The alternative reality of plant mitochondrial DNA: One ring does not rule them all
Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial research...
Gespeichert in:
| Veröffentlicht in: | PLoS genetics Jg. 15; H. 8; S. e1008373 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
30.08.2019
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms. |
|---|---|
| AbstractList | Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms. Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms. Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms. Plant mitochondrial genomes are commonly depicted in research articles and textbooks as circular molecules that are the size of the genome. Although research on mitochondrial DNA (mtDNA) over the past few decades has revealed that genome-sized circles are exceedingly rare and that alternative forms of mtDNA are more common, many biologists still perceive circular maps as representing one or more physical chromosomes. This misconception can lead to biases in how mitochondrial genomes are assembled and misinterpretation of their evolutionary relationships, synteny, and histories. In this study, we present an assembly methodology that uses short- and long-read sequencing data to determine the mitochondrial genome structures of three lettuce species. We show that these mitochondrial genomes are fluid and dynamic, with multiple sequence arrangements of the genome coexisting within individuals of the same species. Differences in sequence arrangements between species can be explained by rare recombination events. Inspection of physical molecules of mtDNA reveals primarily non-circular forms. We demonstrate that plant mitochondrial genomes are a complex mixture of physical forms and sequence arrangements. Our data suggest that plant mitochondrial genomes should be presented as multiple sequence units showing their variable and dynamic connections, rather than as circles. |
| Audience | Academic |
| Author | Lavelle, Dean Christensen, Alan C. Schranz, M. Eric Kozik, Alexander Michelmore, Richard W. Rowan, Beth A. Berke, Lidija |
| AuthorAffiliation | 1 Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America 2 Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands 3 School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America University of Minnesota, UNITED STATES |
| AuthorAffiliation_xml | – name: 2 Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands – name: 1 Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America – name: 3 School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America – name: University of Minnesota, UNITED STATES |
| Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0001-6541-9329 surname: Kozik fullname: Kozik, Alexander – sequence: 2 givenname: Beth A. orcidid: 0000-0001-7240-4889 surname: Rowan fullname: Rowan, Beth A. – sequence: 3 givenname: Dean surname: Lavelle fullname: Lavelle, Dean – sequence: 4 givenname: Lidija orcidid: 0000-0003-3842-9462 surname: Berke fullname: Berke, Lidija – sequence: 5 givenname: M. Eric orcidid: 0000-0001-6777-6565 surname: Schranz fullname: Schranz, M. Eric – sequence: 6 givenname: Richard W. orcidid: 0000-0002-7512-592X surname: Michelmore fullname: Michelmore, Richard W. – sequence: 7 givenname: Alan C. orcidid: 0000-0002-1125-3172 surname: Christensen fullname: Christensen, Alan C. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31469821$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk-9r1DAYgItM3Hb6H4gWBNEPdyZNmqT7IBzz18HYgZt-DWmathm55GzS4f57U68n1zFE6YeW9HmfN3nzvqfJkXVWJclzCBYQUfjuxvWdFWaxbZRdQAAYouhRcgLzHM0pBvjo4Ps4OfX-BgCUs4I-SY4RxKRgGTxJrq5blQoTVHQFfavSTgmjw13q6nRrhA3pRgcnW2erTguTfrhcnqVrGzltm7RyyqfWhbTrjUpDqzbRZZ4mj2thvHo2vmfJt08fr8-_zC_Wn1fny4u5pBkJc5rDuoIZIzLLclLgTALJICOK0goLKEokCWQlYoISTIhkJawoIwIWhawRqtAsebnzbo3zfKyH51lWQEwZzrJIrHZE5cQN33Z6I7o77oTmvxdc13DRBS2N4qJGQiEKWF4gXOdSEIHzspR1mWdFRQbX-zFbX25UJZUNnTAT6fSP1S1v3C0nFGcYoyh4Mwo696NXPvCN9lKZWGXl-mHfDEEICgIi-uoe-vDpRqoR8QDa1i7mlYOULwkAMSuLylmyeICKT6U2WsaeqnVcnwS8nQREJqifoRG993x19fU_2Mt_Z9ffp-zrA7aNPRla70wftLN-Cr44vJU_17Hv8Aic7QDZOe87VXOpgxg8sQzacAj4ME77AvNhnPg4TjEY3wve-_8a9gspJyB_ |
| CitedBy_id | crossref_primary_10_1186_s12864_024_10654_y crossref_primary_10_1002_ece3_72097 crossref_primary_10_1111_tpj_15676 crossref_primary_10_1016_j_gene_2022_147081 crossref_primary_10_3389_fpls_2025_1620373 crossref_primary_10_1016_j_bbi_2022_04_023 crossref_primary_10_1080_23802359_2021_1886016 crossref_primary_10_1007_s11295_025_01707_8 crossref_primary_10_3389_fpls_2021_787443 crossref_primary_10_1007_s00299_024_03256_1 crossref_primary_10_1016_j_ygeno_2024_110966 crossref_primary_10_1093_g3journal_jkaf162 crossref_primary_10_1186_s12864_024_10680_w crossref_primary_10_1186_s12870_023_04217_8 crossref_primary_10_1016_j_ympev_2020_106903 crossref_primary_10_32604_phyton_2024_050099 crossref_primary_10_3390_f14122372 crossref_primary_10_1038_s41598_022_18387_2 crossref_primary_10_1016_j_ympev_2021_107136 crossref_primary_10_1038_s42003_023_04659_8 crossref_primary_10_1016_j_ygeno_2025_111099 crossref_primary_10_1186_s12864_025_11372_9 crossref_primary_10_1186_s12864_023_09607_8 crossref_primary_10_1016_j_cub_2021_11_053 crossref_primary_10_1038_s41598_024_55016_6 crossref_primary_10_1007_s00425_021_03684_3 crossref_primary_10_3389_fpls_2023_1180417 crossref_primary_10_1186_s12859_023_05385_y crossref_primary_10_1007_s00425_024_04386_2 crossref_primary_10_7717_peerj_14114 crossref_primary_10_1186_s12870_025_07074_9 crossref_primary_10_3389_fpls_2025_1546449 crossref_primary_10_1016_j_gene_2024_148869 crossref_primary_10_3389_fpls_2022_988368 crossref_primary_10_12688_f1000research_21490_1 crossref_primary_10_1016_j_gene_2024_149031 crossref_primary_10_1080_23802359_2024_2387251 crossref_primary_10_1093_hr_uhae023 crossref_primary_10_1371_journal_pcbi_1008597 crossref_primary_10_1016_j_ympev_2023_107711 crossref_primary_10_1186_s12864_024_10457_1 