref_primary_10_1016_j_surg_2021_07_010
crossref_primary_10_1097_MOH_0000000000000666
crossref_primary_10_3389_fpls_2020_589837
crossref_primary_10_1007_s11239_024_03028_4
crossref_primary_10_1590_s2175_97902023e21798
crossref_primary_10_1016_j_berh_2021_101661
crossref_primary_10_3390_ijms22020559
crossref_primary_10_3390_ijms221910721
crossref_primary_10_3389_fimmu_2021_761816
crossref_primary_10_3389_fimmu_2021_656099
crossref_primary_10_1183_13993003_03147_2020
crossref_primary_10_3390_biomedicines9121867
crossref_primary_10_1002_eji_202170126
crossref_primary_10_1186_s13075_021_02464_4
crossref_primary_10_1038_s41598_021_83950_2
crossref_primary_10_1007_s00432_022_04310_9
crossref_primary_10_3389_fimmu_2023_1254310
crossref_primary_10_3390_jcdd11030072
crossref_primary_10_1134_S1022795424010034
crossref_primary_10_1038_s41418_023_01124_1
crossref_primary_10_3389_fimmu_2023_1231576
crossref_primary_10_3390_ijms25052798
crossref_primary_10_1007_s00011_023_01737_9
crossref_primary_10_1183_16000617_0197_2022
crossref_primary_10_1038_s41467_021_21972_0
crossref_primary_10_3389_fchem_2021_784003
crossref_primary_10_1016_j_bpj_2021_05_025
crossref_primary_10_3390_jcm10245815
crossref_primary_10_3389_fimmu_2021_654587
crossref_primary_10_3390_diagnostics13061069
crossref_primary_10_1038_s41392_022_00907_1
crossref_primary_10_3389_fcell_2020_619221
crossref_primary_10_1007_s00292_020_00900_x
crossref_primary_10_1007_s11239_020_02324_z
crossref_primary_10_1177_09612033211062523
crossref_primary_10_3389_fphys_2021_649604
crossref_primary_10_1073_pnas_2109123118
crossref_primary_10_1177_17534666231162252
crossref_primary_10_1186_s40635_024_00670_3
crossref_primary_10_1155_2022_3855698
crossref_primary_10_1016_j_cca_2023_117742
crossref_primary_10_1111_imr_13114
crossref_primary_10_1016_j_compbiomed_2023_107004
crossref_primary_10_1016_j_gtc_2022_09_002
crossref_primary_10_3389_fimmu_2023_1130288
crossref_primary_10_1007_s00292_021_00918_9
crossref_primary_10_1038_s41418_021_00892_y
crossref_primary_10_3389_fimmu_2022_879686
crossref_primary_10_1007_s10753_021_01585_x
crossref_primary_10_3390_nu13072216
crossref_primary_10_3389_fimmu_2022_826515
crossref_primary_10_1016_j_thromres_2022_09_012
crossref_primary_10_3390_biology12010005
crossref_primary_10_1038_s41598_023_37606_y
crossref_primary_10_3390_ijms23137209
crossref_primary_10_1097_SHK_0000000000001680
crossref_primary_10_3390_ijms221910791
crossref_primary_10_3390_ijms24087593
crossref_primary_10_1016_j_ijbiomac_2021_10_015
crossref_primary_10_1016_j_ijbiomac_2024_134576
crossref_primary_10_3390_v13112318
crossref_primary_10_3390_nu13041154
crossref_primary_10_23736_S1825_859X_22_00148_7
crossref_primary_10_1016_j_jtha_2023_04_044
crossref_primary_10_1080_22221751_2022_2122579
crossref_primary_10_3389_fped_2022_790273
crossref_primary_10_3390_ijms232012292
crossref_primary_10_1038_s41418_021_00805_z
crossref_primary_10_7717_peerj_16072
crossref_primary_10_1007_s12024_022_00494_1
crossref_primary_10_1038_s41577_021_00536_9
crossref_primary_10_1016_j_heliyon_2023_e13795
crossref_primary_10_3390_v13020161
crossref_primary_10_1053_j_gastro_2022_05_044
crossref_primary_10_1186_s13054_021_03482_z
crossref_primary_10_1007_s42452_025_06551_y
crossref_primary_10_1177_10406387231196552
crossref_primary_10_1055_a_1661_0257
crossref_primary_10_3390_ijms24032646
crossref_primary_10_3389_fimmu_2021_649122
crossref_primary_10_1016_j_gastha_2023_03_022
crossref_primary_10_1002_ctm2_268
crossref_primary_10_1186_s12964_022_00948_7
crossref_primary_10_3389_fimmu_2022_851497
crossref_primary_10_1111_jth_15575
crossref_primary_10_1186_s13019_024_02506_3
crossref_primary_10_1016_j_prp_2021_153381
crossref_primary_10_3390_cells11172619
crossref_primary_10_7759_cureus_37226
crossref_primary_10_1016_j_intimp_2022_109040
crossref_primary_10_1136_annrheumdis_2020_219724
crossref_primary_10_1002_jev2_12204
crossref_primary_10_1016_j_biopha_2024_117324
crossref_primary_10_1155_2022_1622160
crossref_primary_10_1111_1346_8138_16181
crossref_primary_10_1002_adbi_202400761
crossref_primary_10_2147_JIR_S478481
crossref_primary_10_3390_ijms22147582
crossref_primary_10_1016_j_chest_2022_06_007
crossref_primary_10_3389_fimmu_2021_719023
crossref_primary_10_1002_eji_202149481
crossref_primary_10_3389_fphys_2020_571367
crossref_primary_10_3389_fimmu_2021_789317
Cites_doi 10.1038/s41586-020-2012-7
10.1007/s00441-018-2802-5
10.1146/annurev-pathol-011811-132453
10.1097/ALN.0000000000002619
10.1056/NEJMoa2015432
10.1186/s12931-017-0651-5
10.1038/ncomms10973
10.1016/j.phrs.2016.08.008
10.1038/s41590-019-0571-2
10.1016/S0049-3848(98)00121-2
10.1002/jmv.25819
10.5858/134.5.719
10.1172/JCI61303
10.1073/pnas.1005743107
10.21037/atm.2019.11.86
10.1126/science.1092385
10.1016/j.cell.2020.02.052
10.1002/path.1570
10.1182/blood-2013-07-514984
10.1016/j.chom.2012.06.011
10.1073/pnas.1301059110
10.3389/fimmu.2016.00366
10.1016/j.immuni.2019.07.002
10.1038/nchembio.1735
10.3389/fimmu.2019.02481
10.1056/NEJMoa2001017
10.1136/annrheumdis-2013-204837
10.1016/S0140-6736(20)30183-5
10.1182/blood.2020006000
10.1016/S0140-6736(20)30211-7
10.1084/jem.20112322
10.1160/th15-03-0214
10.1038/s41418-018-0261-x
10.1038/nm.3547
10.1021/bi981536o
10.1111/jth.14768
10.1111/jth.13493
10.1016/S0140-6736(20)30937-5
10.1111/eci.13319
10.1038/nm.2184
10.1007/BF00914089
10.1111/j.1742-4658.2008.06849.x
10.1126/science.aam8897
ContentType Journal Article
Copyright 2020 The Authors
The Authors
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2020.102925
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 102925
ExternalDocumentID oai_doaj_org_article_724dc37caf5547c390e6022a21be3717
PMC7397705
32745993
10_1016_j_ebiom_2020_102925
S2352396420303005
1_s2_0_S2352396420303005
Genre Journal Article
GrantInformation Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c726t-c90ddb87b9e1a296b40506db5f044937fbb34b2d53510de50abf1787deca93f03
IEDL.DBID DOA
ISICitedReferencesCount 367
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564188600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-3964
IngestDate Fri Oct 03 12:53:33 EDT 2025
Tue Nov 04 01:57:46 EST 2025
Thu Oct 02 10:13:22 EDT 2025
Thu Apr 03 07:03:38 EDT 2025
Thu Nov 13 04:35:51 EST 2025
Tue Nov 18 22:10:07 EST 2025
Tue Jul 25 21:03:55 EDT 2023
Sun Feb 23 10:19:24 EST 2025
Tue Aug 26 16:33:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Endothelialitis
SARS-CoV-2
Immunothrombosis
Aggregated neutrophil extracellular traps
Coagulopathy
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-c90ddb87b9e1a296b40506db5f044937fbb34b2d53510de50abf1787deca93f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ML and JK equally contributed
ORCID 0000-0003-2311-090X
OpenAccessLink https://doaj.org/article/724dc37caf5547c390e6022a21be3717
PMID 32745993
PQID 2430371354
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_724dc37caf5547c390e6022a21be3717
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7397705
proquest_miscellaneous_2430371354
pubmed_primary_32745993
crossref_primary_10_1016_j_ebiom_2020_102925
crossref_citationtrail_10_1016_j_ebiom_2020_102925
elsevier_sciencedirect_doi_10_1016_j_ebiom_2020_102925
elsevier_clinicalkeyesjournals_1_s2_0_S2352396420303005
elsevier_clinicalkey_doi_10_1016_j_ebiom_2020_102925
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Connors, Levy (bib0038) 2020; 135
Varga, Flammer, Steiger (bib0035) 2020; 395
Martinod, Demers, Fuchs (bib0029) 2013; 110
Ackermann, Verleden, Kuehnel (bib0036) 2020
Craddock, Hammerschmidt, Moldow, Yamada, Jacob (bib0042) 1979; 16
Huang, Wang, Li (bib0003) 2020; 395
Lewis, Liddle, Coote (bib0044) 2015; 11
WHO. Coronavirus disease 2019 (COVID-19) Situation Report –142. 10.06.2020 2020.