crossref_primary_10_1038_s41598_021_94068_w crossref_primary_10_3389_fpls_2023_1124536 crossref_primary_10_1080_23802359_2023_2238357 crossref_primary_10_1111_jse_12655 crossref_primary_10_1016_j_jia_2025_02_018 crossref_primary_10_3390_ijms21134664 crossref_primary_10_1016_j_ygeno_2024_110935 crossref_primary_10_1007_s11816_023_00841_w crossref_primary_10_1186_s12915_022_01383_3 crossref_primary_10_1093_aob_mcad108 crossref_primary_10_1186_s12864_022_08892_z crossref_primary_10_1186_s12864_024_10331_0 crossref_primary_10_1111_tpj_15522 crossref_primary_10_1186_s12870_023_04054_9 crossref_primary_10_1016_j_ijbiomac_2024_132795 crossref_primary_10_3389_fpls_2024_1332460 crossref_primary_10_1016_j_gde_2023_102053 crossref_primary_10_1016_j_ijbiomac_2024_136357 crossref_primary_10_1186_s12915_021_01218_7 crossref_primary_10_1093_bib_bbac522 crossref_primary_10_3389_fpls_2023_1301164 crossref_primary_10_1186_s12870_024_05673_6 crossref_primary_10_1016_j_indcrop_2025_121817 crossref_primary_10_1186_s12864_024_10841_x crossref_primary_10_1016_j_gene_2023_147427 crossref_primary_10_7554_eLife_76557 crossref_primary_10_1111_nph_18334 crossref_primary_10_1111_tpj_15851 crossref_primary_10_1111_tpj_15976 crossref_primary_10_1186_s12870_024_05319_7 crossref_primary_10_3389_fpls_2022_978417 crossref_primary_10_3389_fpls_2025_1599596 crossref_primary_10_1016_j_tig_2022_10_005 crossref_primary_10_1002_imt2_70064 crossref_primary_10_1007_s00425_024_04449_4 crossref_primary_10_1038_s41598_025_86411_2 crossref_primary_10_1038_s41598_025_06816_x crossref_primary_10_1186_s13059_025_03717_0 crossref_primary_10_1186_s12870_025_06771_9 crossref_primary_10_1186_s12864_021_07490_9 crossref_primary_10_1186_s12870_025_06839_6 crossref_primary_10_1186_s12870_024_05761_7 crossref_primary_10_1002_pld3_388 crossref_primary_10_1007_s11676_025_01869_0 crossref_primary_10_3389_fpls_2023_1266797 crossref_primary_10_1371_journal_pone_0288986 crossref_primary_10_1093_gigascience_giac028 crossref_primary_10_3389_fpls_2023_1117002 crossref_primary_10_1038_s41598_022_13706_z crossref_primary_10_1038_s41598_020_77492_2 crossref_primary_10_1016_j_gene_2022_146391 crossref_primary_10_1002_ece3_71165 crossref_primary_10_3389_fpls_2024_1396389 crossref_primary_10_3389_fpls_2021_697136 crossref_primary_10_3389_fpls_2023_1261012 crossref_primary_10_1186_s12870_024_05333_9 crossref_primary_10_1007_s10142_024_01511_y crossref_primary_10_1038_s41598_022_24327_x crossref_primary_10_1038_s41598_025_93762_3 crossref_primary_10_1093_g3journal_jkac065 crossref_primary_10_1016_j_ijbiomac_2023_126257 crossref_primary_10_1007_s10142_021_00815_7 crossref_primary_10_1080_23802359_2023_2172974 crossref_primary_10_1093_jxb_eraa149 crossref_primary_10_1186_s12870_025_07072_x crossref_primary_10_1186_s12870_023_04493_4 crossref_primary_10_1186_s12864_022_09046_x crossref_primary_10_48130_gcomm_0025_0018 crossref_primary_10_1016_j_heliyon_2022_e09870 crossref_primary_10_1186_s12864_024_10914_x crossref_primary_10_3389_fgene_2023_1289811 crossref_primary_10_1371_journal_pone_0286628 crossref_primary_10_3389_fpls_2022_1031769 crossref_primary_10_7554_eLife_95407 crossref_primary_10_3389_fpls_2025_1556332 crossref_primary_10_1007_s10681_023_03207_z crossref_primary_10_1186_s12870_021_03416_5 crossref_primary_10_1016_j_mito_2021_02_009 crossref_primary_10_1016_j_ygeno_2023_110740 crossref_primary_10_1139_cjps_2023_0164 crossref_primary_10_3389_fpls_2024_1492723 crossref_primary_10_3389_fpls_2023_1140043 crossref_primary_10_1111_1755_0998_13584 crossref_primary_10_1186_s12864_025_11474_4 crossref_primary_10_1186_s12870_024_04978_w crossref_primary_10_1002_ajb2_16084 crossref_primary_10_3389_fpls_2023_1183406 crossref_primary_10_1186_s12864_022_08983_x crossref_primary_10_1016_j_sjbs_2020_12_008 crossref_primary_10_1002_csc2_21147 crossref_primary_10_1007_s00299_023_03102_w crossref_primary_10_1016_j_ympev_2024_108253 crossref_primary_10_1007_s00299_024_03277_w crossref_primary_10_1534_g3_119_401023 crossref_primary_10_3390_ijms22189713 crossref_primary_10_1007_s00299_023_02994_y crossref_primary_10_1007_s11676_022_01511_3 crossref_primary_10_1007_s10722_020_00881_z crossref_primary_10_1186_s12915_025_02115_z crossref_primary_10_3389_fgene_2022_1050040 crossref_primary_10_3389_fpls_2025_1568698 crossref_primary_10_1007_s10142_023_01223_9 crossref_primary_10_1093_nar_gkae040 crossref_primary_10_1186_s12870_022_03665_y crossref_primary_10_1093_jhered_esab077 crossref_primary_10_1186_s12864_025_11210_y crossref_primary_10_3389_fpls_2024_1475064 crossref_primary_10_3389_fpls_2024_1234643 crossref_primary_10_1016_j_gene_2024_148416 crossref_primary_10_3390_f15050835 crossref_primary_10_1007_s10709_025_00241_8 crossref_primary_10_1177_21582440251364954 crossref_primary_10_3389_fpls_2021_762195 crossref_primary_10_1016_j_gene_2023_147847 crossref_primary_10_1186_s12870_025_06809_y crossref_primary_10_3389_fpls_2025_1604404 crossref_primary_10_1186_s12870_022_03492_1 crossref_primary_10_1186_s12870_024_05618_z crossref_primary_10_1093_jxb_erac250 crossref_primary_10_1186_s12864_024_10768_3 crossref_primary_10_1186_s13059_025_03676_6 crossref_primary_10_1016_j_molp_2022_03_002 crossref_primary_10_1186_s12864_024_10026_6 crossref_primary_10_1186_s12870_023_04159_1 crossref_primary_10_1186_s12864_021_08105_z crossref_primary_10_1016_j_ygeno_2024_110897 crossref_primary_10_1093_molbev_msaf082 crossref_primary_10_1186_s12870_025_06461_6 crossref_primary_10_1016_j_gene_2022_146342 crossref_primary_10_3389_fgene_2023_1329060 crossref_primary_10_1016_j_scienta_2023_112637 crossref_primary_10_1016_j_tplants_2023_12_014 crossref_primary_10_1186_s12870_023_04618_9 crossref_primary_10_1111_jpy_70080 crossref_primary_10_1186_s12864_023_09573_1 crossref_primary_10_1007_s00425_025_04698_x crossref_primary_10_1186_s12870_024_05558_8 crossref_primary_10_3389_fpls_2024_1367299 crossref_primary_10_1016_j_gene_2022_146904 