Belorgey, Bieth (bib0024) 1998; 37
Abe, Okajima, Okabe, Takatsuki, Binder (bib0031) 1994; 123
Bach-Gansmo, Godal, Skjonsberg (bib0023) 1998; 92
Jenne, Liao, Singh (bib0008) 2018; 371
McDonald, Urrutia, Yipp, Jenne, Kubes (bib0016) 2012; 12
Jimenez-Alcazar, Rangaswamy, Panda (bib0020) 2017; 358
Longstaff, Hogwood, Gray (bib0049) 2016; 115
Lv, Wen, Song (bib0017) 2017; 18
Michels, Albanez, Mewburn (bib0025) 2016; 14
Carmona-Rivera, Zhao, Yalavarthi, Kaplan (bib0010) 2015; 74
Hamming, Timens, Bulthuis, Lely, Navis, van Goor (bib0034) 2004; 203
Wichmann, Sperhake, Lutgehetmann (bib0037) 2020
Zhu, Zhang, Wang (bib0001) 2020; 382
von Bruhl, Stark, Steinhart (bib0028) 2012; 209
Brinkmann, Reichard, Goosmann (bib0011) 2004; 303
Boeltz, Amini, Anders (bib0013) 2019; 26
McGonagle, O'Donnell, Sharif, Emery, Bridgewood (bib0050) 2020
Massberg, Grahl, von Bruehl (bib0027) 2010; 16
Giacobbe, Battaglini, Ball (bib0045) 2020
Adrover, Aroca-Crevillen, Crainiciuc (bib0009) 2020; 21
Manfredi, Rovere-Querini, D'Angelo, Maugeri (bib0047) 2017; 123
Zhou, Yang, Wang (bib0032) 2020; 579
Bendib, de Chaisemartin, Granger (bib0015) 2019; 130
Napirei, Ludwig, Mezrhab, Klockl, Mannherz (bib0046) 2009; 276
Munoz, Boeltz, Bilyy (bib0022) 2019; 51
Jennette, Falk, Hu, Xiao (bib0041) 2013; 8
Beasley (bib0039) 2010; 134
Zwahlen, Roth, Wyder-Walther (bib0043) 1990; 14
Wildhagen, Garcia de Frutos, Reutelingsperger (bib0048) 2014; 123
Liu, Yan, Wan (bib0004) 2020
Gosswein, Lindemann, Mahajan (bib0030) 2019; 10
Chen, Zhou, Dong (bib0006) 2020; 395
Leppkes, Maueroder, Hirth (bib0021) 2016; 7
Schonrich, Raftery (bib0012) 2016; 7
Lagunas-Rangel (bib0007) 2020
Bery, Hachem (bib0040) 2020; 8
Fuchs, Brill, Duerschmied (bib0026) 2010; 107
Schauer, Janko, Munoz (bib0019) 2014; 20
Tang, Li, Wang, Sun (bib0005) 2020; 18
Caudrillier, Kessenbrock, Gilliss (bib0014) 2012; 122
Zuo, Yalavarthi, Shi (bib0018) 2020; 5
Hoffmann, Kleine-Weber, Schroeder (bib0033) 2020; 181
Accessed 11.06.2020 2020).
Jenne (10.1016/j.ebiom.2020.102925_bib0008) 2018; 371
von Bruhl (10.1016/j.ebiom.2020.102925_bib0028) 2012; 209
Schonrich (10.1016/j.ebiom.2020.102925_bib0012) 2016; 7
Tang (10.1016/j.ebiom.2020.102925_bib0005) 2020; 18
Zhou (10.1016/j.ebiom.2020.102925_bib0032) 2020; 579
Zhu (10.1016/j.ebiom.2020.102925_bib0001) 2020; 382
Chen (10.1016/j.ebiom.2020.102925_bib0006) 2020; 395
Jennette (10.1016/j.ebiom.2020.102925_bib0041) 2013; 8
Boeltz (10.1016/j.ebiom.2020.102925_bib0013) 2019; 26
Lagunas-Rangel (10.1016/j.ebiom.2020.102925_bib0007) 2020
Napirei (10.1016/j.ebiom.2020.102925_bib0046) 2009; 276
Zwahlen (10.1016/j.ebiom.2020.102925_bib0043) 1990; 14
Schauer (10.1016/j.ebiom.2020.102925_bib0019) 2014; 20
Bery (10.1016/j.ebiom.2020.102925_bib0040) 2020; 8
Brinkmann (10.1016/j.ebiom.2020.102925_bib0011) 2004; 303
Gosswein (10.1016/j.ebiom.2020.102925_bib0030) 2019; 10
Lewis (10.1016/j.ebiom.2020.102925_bib0044) 2015; 11
Leppkes (10.1016/j.ebiom.2020.102925_bib0021) 2016; 7
Belorgey (10.1016/j.ebiom.2020.102925_bib0024) 1998; 37
Abe (10.1016/j.ebiom.2020.102925_bib0031) 1994; 123
Connors (10.1016/j.ebiom.2020.102925_bib0038) 2020; 135
Giacobbe (10.1016/j.ebiom.2020.102925_bib0045) 2020
McDonald (10.1016/j.ebiom.2020.102925_bib0016) 2012; 12
Michels (10.1016/j.ebiom.2020.102925_bib0025) 2016; 14
Bendib (10.1016/j.ebiom.2020.102925_bib0015) 2019; 130
Munoz (10.1016/j.ebiom.2020.102925_bib0022) 2019; 51
Liu (10.1016/j.ebiom.2020.102925_bib0004) 2020
Bach-Gansmo (10.1016/j.ebiom.2020.102925_bib0023) 1998; 92
Carmona-Rivera (10.1016/j.ebiom.2020.102925_bib0010) 2015; 74
Zuo (10.1016/j.ebiom.2020.102925_bib0018) 2020; 5
Hamming (10.1016/j.ebiom.2020.102925_bib0034) 2004; 203
Adrover (10.1016/j.ebiom.2020.102925_bib0009) 2020; 21
Varga (10.1016/j.ebiom.2020.102925_bib0035) 2020; 395
10.1016/j.ebiom.2020.102925_bib0002
Jimenez-Alcazar (10.1016/j.ebiom.2020.102925_bib0020) 2017; 358
Wichmann (10.1016/j.ebiom.2020.102925_bib0037) 2020
Ackermann (10.1016/j.ebiom.2020.102925_bib0036) 2020
Fuchs (10.1016/j.ebiom.2020.102925_bib0026) 2010; 107
Longstaff (10.1016/j.ebiom.2020.102925_bib0049) 2016; 115
Wildhagen (10.1016/j.ebiom.2020.102925_bib0048) 2014; 123
Beasley (10.1016/j.ebiom.2020.102925_bib0039) 2010; 134
Huang (10.1016/j.ebiom.2020.102925_bib0003) 2020; 395
Craddock (10.1016/j.ebiom.2020.102925_bib0042) 1979; 16
Massberg (10.1016/j.ebiom.2020.102925_bib0027) 2010; 16
Caudrillier (10.1016/j.ebiom.2020.102925_bib0014) 2012; 122
Martinod (10.1016/j.ebiom.2020.102925_bib0029) 2013; 110
Lv (10.1016/j.ebiom.2020.102925_bib0017) 2017; 18
Hoffmann (10.1016/j.ebiom.2020.102925_bib0033) 2020; 181
McGonagle (10.1016/j.ebiom.2020.102925_bib0050) 2020
Manfredi (10.1016/j.ebiom.2020.102925_bib0047) 2017; 123
32810824 - EBioMedicine. 2020 Sep;59:102942. doi: 10.1016/j.ebiom.2020.102942
References_xml – volume: 14
  start-page: 2274
  year: 2016
  end-page: 2286
  ident: bib0025
  article-title: Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis
  publication-title: J Thromb Haemost
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib0001
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: N Engl J Med
– volume: 16
  start-page: 887
  year: 2010
  end-page: 896
  ident: bib0027
  article-title: Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases
  publication-title: Nat Med
– start-page: e13319
  year: 2020
  ident: bib0045
  article-title: Bloodstream infections in critically ill patients with COVID-19
  publication-title: Eur J Clin Invest
– volume: 203
  start-page: 631
  year: 2004
  end-page: 637
  ident: bib0034
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J Pathol
– volume: 92
  start-page: 125
  year: 1998
  end-page: 134
  ident: bib0023
  article-title: Degradation of fibrinogen and cross-linked fibrin by human neutrophil elastase generates D-like fragments detected by ELISA but not latex D-dimer test
  publication-title: Thromb Res
– volume: 18
  start-page: 165
  year: 2017
  ident: bib0017
  article-title: Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome
  publication-title: Respir Res
– volume: 14
  start-page: 375
  year: 1990
  end-page: 387
  ident: bib0043
  article-title: In vitro aggregation of bovine neonatal neutrophils. A comparative study with adult cattle
  publication-title: Inflammation
– volume: 21
  start-page: 135
  year: 2020
  end-page: 144
  ident: bib0009
  article-title: Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation
  publication-title: Nat Immunol
– volume: 37
  start-page: 16416
  year: 1998
  end-page: 16422
  ident: bib0024
  article-title: Effect of polynucleotides on the inhibition of neutrophil elastase by mucus proteinase inhibitor and alpha 1-proteinase inhibitor
  publication-title: Biochemistry
– volume: 130
  start-page: 581
  year: 2019
  end-page: 591
  ident: bib0015
  article-title: Neutrophil Extracellular Traps Are Elevated in Patients with Pneumonia-related Acute Respiratory Distress Syndrome
  publication-title: Anesthesiology
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: bib0033
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib0032
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 123
  start-page: 146
  year: 2017
  end-page: 156
  ident: bib0047
  article-title: Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps
  publication-title: Pharmacol Res
– volume: 123
  start-page: 1098
  year: 2014
  end-page: 1101
  ident: bib0048
  article-title: Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis
  publication-title: Blood
– volume: 358
  start-page: 1202
  year: 2017
  end-page: 1206
  ident: bib0020
  article-title: Host DNases prevent vascular occlusion by neutrophil extracellular traps
  publication-title: Science
– volume: 8
  start-page: 139
  year: 2013
  end-page: 160
  ident: bib0041
  article-title: Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis
  publication-title: Annu Rev Pathol
– volume: 115
  start-page: 591
  year: 2016
  end-page: 599
  ident: bib0049
  article-title: Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems
  publication-title: Thromb Haemost
– volume: 51
  start-page: 443
  year: 2019
  end-page: 450
  ident: bib0022
  article-title: Neutrophil Extracellular Traps Initiate Gallstone Formation
  publication-title: Immunity
– volume: 7
  start-page: 10973
  year: 2016
  ident: bib0021
  article-title: Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis
  publication-title: Nat Commun
– volume: 8
  start-page: 411
  year: 2020
  ident: bib0040
  article-title: Antibody-mediated rejection after lung transplantation
  publication-title: Ann Transl Med
– volume: 10
  start-page: 2481
  year: 2019
  ident: bib0030
  article-title: Citrullination Licenses Calpain to Decondense Nuclei in Neutrophil Extracellular Trap Formation
  publication-title: Front Immunol
– reference: . Accessed 11.06.2020 2020).
– volume: 123
  start-page: 874
  year: 1994
  end-page: 881
  ident: bib0031
  article-title: Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro
  publication-title: J Lab Clin Med
– volume: 5
  year: 2020
  ident: bib0018
  article-title: Neutrophil extracellular traps in COVID-19
  publication-title: JCI Insight
– volume: 209
  start-page: 819
  year: 2012
  end-page: 835
  ident: bib0028
  article-title: Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
  publication-title: J Exp Med
– year: 2020
  ident: bib0007
  article-title: Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis
  publication-title: J Med Virol
– volume: 12
  start-page: 324
  year: 2012
  end-page: 333
  ident: bib0016
  article-title: Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis
  publication-title: Cell Host Microbe
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: bib0003
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– year: 2020