crossref_primary_10_1186_s12870_025_06510_0 crossref_primary_10_1186_s12864_022_08993_9 crossref_primary_10_3389_fgene_2024_1395805 crossref_primary_10_1186_s12870_022_03669_8 crossref_primary_10_3389_fpls_2025_1637726 crossref_primary_10_3389_fpls_2024_1362045 crossref_primary_10_17129_botsci_3667 crossref_primary_10_1097_HM9_0000000000000078 crossref_primary_10_1186_s12864_020_07061_4 crossref_primary_10_1111_jse_12912 crossref_primary_10_3390_ijms22041811 crossref_primary_10_1093_nargab_lqac027 crossref_primary_10_1186_s12864_025_11892_4 crossref_primary_10_1186_s12870_024_05780_4 crossref_primary_10_1186_s12870_025_06341_z crossref_primary_10_1186_s12870_025_07132_2 crossref_primary_10_1186_s12870_024_05331_x crossref_primary_10_1186_s12870_024_05969_7 crossref_primary_10_1186_s12870_025_06801_6 crossref_primary_10_1111_1755_0998_70025 crossref_primary_10_1016_j_indcrop_2024_119382 crossref_primary_10_1007_s10142_025_01596_z crossref_primary_10_1186_s12864_024_10247_9 crossref_primary_10_3389_fpls_2022_914635 crossref_primary_10_1186_s12870_024_05557_9 crossref_primary_10_3389_fpls_2022_1051221 crossref_primary_10_1002_tpg2_20117 crossref_primary_10_1186_s12864_022_08383_1 crossref_primary_10_1111_pbi_70249 crossref_primary_10_3389_fgene_2020_576124 |
| Cites_doi | 10.1101/gr.215087.116 10.1016/S1360-1385(97)01148-5 10.1016/j.tplants.2015.08.002 10.1038/301725a0 10.1128/genomeA.00981-16 10.1007/s00438-002-0767-1 10.1093/molbev/msw024 10.1093/gbe/evs042 10.1016/j.mito.2014.02.004 10.1016/j.tplants.2018.05.005 10.1371/journal.pbio.1001241 10.1007/BF00331848 10.1016/j.ympev.2008.09.009 10.1111/j.1469-8137.2010.03195.x 10.1006/jmbi.1996.0048 10.1002/j.1460-2075.1985.tb03749.x 10.1093/nar/gkg795 10.1093/genetics/118.2.341 10.1073/pnas.042694899 10.1016/j.freeradbiomed.2016.03.033 10.1006/jmbi.2001.4783 10.1007/BF02143500 10.1016/0092-8674(81)90187-2 10.1371/journal.pone.0180484 10.1007/BF02670468 10.1038/307437a0 10.1007/s002940050532 10.1038/nmeth.4035 10.1186/1741-7007-9-64 10.1073/pnas.84.24.9054 10.1016/j.jmb.2005.11.070 10.1038/ncomms14953 10.1111/nph.14158 10.1186/1471-2229-12-61 10.1038/ng.3565 10.1016/j.tplants.2017.10.001 10.1111/nph.12395 10.1093/nar/gki783 10.1104/pp.111.173849 10.1002/9781119312994.apr0544 10.1093/nar/14.24.9755 10.1371/journal.pcbi.1005944 10.1371/journal.pone.0177606 10.1038/srep31533 10.1038/90058 10.1111/j.1365-313X.2012.05097.x 10.1186/1741-7007-11-29 10.1007/s00425-012-1802-z 10.1101/gr.9.9.868 10.1073/pnas.80.13.4055 10.1534/genetics.107.073312 10.1038/281401a0 10.1126/science.1246275 10.1105/tpc.106.048355 10.1093/molbev/msn226 10.1073/pnas.1504491112 10.1105/tpc.109.071399 10.1104/pp.112.194720 10.1093/bioinformatics/btp698 10.1073/pnas.97.13.6960 10.1016/S0074-7696(04)38002-2 10.1101/gr.074492.107 10.1038/268365a0 10.1046/j.1365-313X.1994.06030447.x 10.1186/s12870-017-0992-8 10.1093/nar/12.24.9249 10.2307/3870324 10.1007/s00438-004-1058-9 10.1111/nph.14530 10.1007/s10059-011-0036-4 10.1093/gbe/evw003 10.1007/BF00020088 10.1111/nph.14361 10.1534/genetics.109.108514 10.1186/1471-2229-14-45 10.1007/BF00334522 10.1016/S1055-7903(03)00194-5 10.1007/BF00336777 10.3389/fpls.2015.00883 10.1006/jmbi.1997.1581 10.1007/s00294-004-0549-x 10.1073/pnas.0408302101 10.1007/s00122-008-0790-7 10.1016/B978-0-12-394279-1.00009-0 10.1242/jcs.88.4.431 10.1016/j.mito.2007.10.002 10.1093/nar/28.13.2571 10.1038/ng0197-57 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Kozik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Kozik et al 2019 Kozik et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Kozik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Kozik et al 2019 Kozik et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1008373 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | The alternative reality of plant mitochondrial DNA |
| EISSN | 1553-7404 |
| ExternalDocumentID | 2291478422 oai_doaj_org_article_af3ae37085934f5ca6a45bbcfb529d62 PMC6742443 A600424828 31469821 10_1371_journal_pgen_1008373 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States United States--US Netherlands California |
| GeographicLocations_xml | – name: United States – name: Netherlands – name: United States--US – name: California |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: MCB-1413152 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM - AAPBV ABPTK ADACO BBAFP M~E |
| ID | FETCH-LOGICAL-c726t-751fd1286c2256942c0c8186e77d4a1ab3c618b38a76466c8b1d786a199cf33d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 288 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486222200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Fri Nov 26 17:12:51 EST 2021 Fri Oct 03 12:45:18 EDT 2025 Tue Nov 04 01:57:45 EST 2025 Sun Nov 09 10:59:55 EST 2025 Sat Nov 29 14:53:20 EST 2025 Tue Nov 11 10:34:12 EST 2025 Tue Nov 04 17:20:08 EST 2025 Thu Nov 13 15:09:09 EST 2025 Thu Nov 13 15:42:24 EST 2025 Thu Nov 13 15:33:07 EST 2025 Thu May 22 21:23:33 EDT 2025 Thu Apr 03 07:08:13 EDT 2025 Tue Nov 18 22:09:42 EST 2025 Sat Nov 29 04:23:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c726t-751fd1286c2256942c0c8186e77d4a1ab3c618b38a76466c8b1d786a199cf33d3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Genetwister Technologies B.V., Wageningen, The Netherlands The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-6541-9329 0000-0001-7240-4889 0000-0001-6777-6565 0000-0002-1125-3172 0000-0003-3842-9462 0000-0002-7512-592X |
| OpenAccessLink | https://www.proquest.com/docview/2291478422?pq-origsite=%requestingapplication% |
| PMID | 31469821 |
| PQID | 2291478422 |
| PQPubID | 1436339 |
| ParticipantIDs | plos_journals_2291478422 doaj_primary_oai_doaj_org_article_af3ae37085934f5ca6a45bbcfb529d62 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6742443 proquest_miscellaneous_2283110960 proquest_journals_2291478422 gale_infotracmisc_A600424828 gale_infotracacademiconefile_A600424828 gale_incontextgauss_ISR_A600424828 gale_incontextgauss_ISN_A600424828 gale_incontextgauss_IOV_A600424828 gale_healthsolutions_A600424828 pubmed_primary_31469821 crossref_citationtrail_10_1371_journal_pgen_1008373 crossref_primary_10_1371_journal_pgen_1008373 |
| PublicationCentury | 2000 |
| PublicationDate | 20190830 |
| PublicationDateYYYYMMDD | 2019-08-30 |
| PublicationDate_xml | – month: 8 year: 2019 text: 20190830 day: 30 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P McDermott (pgen.1008373.ref060) 2008; 117 S Backert (pgen.1008373.ref006) 2000; 37 EL Wynn (pgen.1008373.ref025) 2019; 9 A Sakai (pgen.1008373.ref070) 2004; 238 BL Ward (pgen.1008373.ref003) 1981; 25 AJ Bendich (pgen.1008373.ref004) 1993; 24 DR Zerbino (pgen.1008373.ref089) 2008; 18 M Klein (pgen.1008373.ref045) 1994; 6 DJ Oldenburg (pgen.1008373.ref030) 1998; 276 JA Siqueira (pgen.1008373.ref017) 2018; 23 JD Palmer (pgen.1008373.ref018) 2000; 97 JD Palmer (pgen.1008373.ref057) 1983; 301 OM Vargas (pgen.1008373.ref062) 2017; 214 S Koren (pgen.1008373.ref076) 2017; 27 MV Sanchez-Puerta (pgen.1008373.ref048) 2017; 214 JR Shearman (pgen.1008373.ref043) 2014; 14 VV Goremykin (pgen.1008373.ref064) 2009; 26 H Handa (pgen.1008373.ref083) 2008; 8 DJ Oldenburg (pgen.1008373.ref005) 1996; 8 DJ Oldenburg (pgen.1008373.ref031) 2001; 310 MP Arrieta-Montiel (pgen.1008373.ref050) 2009; 183 DR Pring (pgen.1008373.ref058) 1982; 186 M Unseld (pgen.1008373.ref046) 1997; 15 CS Levings (pgen.1008373.ref056) 1983; 80 H Dai (pgen.1008373.ref068) 2005; 33 JM Gualberto (pgen.1008373.ref071) 2014; 19 C-S Chin (pgen.1008373.ref075) 2016; 13 Y-J Kim (pgen.1008373.ref016) 2018; 23 JD Palmer (pgen.1008373.ref026) 1984; 307 X Huang (pgen.1008373.ref090) 1999; 9 G Belliard (pgen.1008373.ref002) 1979; 281 M Iorizzo (pgen.1008373.ref065) 2012; 12 AO Richardson (pgen.1008373.ref037) 2013; 11 JN Spelbrink (pgen.1008373.ref067) 2001; Vol. 28 H Li (pgen.1008373.ref091) 2010; 26 JP Mower (pgen.1008373.ref033) 2012; 4 M Paillard (pgen.1008373.ref055) 1985; 4 JD Palmer (pgen.1008373.ref028) 1986; 14 DB Sloan (pgen.1008373.ref011) 2012; 10 LW Cole (pgen.1008373.ref022) 2018 M Iorizzo (pgen.1008373.ref084) 2016; 48 J-S Parent (pgen.1008373.ref080) 2011; 156 M Miller-Messmer (pgen.1008373.ref081) 2012; 159 JR Shearman (pgen.1008373.ref047) 2016; 6 E Skippington (pgen.1008373.ref012) 2015; 112 DJ Oldenburg (pgen.1008373.ref078) 2013; 237 Y Notsu (pgen.1008373.ref019) 2002; 268 G Petersen (pgen.1008373.ref013) 2017; 12 T Kubo (pgen.1008373.ref039) 2000; 28 S Backert (pgen.1008373.ref044) 1997; 2 V Shedge (pgen.1008373.ref049) 2007; 19 DW Rice (pgen.1008373.ref042) 2013; 342 CJ Grassa (pgen.1008373.ref063) 2016; 4 KL Adams (pgen.1008373.ref009) 2002; 99 N Cheng (pgen.1008373.ref034) 2017; 213 W Guo (pgen.1008373.ref021) 2016; 33 L Kovar (pgen.1008373.ref074) 2018 L Cappadocia (pgen.1008373.ref079) 2010; 22 K Kühn (pgen.1008373.ref051) 2012; 63 KL Adams (pgen.1008373.ref010) 2003; 29 F Quetier (pgen.1008373.ref001) 1977; 268 DB Sloan (pgen.1008373.ref007) 2013; 200 E Skippington (pgen.1008373.ref024) 2017; 17 Y Cho (pgen.1008373.ref020) 2004; 101 JD Palmer (pgen.1008373.ref072) 1988; 118 H Handa (pgen.1008373.ref054) 2003; 31 Y-S Lo (pgen.1008373.ref069) 2011; 31 AJ Bendich (pgen.1008373.ref077) 1990; 17 I Miyakawa (pgen.1008373.ref066) 1987; 88 S Reyes-Chin-Wo (pgen.1008373.ref088) 2017; 8 JD Palmer (pgen.1008373.ref038) 1988; 28 S Janicka (pgen.1008373.ref052) 2012; 72 JI Davila (pgen.1008373.ref082) 2011; 9 A Christensen (pgen.1008373.ref023) 2018 G Drouin (pgen.1008373.ref036) 2008; 49 SR Silva (pgen.1008373.ref073) 2017; 12 KH Wolfe (pgen.1008373.ref035) 1987; 84 M Satoh (pgen.1008373.ref040) 2004; 272 DJ Oldenburg (pgen.1008373.ref008) 2015; 6 A Maréchal (pgen.1008373.ref041) 2010; 186 S Chang (pgen.1008373.ref087) 1993; 11 DM Lonsdale (pgen.1008373.ref027) 1984; 12 M Manchekar (pgen.1008373.ref032) 2006; 356 C Wallet (pgen.1008373.ref053) 2015; 27 JM Warren (pgen.1008373.ref061) 2016; 8 KL Liberatore (pgen.1008373.ref015) 2016; 100 SO Rogers (pgen.1008373.ref086) 1985; 5 MM Robison (pgen.1008373.ref059) 2005; 47 P Lehwark (pgen.1008373.ref092) 2018 O Van Aken (pgen.1008373.ref014) 2015; 20 AJ Bendich (pgen.1008373.ref029) 1996; 255 JO Allen (pgen.1008373.ref085) 2007; 177 G Marçais (pgen.1008373.ref093) 2018; 14 |
| References_xml | – volume: 27 start-page: 722 issue: 5 year: 2017 ident: pgen.1008373.ref076 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res doi: 10.1101/gr.215087.116 – volume: 2 start-page: 477 issue: 12 year: 1997 ident: pgen.1008373.ref044 article-title: The mystery of the rings: structure and replication of mitochondrial genomes from higher plants publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(97)01148-5 – volume: 20 start-page: 754 issue: 11 year: 2015 ident: pgen.1008373.ref014 article-title: Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2015.08.002 – volume: 301 start-page: 301725a0 issue: 5902 year: 1983 ident: pgen.1008373.ref057 article-title: An unusual mitochondrial DNA plasmid in the genus Brassica publication-title: Nature doi: 10.1038/301725a0 – year: 2018 ident: pgen.1008373.ref074 article-title: PacBio-based mitochondrial genome assembly of Leucaena trichandra (Leguminosae) and an intrageneric assessment of mitochondrial RNA editing publication-title: Genome Biol Evol – volume: 4 issue: 5 year: 2016 ident: pgen.1008373.ref063 article-title: Complete Mitochondrial Genome Sequence of Sunflower (Helianthus annuus L.) publication-title: Genome Announc doi: 10.1128/genomeA.00981-16 – volume: 268 start-page: 434 issue: 4 year: 2002 ident: pgen.1008373.ref019 article-title: The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants publication-title: Mol Genet Genomics doi: 10.1007/s00438-002-0767-1 – volume: 33 start-page: 1448 issue: 6 year: 2016 ident: pgen.1008373.ref021 article-title: Ginkgo and Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution publication-title: Mol Biol Evol doi: 10.1093/molbev/msw024 – volume: 4 start-page: 670 issue: 5 year: 2012 ident: pgen.1008373.ref033 article-title: Evidence against equimolarity of large repeat arrangements and a predominant master circle structure of the mitochondrial genome from a monkeyflower (Mimulus guttatus) lineage with cryptic CMS publication-title: Genome Biol Evol doi: 10.1093/gbe/evs042 – volume: 19 start-page: 323 issue: Pt B year: 2014 ident: pgen.1008373.ref071 article-title: DNA-binding proteins in plant mitochondria: implications for transcription publication-title: Mitochondrion doi: 10.1016/j.mito.2014.02.004 – volume: 23 start-page: 731 issue: 8 year: 2018 ident: pgen.1008373.ref017 article-title: Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2018.05.005 – year: 2018 ident: pgen.1008373.ref092 article-title: GB2sequin—A file converter preparing custom GenBank files for database submission publication-title: Genomics – volume: 10 start-page: e1001241 issue: 1 year: 2012 ident: pgen.1008373.ref011 article-title: Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001241 – volume: 186 start-page: 180 issue: 2 year: 1982 ident: pgen.1008373.ref058 article-title: Plasmid-like DNAs associated with mitochondria of cytoplasmic male-sterile Sorghum publication-title: Mol Gen Genet doi: 10.1007/BF00331848 – volume: 49 start-page: 827 issue: 3 year: 2008 ident: pgen.1008373.ref036 article-title: Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2008.09.009 – volume: 186 start-page: 299 issue: 2 year: 2010 ident: pgen.1008373.ref041 article-title: Recombination and the maintenance of plant organelle genome stability publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03195.x – volume: 255 start-page: 564 issue: 4 year: 1996 ident: pgen.1008373.ref029 article-title: Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0048 – volume: 4 start-page: 1125 issue: 5 year: 1985 ident: pgen.1008373.ref055 article-title: Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize publication-title: EMBO J doi: 10.1002/j.1460-2075.1985.tb03749.x – volume: 31 start-page: 5907 issue: 20 year: 2003 ident: pgen.1008373.ref054 article-title: The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg795 – volume: 118 start-page: 341 issue: 2 year: 1988 ident: pgen.1008373.ref072 article-title: Intraspecific variation and multicircularity in Brassica mitochondrial DNAs publication-title: Genetics doi: 10.1093/genetics/118.2.341 – volume: 99 start-page: 9905 issue: 15 year: 2002 ident: pgen.1008373.ref009 article-title: Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.042694899 – volume: 100 start-page: 238 year: 2016 ident: pgen.1008373.ref015 article-title: The role of mitochondria in plant development and stress tolerance publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2016.03.033 – volume: 310 start-page: 549 issue: 3 year: 2001 ident: pgen.1008373.ref031 article-title: Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4783 – volume: 28 start-page: 87 issue: 1 year: 1988 ident: pgen.1008373.ref038 article-title: Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence publication-title: Journal of Molecular Evolution doi: 10.1007/BF02143500 – volume: 25 start-page: 793 issue: 3 year: 1981 ident: pgen.1008373.ref003 article-title: The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae) publication-title: Cell doi: 10.1016/0092-8674(81)90187-2 – volume: 12 start-page: e0180484 issue: 7 year: 2017 ident: pgen.1008373.ref073 article-title: The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks publication-title: PLoS One doi: 10.1371/journal.pone.0180484 – volume: 11 start-page: 113 issue: 2 year: 1993 ident: pgen.1008373.ref087 article-title: A Simple and Efficient Method for Isolating RNA from Pine Trees publication-title: Plant Molecular Biology Reporter doi: 10.1007/BF02670468 – volume: 307 start-page: 437 issue: 5950 year: 1984 ident: pgen.1008373.ref026 article-title: Tripartite structure of the Brassica campestris mitochondrial genome publication-title: Nature doi: 10.1038/307437a0 – volume: 37 start-page: 304 issue: 5 year: 2000 ident: pgen.1008373.ref006 article-title: Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.) publication-title: Curr Genet doi: 10.1007/s002940050532 – volume: 13 start-page: 1050 issue: 12 year: 2016 ident: pgen.1008373.ref075 article-title: Phased diploid genome assembly with single-molecule real-time sequencing publication-title: Nat Methods doi: 10.1038/nmeth.4035 – volume: 9 start-page: 64 year: 2011 ident: pgen.1008373.ref082 article-title: Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis publication-title: BMC Biol doi: 10.1186/1741-7007-9-64 – volume: 84 start-page: 9054 issue: 24 year: 1987 ident: pgen.1008373.ref035 article-title: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.24.9054 – volume: 356 start-page: 288 issue: 2 year: 2006 ident: pgen.1008373.ref032 article-title: DNA recombination activity in soybean mitochondria publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.11.070 – volume: 8 start-page: 14953 year: 2017 ident: pgen.1008373.ref088 article-title: Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce publication-title: Nat Commun doi: 10.1038/ncomms14953 – volume: 213 start-page: 751 issue: 2 year: 2017 ident: pgen.1008373.ref034 article-title: Correlation between mtDNA complexity and mtDNA replication mode in developing cotyledon mitochondria during mung bean seed germination publication-title: New Phytol doi: 10.1111/nph.14158 – volume: 12 start-page: 61 year: 2012 ident: pgen.1008373.ref065 article-title: De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome publication-title: BMC Plant Biol doi: 10.1186/1471-2229-12-61 – volume: 48 start-page: 657 issue: 6 year: 2016 ident: pgen.1008373.ref084 article-title: A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution publication-title: Nat Genet doi: 