  ident: bib0036
  article-title: Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19
  publication-title: N Engl J Med
– volume: 18
  start-page: 844
  year: 2020
  end-page: 847
  ident: bib0005
  article-title: Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia
  publication-title: J Thromb Haemost
– volume: 110
  start-page: 8674
  year: 2013
  end-page: 8679
  ident: bib0029
  article-title: Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 395
  year: 2019
  end-page: 408
  ident: bib0013
  article-title: To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps
  publication-title: Cell Death Differ
– volume: 395
  start-page: 1417
  year: 2020
  end-page: 1418
  ident: bib0035
  article-title: Endothelial cell infection and endotheliitis in COVID-19
  publication-title: Lancet
– volume: 135
  start-page: 2033
  year: 2020
  end-page: 2040
  ident: bib0038
  article-title: COVID-19 and its implications for thrombosis and anticoagulation
  publication-title: Blood
– reference: WHO. Coronavirus disease 2019 (COVID-19) Situation Report –142. 10.06.2020 2020.
– year: 2020
  ident: bib0004
  article-title: Viral dynamics in mild and severe cases of COVID-19
  publication-title: Lancet Infect Dis
– volume: 371
  start-page: 395
  year: 2018
  end-page: 397
  ident: bib0008
  article-title: Neutrophils: multitasking first responders of immunity and tissue homeostasis
  publication-title: Cell Tissue Res
– volume: 276
  start-page: 1059
  year: 2009
  end-page: 1073
  ident: bib0046
  article-title: Murine serum nucleases–contrasting effects of plasmin and heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3)
  publication-title: FEBS J
– volume: 122
  start-page: 2661
  year: 2012
  end-page: 2671
  ident: bib0014
  article-title: Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury
  publication-title: J Clin Invest
– volume: 134
  start-page: 719
  year: 2010
  end-page: 727
  ident: bib0039
  article-title: The pathologist's approach to acute lung injury
  publication-title: Arch Pathol Lab Med
– volume: 16
  start-page: 140
  year: 1979
  end-page: 147
  ident: bib0042
  article-title: Granulocyte aggregation as a manifestation of membrane interactions with complement: possible role in leukocyte margination, microvascular occlusion, and endothelial damage
  publication-title: Semin Hematol
– year: 2020
  ident: bib0050
  article-title: Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia
  publication-title: Lancet Rheumatol
– volume: 303
  start-page: 1532
  year: 2004
  end-page: 1535
  ident: bib0011
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science
– volume: 7
  start-page: 366
  year: 2016
  ident: bib0012
  article-title: Neutrophil Extracellular Traps Go Viral
  publication-title: Front Immunol
– volume: 107
  start-page: 15880
  year: 2010
  end-page: 15885
  ident: bib0026
  article-title: Extracellular DNA traps promote thrombosis
  publication-title: Proc Natl Acad Sci U S A
– year: 2020
  ident: bib0037
  article-title: Autopsy Findings and Venous Thromboembolism in Patients With COVID-19
  publication-title: Ann Intern Med
– volume: 11
  start-page: 189
  year: 2015
  end-page: 191
  ident: bib0044
  article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation
  publication-title: Nat Chem Biol
– volume: 395
  start-page: 507
  year: 2020
  end-page: 513
  ident: bib0006
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet
– volume: 20
  start-page: 511
  year: 2014
  end-page: 517
  ident: bib0019
  article-title: Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines
  publication-title: Nat Med
– volume: 74
  start-page: 1417
  year: 2015
  end-page: 1424
  ident: bib0010
  article-title: Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2
  publication-title: Ann Rheum Dis
– volume: 579
  start-page: 270
  issue: 7798
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0032
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 371
  start-page: 395
  issue: 3
  year: 2018
  ident: 10.1016/j.ebiom.2020.102925_bib0008
  article-title: Neutrophils: multitasking first responders of immunity and tissue homeostasis
  publication-title: Cell Tissue Res
  doi: 10.1007/s00441-018-2802-5
– year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0037
  article-title: Autopsy Findings and Venous Thromboembolism in Patients With COVID-19
  publication-title: Ann Intern Med
– volume: 16
  start-page: 140
  issue: 2
  year: 1979
  ident: 10.1016/j.ebiom.2020.102925_bib0042
  article-title: Granulocyte aggregation as a manifestation of membrane interactions with complement: possible role in leukocyte margination, microvascular occlusion, and endothelial damage
  publication-title: Semin Hematol
– volume: 8
  start-page: 139
  year: 2013
  ident: 10.1016/j.ebiom.2020.102925_bib0041
  article-title: Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathol-011811-132453
– volume: 130
  start-page: 581
  issue: 4
  year: 2019
  ident: 10.1016/j.ebiom.2020.102925_bib0015
  article-title: Neutrophil Extracellular Traps Are Elevated in Patients with Pneumonia-related Acute Respiratory Distress Syndrome
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002619
– year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0036
  article-title: Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2015432
– ident: 10.1016/j.ebiom.2020.102925_bib0002
– volume: 18
  start-page: 165
  issue: 1
  year: 2017
  ident: 10.1016/j.ebiom.2020.102925_bib0017
  article-title: Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome
  publication-title: Respir Res
  doi: 10.1186/s12931-017-0651-5
– volume: 7
  start-page: 10973
  year: 2016
  ident: 10.1016/j.ebiom.2020.102925_bib0021
  article-title: Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis
  publication-title: Nat Commun
  doi: 10.1038/ncomms10973
– volume: 123
  start-page: 146
  year: 2017
  ident: 10.1016/j.ebiom.2020.102925_bib0047
  article-title: Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2016.08.008
– volume: 21
  start-page: 135
  issue: 2
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0009
  article-title: Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation
  publication-title: Nat Immunol
  doi: 10.1038/s41590-019-0571-2
– volume: 92
  start-page: 125
  issue: 3
  year: 1998
  ident: 10.1016/j.ebiom.2020.102925_bib0023
  article-title: Degradation of fibrinogen and cross-linked fibrin by human neutrophil elastase generates D-like fragments detected by ELISA but not latex D-dimer test
  publication-title: Thromb Res
  doi: 10.1016/S0049-3848(98)00121-2
– year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0007
  article-title: Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis
  publication-title: J Med Virol
  doi: 10.1002/jmv.25819
– year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0004
  article-title: Viral dynamics in mild and severe cases of COVID-19
  publication-title: Lancet Infect Dis
– volume: 134
  start-page: 719
  issue: 5
  year: 2010
  ident: 10.1016/j.ebiom.2020.102925_bib0039
  article-title: The pathologist's approach to acute lung injury
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/134.5.719
– volume: 122
  start-page: 2661
  issue: 7
  year: 2012
  ident: 10.1016/j.ebiom.2020.102925_bib0014
  article-title: Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury
  publication-title: J Clin Invest
  doi: 10.1172/JCI61303
– volume: 107
  start-page: 15880
  issue: 36
  year: 2010
  ident: 10.1016/j.ebiom.2020.102925_bib0026
  article-title: Extracellular DNA traps promote thrombosis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005743107
– volume: 8
  start-page: 411
  issue: 6
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0040
  article-title: Antibody-mediated rejection after lung transplantation
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2019.11.86
– volume: 303
  start-page: 1532
  issue: 5663
  year: 2004
  ident: 10.1016/j.ebiom.2020.102925_bib0011
  article-title: Neutrophil extracellular traps kill bacteria
  publication-title: Science
  doi: 10.1126/science.1092385
– volume: 181
  start-page: 271
  issue: 2
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0033
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 203
  start-page: 631
  issue: 2
  year: 2004
  ident: 10.1016/j.ebiom.2020.102925_bib0034
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J Pathol
  doi: 10.1002/path.1570
– volume: 123
  start-page: 1098
  issue: 7
  year: 2014
  ident: 10.1016/j.ebiom.2020.102925_bib0048
  article-title: Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis
  publication-title: Blood
  doi: 10.1182/blood-2013-07-514984
– volume: 12
  start-page: 324
  issue: 3
  year: 2012
  ident: 10.1016/j.ebiom.2020.102925_bib0016
  article-title: Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.06.011
– volume: 110
  start-page: 8674
  issue: 21
  year: 2013
  ident: 10.1016/j.ebiom.2020.102925_bib0029
  article-title: Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1301059110
– volume: 7
  start-page: 366
  year: 2016
  ident: 10.1016/j.ebiom.2020.102925_bib0012
  article-title: Neutrophil Extracellular Traps Go Viral
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00366
– volume: 51
  start-page: 443
  issue: 3
  year: 2019
  ident: 10.1016/j.ebiom.2020.102925_bib0022
  article-title: Neutrophil Extracellular Traps Initiate Gallstone Formation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.07.002
– volume: 11
  start-page: 189
  issue: 3
  year: 2015
  ident: 10.1016/j.ebiom.2020.102925_bib0044
  article-title: Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1735
– volume: 5
  issue: 11
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0018
  article-title: Neutrophil extracellular traps in COVID-19
  publication-title: JCI Insight
– volume: 10
  start-page: 2481
  year: 2019
  ident: 10.1016/j.ebiom.2020.102925_bib0030
  article-title: Citrullination Licenses Calpain to Decondense Nuclei in Neutrophil Extracellular Trap Formation
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.02481
– volume: 382
  start-page: 727
  issue: 8
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0001
  article-title: A Novel Coronavirus from Patients with Pneumonia in China, 2019
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2001017
– volume: 74
  start-page: 1417
  issue: 7
  year: 2015
  ident: 10.1016/j.ebiom.2020.102925_bib0010
  article-title: Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2013-204837
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0003
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 135
  start-page: 2033
  issue: 23
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0038
  article-title: COVID-19 and its implications for thrombosis and anticoagulation
  publication-title: Blood
  doi: 10.1182/blood.2020006000
– volume: 395
  start-page: 507
  issue: 10223
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0006
  article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30211-7
– volume: 209
  start-page: 819
  issue: 4
  year: 2012
  ident: 10.1016/j.ebiom.2020.102925_bib0028
  article-title: Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
  publication-title: J Exp Med
  doi: 10.1084/jem.20112322
– year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0050
  article-title: Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia
  publication-title: Lancet Rheumatol
– volume: 115
  start-page: 591
  issue: 3
  year: 2016
  ident: 10.1016/j.ebiom.2020.102925_bib0049
  article-title: Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems
  publication-title: Thromb Haemost
  doi: 10.1160/th15-03-0214
– volume: 26
  start-page: 395
  issue: 3
  year: 2019
  ident: 10.1016/j.ebiom.2020.102925_bib0013
  article-title: To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-018-0261-x
– volume: 20
  start-page: 511
  issue: 5
  year: 2014
  ident: 10.1016/j.ebiom.2020.102925_bib0019
  article-title: Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines
  publication-title: Nat Med
  doi: 10.1038/nm.3547
– volume: 37
  start-page: 16416
  issue: 46
  year: 1998
  ident: 10.1016/j.ebiom.2020.102925_bib0024
  article-title: Effect of polynucleotides on the inhibition of neutrophil elastase by mucus proteinase inhibitor and alpha 1-proteinase inhibitor
  publication-title: Biochemistry
  doi: 10.1021/bi981536o
– volume: 18
  start-page: 844
  issue: 4
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0005
  article-title: Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.14768
– volume: 123
  start-page: 874
  issue: 6
  year: 1994
  ident: 10.1016/j.ebiom.2020.102925_bib0031
  article-title: Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro
  publication-title: J Lab Clin Med
– volume: 14
  start-page: 2274
  issue: 11
  year: 2016
  ident: 10.1016/j.ebiom.2020.102925_bib0025
  article-title: Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.13493
– volume: 395
  start-page: 1417
  issue: 10234
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0035
  article-title: Endothelial cell infection and endotheliitis in COVID-19
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30937-5
– start-page: e13319
  year: 2020
  ident: 10.1016/j.ebiom.2020.102925_bib0045
  article-title: Bloodstream infections in critically ill patients with COVID-19
  publication-title: Eur J Clin Invest
  doi: 10.1111/eci.13319
– volume: 16
  start-page: 887
  issue: 8
  year: 2010
  ident: 10.1016/j.ebiom.2020.102925_bib0027
  article-title: Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases
  publication-title: Nat Med
  doi: 10.1038/nm.2184
– volume: 14
  start-page: 375
  issue: 4
  year: 1990
  ident: 10.1016/j.ebiom.2020.102925_bib0043
  article-title: In vitro aggregation of bovine neonatal neutrophils. A comparative study with adult cattle
  publication-title: Inflammation
  doi: 10.1007/BF00914089
– volume: 276
  start-page: 1059
  issue: 4
  year: 2009
  ident: 10.1016/j.ebiom.2020.102925_bib0046
  article-title: Murine serum nucleases–contrasting effects of plasmin and heparin on the activities of DNase1 and DNase1-like 3 (DNase1l3)
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2008.06849.x
– volume: 358
  start-page: 1202
  issue: 6367
  year: 2017
  ident: 10.1016/j.ebiom.2020.102925_bib0020
  article-title: Host DNases prevent vascular occlusion by neutrophil extracellular traps
  publication-title: Science
  doi: 10.1126/science.aam8897
– reference: 32810824 - EBioMedicine. 2020 Sep;59:102942. doi: 10.1016/j.ebiom.2020.102942
SSID ssj0001542358
Score 2.6245103
Snippet Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that...
AbstractBackgroundCoronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs....
Background: Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102925
SubjectTerms Advanced Basic Science
Aggregated neutrophil extracellular traps
Cells, Cultured
Coagulopathy
Coronavirus Infections - complications
Coronavirus Infections - metabolism
Coronavirus Infections - pathology
COVID-19
Endothelialitis
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Extracellular Traps - metabolism
Humans
Immunothrombosis
Internal Medicine
Microvessels - metabolism
Microvessels - pathology
Neutrophils - metabolism
Neutrophils - pathology
Pandemics
Pneumonia, Viral - complications
Pneumonia, Viral - metabolism
Pneumonia, Viral - pathology
Research paper
SARS-CoV-2
Thrombosis - etiology
Thrombosis - metabolism
Thrombosis - pathology
Title Vascular occlusion by neutrophil extracellular traps in COVID-19
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352396420303005
https://www.clinicalkey.es/playcontent/1-s2.0-S2352396420303005
https://dx.doi.org/10.1016/j.ebiom.2020.102925
https://www.ncbi.nlm.nih.gov/pubmed/32745993
https://www.proquest.com/docview/2430371354
https://pubmed.ncbi.nlm.nih.gov/PMC7397705
https://doaj.org/article/724dc37caf5547c390e6022a21be3717
Volume 58
WOSCitedRecordID wos000564188600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgAokXNH5ngylIPBLh2E5cvw0GE7wMJGDqm-Vf0TJVadW0k_bf785OqhbQ9sJb1dpNcv7O9110_o6Qd8IEQC1titKUvECQFNYJWTTUhZpNvKmMj80m5NnZZDpVP7ZafWFNWJIHTob7IJnwjktnGgh80kGKHmqIO4aVNnDIRXD3pVJtJVPpfLDAM6Cxs1zFCq5qMUoOxeKugIfbITtkUbtAYaPsrbAU1ft3otPf7PPPIsqtqHS6Tx4PdDL_mB7jCbkXuqfkYWowef2MHJ8Phab53LnZGt-M5fY678J6tZwvLtpZDnvz0uDb-zgKPi_6vO3yk-_n3z4XpXpOfp9--XXytRh6JhROsnpVOEW9txNpVSgNU7UFQkZrb6uGCgFUpLGWC8t8xcEZfaiosU0JTuuDM4o3lL8ge928C69I7ix1kM9Yz-pGMEkNDczUFKIZsDDHfUbYaDLtBkFx7Gsx02Pl2KWOdtZoZ53snJH3m0mLpKdx-_BPuBaboSiGHb8AiOgBIvouiGREjCupx_OmsEPCH7W3X1v-a1roBy_vdal7pqn-iRhDiDHYMVH-PyP1ZuZAZBJBufuSb0egaXBzXH3Thfm610xwFFfklcjIywS8jVE4k6ICngk3vAPJHavt_tK1F1FKXCL_p9XB_zDzIXmEj5KqI1-TvdVyHd6QB-5q1fbLI3JfTidH0UtvAMCWPCM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+occlusion+by+neutrophil+extracellular+traps+in+COVID-19&rft.jtitle=EBioMedicine&rft.au=Leppkes%2C+Moritz&rft.au=Knopf%2C+Jasmin&rft.au=Naschberger%2C+Elisabeth&rft.au=Lindemann%2C+Aylin&rft.date=2020-08-01&rft.eissn=2352-3964&rft.volume=58&rft.spage=102925&rft_id=info:doi/10.1016%2Fj.ebiom.2020.102925&rft_id=info%3Apmid%2F32745993&rft.externalDocID=32745993
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396420X00089%2Fcov150h.gif