10.1038/ng.3565 – volume: 23 start-page: 53 issue: 1 year: 2018 ident: pgen.1008373.ref016 article-title: Molecular Control of Male Fertility for Crop Hybrid Breeding publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.10.001 – volume: 200 start-page: 978 issue: 4 year: 2013 ident: pgen.1008373.ref007 article-title: One ring to rule them all? Genome sequencing provides new insights into the “master circle” model of plant mitochondrial DNA structure publication-title: New Phytol doi: 10.1111/nph.12395 – volume: 33 start-page: 4725 issue: 15 year: 2005 ident: pgen.1008373.ref068 article-title: Structural and functional characterizations of mung bean mitochondrial nucleoids publication-title: Nucleic Acids Res doi: 10.1093/nar/gki783 – volume: 156 start-page: 254 issue: 1 year: 2011 ident: pgen.1008373.ref080 article-title: Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.111.173849 – start-page: 11 volume-title: Annual Plant Reviews online year: 2018 ident: pgen.1008373.ref023 doi: 10.1002/9781119312994.apr0544 – volume: 14 start-page: 9755 issue: 24 year: 1986 ident: pgen.1008373.ref028 article-title: Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion publication-title: Nucleic Acids Res doi: 10.1093/nar/14.24.9755 – volume: 14 start-page: e1005944 issue: 1 year: 2018 ident: pgen.1008373.ref093 article-title: MUMmer4: A fast and versatile genome alignment system publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005944 – volume: 12 start-page: e0177606 issue: 5 year: 2017 ident: pgen.1008373.ref013 article-title: Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes publication-title: PLoS One doi: 10.1371/journal.pone.0177606 – volume: 6 start-page: 31533 year: 2016 ident: pgen.1008373.ref047 article-title: The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads publication-title: Sci Rep doi: 10.1038/srep31533 – volume: Vol. 28 start-page: 223 year: 2001 ident: pgen.1008373.ref067 article-title: Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria publication-title: Nature Genetics doi: 10.1038/90058 – volume: 72 start-page: 423 issue: 3 year: 2012 ident: pgen.1008373.ref052 article-title: A RAD52-like single-stranded DNA binding protein affects mitochondrial DNA repair by recombination publication-title: Plant J doi: 10.1111/j.1365-313X.2012.05097.x – volume: 11 start-page: 29 issue: 1 year: 2013 ident: pgen.1008373.ref037 article-title: The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate publication-title: BMC Biol doi: 10.1186/1741-7007-11-29 – volume: 237 start-page: 603 issue: 2 year: 2013 ident: pgen.1008373.ref078 article-title: The amount and integrity of mtDNA in maize decline with development publication-title: Planta doi: 10.1007/s00425-012-1802-z – volume: 9 start-page: 868 issue: 9 year: 1999 ident: pgen.1008373.ref090 article-title: CAP3: A DNA sequence assembly program publication-title: Genome Res doi: 10.1101/gr.9.9.868 – volume: 9 start-page: 549 issue: 2 year: 2019 ident: pgen.1008373.ref025 article-title: Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification publication-title: Incidence and Evolution. G3 – volume: 80 start-page: 4055 issue: 13 year: 1983 ident: pgen.1008373.ref056 article-title: Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.80.13.4055 – volume: 177 start-page: 1173 issue: 2 year: 2007 ident: pgen.1008373.ref085 article-title: Comparisons among two fertile and three male-sterile mitochondrial genomes of maize publication-title: Genetics doi: 10.1534/genetics.107.073312 – volume: 281 start-page: 401 issue: 5730 year: 1979 ident: pgen.1008373.ref002 article-title: Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion publication-title: Nature doi: 10.1038/281401a0 – year: 2018 ident: pgen.1008373.ref022 article-title: High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants publication-title: Mol Biol Evol – volume: 342 start-page: 1468 issue: 6165 year: 2013 ident: pgen.1008373.ref042 article-title: Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella publication-title: Science doi: 10.1126/science.1246275 – volume: 19 start-page: 1251 issue: 4 year: 2007 ident: pgen.1008373.ref049 article-title: Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs publication-title: Plant Cell doi: 10.1105/tpc.106.048355 – volume: 26 start-page: 99 issue: 1 year: 2009 ident: pgen.1008373.ref064 article-title: Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer publication-title: Mol Biol Evol doi: 10.1093/molbev/msn226 – volume: 112 start-page: E3515 issue: 27 year: 2015 ident: pgen.1008373.ref012 article-title: Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1504491112 – volume: 22 start-page: 1849 issue: 6 year: 2010 ident: pgen.1008373.ref079 article-title: Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair publication-title: Plant Cell doi: 10.1105/tpc.109.071399 – volume: 159 start-page: 211 issue: 1 year: 2012 ident: pgen.1008373.ref081 article-title: RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome publication-title: Plant Physiol doi: 10.1104/pp.112.194720 – volume: 26 start-page: 589 issue: 5 year: 2010 ident: pgen.1008373.ref091 article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 97 start-page: 6960 issue: 13 year: 2000 ident: pgen.1008373.ref018 article-title: Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.13.6960 – volume: 238 start-page: 59 year: 2004 ident: pgen.1008373.ref070 article-title: Organelle nuclei in higher plants: structure, composition, function, and evolution publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(04)38002-2 – volume: 18 start-page: 821 issue: 5 year: 2008 ident: pgen.1008373.ref089 article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs publication-title: Genome Res doi: 10.1101/gr.074492.107 – volume: 27 start-page: 2907 issue: 10 year: 2015 ident: pgen.1008373.ref053 article-title: The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis publication-title: Plant Cell – volume: 268 start-page: 365 issue: 5618 year: 1977 ident: pgen.1008373.ref001 article-title: Heterogeneous population of mitochondrial DNA molecules in higher plants publication-title: Nature doi: 10.1038/268365a0 – volume: 6 start-page: 447 issue: 3 year: 1994 ident: pgen.1008373.ref045 article-title: Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones publication-title: Plant J doi: 10.1046/j.1365-313X.1994.06030447.x – volume: 17 start-page: 49 issue: 1 year: 2017 ident: pgen.1008373.ref024 article-title: Comparative mitogenomics indicates respiratory competence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals horizontal gene transfer and remarkable variation in genome size publication-title: BMC Plant Biol doi: 10.1186/s12870-017-0992-8 – volume: 12 start-page: 9249 issue: 24 year: 1984 ident: pgen.1008373.ref027 article-title: The physical map and organisatlon of the mitochondrial genome from the fertile cytoplasm of maize publication-title: Nucleic Acids Res doi: 10.1093/nar/12.24.9249 – volume: 8 start-page: 447 issue: 3 year: 1996 ident: pgen.1008373.ref005 article-title: Size and Structure of Replicating Mitochondrial DNA in Cultured Tobacco Cells publication-title: Plant Cell doi: 10.2307/3870324 – volume: 272 start-page: 247 issue: 3 year: 2004 ident: pgen.1008373.ref040 article-title: The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs publication-title: Mol Genet Genomics doi: 10.1007/s00438-004-1058-9 – volume: 214 start-page: 1736 issue: 4 year: 2017 ident: pgen.1008373.ref062 article-title: Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium) publication-title: New Phytol doi: 10.1111/nph.14530 – volume: 31 start-page: 217 issue: 3 year: 2011 ident: pgen.1008373.ref069 article-title: Characterization of the structure and DNA complexity of mung bean mitochondrial nucleoids publication-title: Mol Cells doi: 10.1007/s10059-011-0036-4 – volume: 8 start-page: 364 issue: 2 year: 2016 ident: pgen.1008373.ref061 article-title: Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes publication-title: Genome Biol Evol doi: 10.1093/gbe/evw003 – volume: 5 start-page: 69 issue: 2 year: 1985 ident: pgen.1008373.ref086 article-title: Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues publication-title: Plant Mol Biol doi: 10.1007/BF00020088 – volume: 214 start-page: 376 issue: 1 year: 2017 ident: pgen.1008373.ref048 article-title: Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant publication-title: New Phytol doi: 10.1111/nph.14361 – volume: 183 start-page: 1261 issue: 4 year: 2009 ident: pgen.1008373.ref050 article-title: Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity publication-title: Genetics doi: 10.1534/genetics.109.108514 – volume: 14 start-page: 45 year: 2014 ident: pgen.1008373.ref043 article-title: Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript publication-title: BMC Plant Biol doi: 10.1186/1471-2229-14-45 – volume: 17 start-page: 421 issue: 5 year: 1990 ident: pgen.1008373.ref077 article-title: Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria publication-title: Curr Genet doi: 10.1007/BF00334522 – volume: 29 start-page: 380 issue: 3 year: 2003 ident: pgen.1008373.ref010 article-title: Evolution of mitochondrial gene content: gene loss and transfer to the nucleus publication-title: Mol Phylogenet Evol doi: 10.1016/S1055-7903(03)00194-5 – volume: 24 start-page: 279 issue: 4 year: 1993 ident: pgen.1008373.ref004 article-title: Reaching for the ring: the study of mitochondrial genome structure publication-title: Curr Genet doi: 10.1007/BF00336777 – volume: 6 start-page: 883 year: 2015 ident: pgen.1008373.ref008 article-title: DNA maintenance in plastids and mitochondria of plants publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00883 – volume: 276 start-page: 745 issue: 4 year: 1998 ident: pgen.1008373.ref030 article-title: The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha publication-title: J Mol Biol doi: 10.1006/jmbi.1997.1581 – volume: 47 start-page: 57 issue: 1 year: 2005 ident: pgen.1008373.ref059 article-title: A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L.) publication-title: Curr Genet doi: 10.1007/s00294-004-0549-x – volume: 101 start-page: 17741 issue: 51 year: 2004 ident: pgen.1008373.ref020 article-title: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0408302101 – volume: 117 start-page: 459 issue: 3 year: 2008 ident: pgen.1008373.ref060 article-title: The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element publication-title: Theor Appl Genet doi: 10.1007/s00122-008-0790-7 – volume: 63 start-page: 215 year: 2012 ident: pgen.1008373.ref051 article-title: Recombination in the Stability, Repair and Evolution of the Mitochondrial Genome publication-title: Adv Bot Res doi: 10.1016/B978-0-12-394279-1.00009-0 – volume: 88 start-page: 431 issue: Pt 4 year: 1987 ident: pgen.1008373.ref066 article-title: Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae publication-title: J Cell Sci doi: 10.1242/jcs.88.4.431 – volume: 8 start-page: 15 issue: 1 year: 2008 ident: pgen.1008373.ref083 article-title: Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? publication-title: Mitochondrion doi: 10.1016/j.mito.2007.10.002 – volume: 28 start-page: 2571 issue: 13 year: 2000 ident: pgen.1008373.ref039 article-title: The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys(GCA) publication-title: Nucleic Acids Res doi: 10.1093/nar/28.13.2571 – volume: 15 start-page: 57 issue: 1 year: 1997 ident: pgen.1008373.ref046 article-title: The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides publication-title: Nat Genet doi: 10.1038/ng0197-57 |
| SSID | ssj0035897 |
| Score | 2.6769261 |
| Snippet | Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1008373 |
| SubjectTerms | Analysis Biochemistry Biology and Life Sciences Chromosome Mapping - methods Deoxyribonucleic acid DNA DNA repair DNA sequencing DNA, Mitochondrial - genetics DNA, Plant - genetics Domestication Engineering and Technology Evolution Fluorescence Fluorescence microscopy Gene mapping Genes Genes, Plant - genetics Genetic research Genome, Mitochondrial - genetics Genome, Plant - genetics Genomes Genomics Isoforms Lactuca - genetics Lactuca saligna Lactuca serriola Microscopy Mitochondria Mitochondria - genetics Mitochondrial DNA Plant genetics Plant mitochondria Plant sciences Recombination Recombination, Genetic - genetics Repair & maintenance Research and analysis methods Scientists Sequence Analysis, DNA - methods Software Species |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4yKPgi3rfuqFEEn-pOmjZpfRsvi4LMiquybyXXdWFsh-nMgv_ec5JO2crC7oOvzddAzy3nNMl3CHlVuLIwyhcpsx4KFAUupfPCpiVzxs-cB5cKJK5f5GJRnpxUXy-0-sIzYZEeOAruQHmuHJeBlyv3MK9QeaG18brIKhujL2Q9u2IqxmBelLGtSlHwVEJZ31-a45Id9Dp6swIF4RkBqND4aFEK3P1DhJ6slm13Wfr57ynKC8vS4V1yp88n6Tx-xz1ywzX3ya3YYfLPA3IMZkDDjngTGL4p5IiYeNPW09USpEp_g0tDCGwsWiL9sJi_pUcN4GBJo7Z1HW3aDV1vl44ivyvMtXxIfhx-_P7-U9r3UUiNzMQmlQXzFtYhYcB5RZVnZmaQyM5JaXPFlOZGsFLzUkmRC2FKzawshWJVZTznlj8ik6Zt3B6hgjOttZ3BBA4SsbxytvIefN5qSM1ElhC-E2RtepJx7HWxrMPOmYRiI8qlRvHXvfgTkg5vrSLJxhX4d6ijAYsU2eEBGE7dG059leEk5DlquI73TQdHr-cibAdDJZqQlwGBNBkNnsM5Vduuqz8f_bwG6HhxHdC3Eeh1D_ItyMyo_oIESB45ukbI6QgJEcGMhvfQaHei6-osq1guyzyDj57uDPny4RfDME6KB_Aa124RU3IkpxWzhDyOdj-InzNsQ5qxhMiRR4z0Mx5pzn4FKnMh8aIlf_I_FLpPbkM2W4Uf_rMpmWzWW_eU3DTnm7Nu_SzEh78zIGih priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLaggLQX7myFAgYh8ZQRx4md8FYuFUhTNzFAe4t8hUklqZoWiX_POU4ayLSJ8Rp_sZzP5xwfx_ZnQl5kLs-M8lnErIcJigKX0mlmo5w542PnwaWCiOuBnM_zk5Pi6M9E8cwKPpfsVcfp_hIIxTV9mFHxq-RawoXALVyzo4Nt5OVZXsjueNxFbw6Gn6DS38fi0XJRN-clmmf3S_41AM1u_W_Tb5ObXapJp61t3CFXXHWX3Ggvn_x1jxyDhdCwWF4F8W8K6SPm5LT2dLkAwukP8HaIjpVFI6Xv5tPX9LACHIx21NauoVW9pqvNwlGUfoW6FvfJl9n7z28_RN0VC5GRiVhHMmPewhAlDPi1KNLExAY17pyUNlVMaW4EyzXPlRSpECbXzMpcKFYUxnNu-QMyqurK7REqONNa2xgqcJCjpYWzhfcQDqyGrE0kY8K3zJem0x_HazAWZVhUkzAPaXkpka6yo2tMov6tZau_8Q_8G-zUHovq2eEB9EvZOWOpPFeOy6D1lnqwVaHSTGvjdZYUFpv6FE2ibI-i9jGgnIqwUgyT1DF5HhCooFHhFp1vatM05cfDr5cAHc8vA_o0AL3sQL4Gzozqzk4A8yjfNUBOBkgIFmZQvIdWvqWuKZOkYKnM0wQ-erK1_POLn_XFWCnuzatcvUFMzlG3VsRjsts6Sk8_Z3hDacLGRA5caNA_w5Lq9HtQORcSz2Dyhxe3-BHZgfS1CH_44wkZrVcb95hcNz_Xp83qSQgNvwGh92JC priority: 102 providerName: Public Library of Science |
| Title | The alternative reality of plant mitochondrial DNA: One ring does not rule them all |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31469821 https://www.proquest.com/docview/2291478422 https://www.proquest.com/docview/2283110960 https://pubmed.ncbi.nlm.nih.gov/PMC6742443 https://doaj.org/article/af3ae37085934f5ca6a45bbcfb529d62 http://dx.doi.org/10.1371/journal.pgen.1008373 |
| Volume | 15 |
| WOSCitedRecordID | wos000486222200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMKoxiExFNYHSd2wgvqYBWTRldtgMpTlPhjTCpJaVok_nvuHDcQNMEkXvJQ_2KlvvP5zj7_jpDnsUlilds4YNpCgJLDlCqiWAcJM8oOjYUp5Uhcj-Rkksxm6dRvuNU-rXJjE52h1pXCPfK9MExZJJMoDF8vvgVYNQpPV30JjS2yjUxlUY9s7x9MpicbW8zjpCmvEsc8kBDe-8tzXLI9L6uXCxAU5gpApMY7i5Pj8G8tdW8xr-qL3NA_syl_W57GN__3j90iN7xjSkeNJt0mV0x5h1xrSlX-uEtOQZ-oO1ovHVU4BWcTPXhaWbqYg3joV7ANYEtLjSpN305Gr-hxCThYG6muTE3LakWX67mhSBQLfc3vkY_jgw9v3gW-IEOgZChWgYyZ1bCgCQVWQKRRqIYKGfGMlDrKWV5wJVhS8CSXIhJCJQXTMhE5S1NlOdf8PumVVWl2CBWcFUWhh9CBAY8uSo1OrQXjoQvw8UTYJ3wjiUx5tnIsmjHP3BGchKilGZcM5Zd5-fVJ0L61aNg6_oHfRyG3WOTadj9Uy7PMT90stzw3XDpmuMiCZos8iotC2SIOU42f-gRVJGsurrYWIxsJd64MIW2fPHMI5NsoMaHnLF_XdXZ4_OkSoNPJZUAnHdALD7IVjJnK_U0LGHkk--ogdztIMC2q07yDWr8Zujr7pavw5kabL25-2jZjp5jJV5pqjZiEI8utGPbJg2bitMPPGdYzDVmfyM6U6sin21Kef3Gc6ELijU3-8O-f9YhcB4c3dWcCw13SWy3X5jG5qr6vzuvlgGzJmXTPZOANycDt0cBzPD0aYF7wFFqmh--nn38CNyR9ng |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL37DCYAaBeAqL48ROkBAqjGnVRofYQH0LiT_GpJKUpgXtn-Jv5M5JA0ET7GUPvNYXKz3f73wXn39HyOPIxJHKbOQxbSFByQBSeRhpL2ZGWd9YgJQjcd2Vo1E8HifvVsiP5V0YLKtc-kTnqHWp8Bv5RhAkLJRxGAQvp1897BqFp6vLFhq1WeyY4--QslUvhpuwvk-CYOvNwettr-kq4CkZiLknI2Y1eGWhwJRFEgbKV0jrZqTUYcaynCvB4pzHmRShECrOmZaxyFiSKMu55jDvOXIe_LjEEjI5bhM8HsV1M5co4p7kid9c1eOSbTSW8WwKZoGVCZAX8s5W6DoGtPtCbzopq5OC3j9rN3_bDLeu_m9qvEauNGE3HdQ4uU5WTHGDXKwbcR7fJPuAFuoKBwpHhE4hlMb8hJaWTidgfPQLeD7YKQqNgKWbo8FzuleAHOz8VJemokU5p7PFxFCkwYW5JrfIhzP5R7dJrygLs0qo4CzPc-3DBAbi1TAxOrEWXKPOIYIVQZ_w5cqnquFix5Ygk9QdMErIyWq9pGgvaWMvfeK1T01rLpJ_yL9Co2plkUnc_VDODtPGMaWZ5Znh0vHehRZwK7IwynNl8yhINL7qOppkWl_Lbf1hOhDu1BwS9j555CSQTaTAcqXDbFFV6XDv4ymE9kenEXrfEXraCNkSdKay5h4JaB6pzDqSax1JcJyqM7yKKFuqrkp_YQOeXKLn5OGH7TBOinWKhSkXKBNz5PAVfp_cqYHaqp8z7NYasD6RHQh31qc7Uhx9dozvQuJ9VH7376-1Ti5tH7zdTXeHo5175DKE9ok7_fDXSG8-W5j75IL6Nj-qZg-c26Lk01kD_CeSatBm |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFBAX3tBAoQsCcTKxvfaujYRQShoRtXKjFlBvxt5HqRTsECeg_jV-HTN-gVEFvfTANft5lYznm53Nzn5DyDNfB75MjG85ysAGJQFKpZ6vrMDR0tjaAKVKEdc9EUXB0VE4XSM_mrswWFbZxMQyUKtc4n_kA9cNHU8EnusOTF0WMR2N38y_WthBCk9am3YalYvs6tPvsH0rXk9G8K6fu-545_3bd1bdYcCSwuVLS_iOURChuQS35qHnSluixJsWQnmJk6RMcidIWZAI7nEug9RRIuCJE4bSMKYYzHuJrAtIMoBd69s70fSgWQeYH1StXXyfWYCw64t7TDiD2k9ezsFJsE4BdomsszCW_QPaVaI3n-XFWSnwn5Wcvy2N4xv_s1Fvkut1Qk6HFYNukTWd3SZXqhadp3fIIfCIliUFWSmRTiHJxp0LzQ2dz8At6ReIibCGZAqpTEfR8BXdzwAHOQFVuS5oli_pYjXTFAVyYa7ZXfLhQn7RPdLL8kxvEMqZk6apsmECDZmsF2oVGgNBU6WQ23K3T1jjBbGsVdqxWcgsLo8eBezWKrvE6Dtx7Tt9YrVPzSuVkn_gt9HBWixqjJcf5IvjuA5ZcWJYopkoFfE8A4zmieenqTSp74YKv-oWumdcXdhtI2U85OV5Omzl--RpiUCdkQyd6zhZFUU82f94DtBhdB7QQQf0ogaZHGwmk_qGCVgeRc46yM0OEkKq7AxvIOMa0xXxL57Akw2Tzh5-0g7jpFjBmOl8hZiAobovt_vkfkXa1vzMwT6urtMnokPnzvvpjmQnn0steC7wpip78PevtUWuAq_jvUm0-5Bcg5w_LI9F7E3SWy5W-hG5LL8tT4rF4zqGUfLpohn-E7TZ2oc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+alternative+reality+of+plant+mitochondrial+DNA%3A+One+ring+does+not+rule+them+all&rft.jtitle=PLoS+genetics&rft.au=Kozik%2C+Alexander&rft.au=Rowan%2C+Beth+A&rft.au=Lavelle%2C+Dean&rft.au=Berke%2C+Lidija&rft.date=2019-08-30&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pgen.1008373&rft.externalDBID=ISN&rft.externalDocID=A600424828 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |