The alternative reality of plant mitochondrial DNA: One ring does not rule them all

Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial research...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics Jg. 15; H. 8; S. e1008373
Hauptverfasser: Kozik, Alexander, Rowan, Beth A., Lavelle, Dean, Berke, Lidija, Schranz, M. Eric, Michelmore, Richard W., Christensen, Alan C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 30.08.2019
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7404, 1553-7390, 1553-7404
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.
AbstractList Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.
Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.
Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists that circular genome-sized molecules are the primary form of plant mitochondrial DNA, despite the understanding by plant mitochondrial researchers that this is an inaccurate and outdated concept. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative arrangements (isoforms). Most mitochondrial genomes have been assembled using methods unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. We characterized a comprehensive, complex set of isoforms within each species and compared genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms in our data, we infer that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other Lactuca species can be largely explained by rare recombination events that rearranged the structure. Our data demonstrate that representations of plant mitochondrial genomes as simple, circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms. Plant mitochondrial genomes are commonly depicted in research articles and textbooks as circular molecules that are the size of the genome. Although research on mitochondrial DNA (mtDNA) over the past few decades has revealed that genome-sized circles are exceedingly rare and that alternative forms of mtDNA are more common, many biologists still perceive circular maps as representing one or more physical chromosomes. This misconception can lead to biases in how mitochondrial genomes are assembled and misinterpretation of their evolutionary relationships, synteny, and histories. In this study, we present an assembly methodology that uses short- and long-read sequencing data to determine the mitochondrial genome structures of three lettuce species. We show that these mitochondrial genomes are fluid and dynamic, with multiple sequence arrangements of the genome coexisting within individuals of the same species. Differences in sequence arrangements between species can be explained by rare recombination events. Inspection of physical molecules of mtDNA reveals primarily non-circular forms. We demonstrate that plant mitochondrial genomes are a complex mixture of physical forms and sequence arrangements. Our data suggest that plant mitochondrial genomes should be presented as multiple sequence units showing their variable and dynamic connections, rather than as circles.
Audience Academic
Author Lavelle, Dean
Christensen, Alan C.
Schranz, M. Eric
Kozik, Alexander
Michelmore, Richard W.
Rowan, Beth A.
Berke, Lidija
AuthorAffiliation 1 Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
2 Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
3 School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America
University of Minnesota, UNITED STATES
AuthorAffiliation_xml – name: 2 Wageningen University & Research, PB Wageningen, Gelderland, The Netherlands
– name: 1 Genome Center and Department of Plant Sciences, University of California, Davis, California, United States of America
– name: 3 School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, United States of America
– name: University of Minnesota, UNITED STATES
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0001-6541-9329
  surname: Kozik
  fullname: Kozik, Alexander
– sequence: 2
  givenname: Beth A.
  orcidid: 0000-0001-7240-4889
  surname: Rowan
  fullname: Rowan, Beth A.
– sequence: 3
  givenname: Dean
  surname: Lavelle
  fullname: Lavelle, Dean
– sequence: 4
  givenname: Lidija
  orcidid: 0000-0003-3842-9462
  surname: Berke
  fullname: Berke, Lidija
– sequence: 5
  givenname: M. Eric
  orcidid: 0000-0001-6777-6565
  surname: Schranz
  fullname: Schranz, M. Eric
– sequence: 6
  givenname: Richard W.
  orcidid: 0000-0002-7512-592X
  surname: Michelmore
  fullname: Michelmore, Richard W.
– sequence: 7
  givenname: Alan C.
  orcidid: 0000-0002-1125-3172
  surname: Christensen
  fullname: Christensen, Alan C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31469821$$D View this record in MEDLINE/PubMed
BookMark eNqVk-9r1DAYgItM3Hb6H4gWBNEPdyZNmqT7IBzz18HYgZt-DWmathm55GzS4f57U68n1zFE6YeW9HmfN3nzvqfJkXVWJclzCBYQUfjuxvWdFWaxbZRdQAAYouhRcgLzHM0pBvjo4Ps4OfX-BgCUs4I-SY4RxKRgGTxJrq5blQoTVHQFfavSTgmjw13q6nRrhA3pRgcnW2erTguTfrhcnqVrGzltm7RyyqfWhbTrjUpDqzbRZZ4mj2thvHo2vmfJt08fr8-_zC_Wn1fny4u5pBkJc5rDuoIZIzLLclLgTALJICOK0goLKEokCWQlYoISTIhkJawoIwIWhawRqtAsebnzbo3zfKyH51lWQEwZzrJIrHZE5cQN33Z6I7o77oTmvxdc13DRBS2N4qJGQiEKWF4gXOdSEIHzspR1mWdFRQbX-zFbX25UJZUNnTAT6fSP1S1v3C0nFGcYoyh4Mwo696NXPvCN9lKZWGXl-mHfDEEICgIi-uoe-vDpRqoR8QDa1i7mlYOULwkAMSuLylmyeICKT6U2WsaeqnVcnwS8nQREJqifoRG993x19fU_2Mt_Z9ffp-zrA7aNPRla70wftLN-Cr44vJU_17Hv8Aic7QDZOe87VXOpgxg8sQzacAj4ME77AvNhnPg4TjEY3wve-_8a9gspJyB_
CitedBy_id crossref_primary_10_1186_s12864_024_10654_y
crossref_primary_10_1002_ece3_72097
crossref_primary_10_1111_tpj_15676
crossref_primary_10_1016_j_gene_2022_147081
crossref_primary_10_3389_fpls_2025_1620373
crossref_primary_10_1016_j_bbi_2022_04_023
crossref_primary_10_1080_23802359_2021_1886016
crossref_primary_10_1007_s11295_025_01707_8
crossref_primary_10_3389_fpls_2021_787443
crossref_primary_10_1007_s00299_024_03256_1
crossref_primary_10_1016_j_ygeno_2024_110966
crossref_primary_10_1093_g3journal_jkaf162
crossref_primary_10_1186_s12864_024_10680_w
crossref_primary_10_1186_s12870_023_04217_8
crossref_primary_10_1016_j_ympev_2020_106903
crossref_primary_10_32604_phyton_2024_050099
crossref_primary_10_3390_f14122372
crossref_primary_10_1038_s41598_022_18387_2
crossref_primary_10_1016_j_ympev_2021_107136
crossref_primary_10_1038_s42003_023_04659_8
crossref_primary_10_1016_j_ygeno_2025_111099
crossref_primary_10_1186_s12864_025_11372_9
crossref_primary_10_1186_s12864_023_09607_8
crossref_primary_10_1016_j_cub_2021_11_053
crossref_primary_10_1038_s41598_024_55016_6
crossref_primary_10_1007_s00425_021_03684_3
crossref_primary_10_3389_fpls_2023_1180417
crossref_primary_10_1186_s12859_023_05385_y
crossref_primary_10_1007_s00425_024_04386_2
crossref_primary_10_7717_peerj_14114
crossref_primary_10_1186_s12870_025_07074_9
crossref_primary_10_3389_fpls_2025_1546449
crossref_primary_10_1016_j_gene_2024_148869
crossref_primary_10_3389_fpls_2022_988368
crossref_primary_10_12688_f1000research_21490_1
crossref_primary_10_1016_j_gene_2024_149031
crossref_primary_10_1080_23802359_2024_2387251
crossref_primary_10_1093_hr_uhae023
crossref_primary_10_1371_journal_pcbi_1008597
crossref_primary_10_1016_j_ympev_2023_107711
crossref_primary_10_1186_s12864_024_10457_1
crossref_primary_10_1038_s41598_021_94068_w
crossref_primary_10_3389_fpls_2023_1124536
crossref_primary_10_1080_23802359_2023_2238357
crossref_primary_10_1111_jse_12655
crossref_primary_10_1016_j_jia_2025_02_018
crossref_primary_10_3390_ijms21134664
crossref_primary_10_1016_j_ygeno_2024_110935
crossref_primary_10_1007_s11816_023_00841_w
crossref_primary_10_1186_s12915_022_01383_3
crossref_primary_10_1093_aob_mcad108
crossref_primary_10_1186_s12864_022_08892_z
crossref_primary_10_1186_s12864_024_10331_0
crossref_primary_10_1111_tpj_15522
crossref_primary_10_1186_s12870_023_04054_9
crossref_primary_10_1016_j_ijbiomac_2024_132795
crossref_primary_10_3389_fpls_2024_1332460
crossref_primary_10_1016_j_gde_2023_102053
crossref_primary_10_1016_j_ijbiomac_2024_136357
crossref_primary_10_1186_s12915_021_01218_7
crossref_primary_10_1093_bib_bbac522
crossref_primary_10_3389_fpls_2023_1301164
crossref_primary_10_1186_s12870_024_05673_6
crossref_primary_10_1016_j_indcrop_2025_121817
crossref_primary_10_1186_s12864_024_10841_x
crossref_primary_10_1016_j_gene_2023_147427
crossref_primary_10_7554_eLife_76557
crossref_primary_10_1111_nph_18334
crossref_primary_10_1111_tpj_15851
crossref_primary_10_1111_tpj_15976
crossref_primary_10_1186_s12870_024_05319_7
crossref_primary_10_3389_fpls_2022_978417
crossref_primary_10_3389_fpls_2025_1599596
crossref_primary_10_1016_j_tig_2022_10_005
crossref_primary_10_1002_imt2_70064
crossref_primary_10_1007_s00425_024_04449_4
crossref_primary_10_1038_s41598_025_86411_2
crossref_primary_10_1038_s41598_025_06816_x
crossref_primary_10_1186_s13059_025_03717_0
crossref_primary_10_1186_s12870_025_06771_9
crossref_primary_10_1186_s12864_021_07490_9
crossref_primary_10_1186_s12870_025_06839_6
crossref_primary_10_1186_s12870_024_05761_7
crossref_primary_10_1002_pld3_388
crossref_primary_10_1007_s11676_025_01869_0
crossref_primary_10_3389_fpls_2023_1266797
crossref_primary_10_1371_journal_pone_0288986
crossref_primary_10_1093_gigascience_giac028
crossref_primary_10_3389_fpls_2023_1117002
crossref_primary_10_1038_s41598_022_13706_z
crossref_primary_10_1038_s41598_020_77492_2
crossref_primary_10_1016_j_gene_2022_146391
crossref_primary_10_1002_ece3_71165
crossref_primary_10_3389_fpls_2024_1396389
crossref_primary_10_3389_fpls_2021_697136
crossref_primary_10_3389_fpls_2023_1261012
crossref_primary_10_1186_s12870_024_05333_9
crossref_primary_10_1007_s10142_024_01511_y
crossref_primary_10_1038_s41598_022_24327_x
crossref_primary_10_1038_s41598_025_93762_3
crossref_primary_10_1093_g3journal_jkac065
crossref_primary_10_1016_j_ijbiomac_2023_126257
crossref_primary_10_1007_s10142_021_00815_7
crossref_primary_10_1080_23802359_2023_2172974
crossref_primary_10_1093_jxb_eraa149
crossref_primary_10_1186_s12870_025_07072_x
crossref_primary_10_1186_s12870_023_04493_4
crossref_primary_10_1186_s12864_022_09046_x
crossref_primary_10_48130_gcomm_0025_0018
crossref_primary_10_1016_j_heliyon_2022_e09870
crossref_primary_10_1186_s12864_024_10914_x
crossref_primary_10_3389_fgene_2023_1289811
crossref_primary_10_1371_journal_pone_0286628
crossref_primary_10_3389_fpls_2022_1031769
crossref_primary_10_7554_eLife_95407
crossref_primary_10_3389_fpls_2025_1556332
crossref_primary_10_1007_s10681_023_03207_z
crossref_primary_10_1186_s12870_021_03416_5
crossref_primary_10_1016_j_mito_2021_02_009
crossref_primary_10_1016_j_ygeno_2023_110740
crossref_primary_10_1139_cjps_2023_0164
crossref_primary_10_3389_fpls_2024_1492723
crossref_primary_10_3389_fpls_2023_1140043
crossref_primary_10_1111_1755_0998_13584
crossref_primary_10_1186_s12864_025_11474_4
crossref_primary_10_1186_s12870_024_04978_w
crossref_primary_10_1002_ajb2_16084
crossref_primary_10_3389_fpls_2023_1183406
crossref_primary_10_1186_s12864_022_08983_x
crossref_primary_10_1016_j_sjbs_2020_12_008
crossref_primary_10_1002_csc2_21147
crossref_primary_10_1007_s00299_023_03102_w
crossref_primary_10_1016_j_ympev_2024_108253
crossref_primary_10_1007_s00299_024_03277_w
crossref_primary_10_1534_g3_119_401023
crossref_primary_10_3390_ijms22189713
crossref_primary_10_1007_s00299_023_02994_y
crossref_primary_10_1007_s11676_022_01511_3
crossref_primary_10_1007_s10722_020_00881_z
crossref_primary_10_1186_s12915_025_02115_z
crossref_primary_10_3389_fgene_2022_1050040
crossref_primary_10_3389_fpls_2025_1568698
crossref_primary_10_1007_s10142_023_01223_9
crossref_primary_10_1093_nar_gkae040
crossref_primary_10_1186_s12870_022_03665_y
crossref_primary_10_1093_jhered_esab077
crossref_primary_10_1186_s12864_025_11210_y
crossref_primary_10_3389_fpls_2024_1475064
crossref_primary_10_3389_fpls_2024_1234643
crossref_primary_10_1016_j_gene_2024_148416
crossref_primary_10_3390_f15050835
crossref_primary_10_1007_s10709_025_00241_8
crossref_primary_10_1177_21582440251364954
crossref_primary_10_3389_fpls_2021_762195
crossref_primary_10_1016_j_gene_2023_147847
crossref_primary_10_1186_s12870_025_06809_y
crossref_primary_10_3389_fpls_2025_1604404
crossref_primary_10_1186_s12870_022_03492_1
crossref_primary_10_1186_s12870_024_05618_z
crossref_primary_10_1093_jxb_erac250
crossref_primary_10_1186_s12864_024_10768_3
crossref_primary_10_1186_s13059_025_03676_6
crossref_primary_10_1016_j_molp_2022_03_002
crossref_primary_10_1186_s12864_024_10026_6
crossref_primary_10_1186_s12870_023_04159_1
crossref_primary_10_1186_s12864_021_08105_z
crossref_primary_10_1016_j_ygeno_2024_110897
crossref_primary_10_1093_molbev_msaf082
crossref_primary_10_1186_s12870_025_06461_6
crossref_primary_10_1016_j_gene_2022_146342
crossref_primary_10_3389_fgene_2023_1329060
crossref_primary_10_1016_j_scienta_2023_112637
crossref_primary_10_1016_j_tplants_2023_12_014
crossref_primary_10_1186_s12870_023_04618_9
crossref_primary_10_1111_jpy_70080
crossref_primary_10_1186_s12864_023_09573_1
crossref_primary_10_1007_s00425_025_04698_x
crossref_primary_10_1186_s12870_024_05558_8
crossref_primary_10_3389_fpls_2024_1367299
crossref_primary_10_1016_j_gene_2022_146904
crossref_primary_10_1186_s12870_025_06510_0
crossref_primary_10_1186_s12864_022_08993_9
crossref_primary_10_3389_fgene_2024_1395805
crossref_primary_10_1186_s12870_022_03669_8
crossref_primary_10_3389_fpls_2025_1637726
crossref_primary_10_3389_fpls_2024_1362045
crossref_primary_10_17129_botsci_3667
crossref_primary_10_1097_HM9_0000000000000078
crossref_primary_10_1186_s12864_020_07061_4
crossref_primary_10_1111_jse_12912
crossref_primary_10_3390_ijms22041811
crossref_primary_10_1093_nargab_lqac027
crossref_primary_10_1186_s12864_025_11892_4
crossref_primary_10_1186_s12870_024_05780_4
crossref_primary_10_1186_s12870_025_06341_z
crossref_primary_10_1186_s12870_025_07132_2
crossref_primary_10_1186_s12870_024_05331_x
crossref_primary_10_1186_s12870_024_05969_7
crossref_primary_10_1186_s12870_025_06801_6
crossref_primary_10_1111_1755_0998_70025
crossref_primary_10_1016_j_indcrop_2024_119382
crossref_primary_10_1007_s10142_025_01596_z
crossref_primary_10_1186_s12864_024_10247_9
crossref_primary_10_3389_fpls_2022_914635
crossref_primary_10_1186_s12870_024_05557_9
crossref_primary_10_3389_fpls_2022_1051221
crossref_primary_10_1002_tpg2_20117
crossref_primary_10_1186_s12864_022_08383_1
crossref_primary_10_1111_pbi_70249
crossref_primary_10_3389_fgene_2020_576124
Cites_doi 10.1101/gr.215087.116
10.1016/S1360-1385(97)01148-5
10.1016/j.tplants.2015.08.002
10.1038/301725a0
10.1128/genomeA.00981-16
10.1007/s00438-002-0767-1
10.1093/molbev/msw024
10.1093/gbe/evs042
10.1016/j.mito.2014.02.004
10.1016/j.tplants.2018.05.005
10.1371/journal.pbio.1001241
10.1007/BF00331848
10.1016/j.ympev.2008.09.009
10.1111/j.1469-8137.2010.03195.x
10.1006/jmbi.1996.0048
10.1002/j.1460-2075.1985.tb03749.x
10.1093/nar/gkg795
10.1093/genetics/118.2.341
10.1073/pnas.042694899
10.1016/j.freeradbiomed.2016.03.033
10.1006/jmbi.2001.4783
10.1007/BF02143500
10.1016/0092-8674(81)90187-2
10.1371/journal.pone.0180484
10.1007/BF02670468
10.1038/307437a0
10.1007/s002940050532
10.1038/nmeth.4035
10.1186/1741-7007-9-64
10.1073/pnas.84.24.9054
10.1016/j.jmb.2005.11.070
10.1038/ncomms14953
10.1111/nph.14158
10.1186/1471-2229-12-61
10.1038/ng.3565
10.1016/j.tplants.2017.10.001
10.1111/nph.12395
10.1093/nar/gki783
10.1104/pp.111.173849
10.1002/9781119312994.apr0544
10.1093/nar/14.24.9755
10.1371/journal.pcbi.1005944
10.1371/journal.pone.0177606
10.1038/srep31533
10.1038/90058
10.1111/j.1365-313X.2012.05097.x
10.1186/1741-7007-11-29
10.1007/s00425-012-1802-z
10.1101/gr.9.9.868
10.1073/pnas.80.13.4055
10.1534/genetics.107.073312
10.1038/281401a0
10.1126/science.1246275
10.1105/tpc.106.048355
10.1093/molbev/msn226
10.1073/pnas.1504491112
10.1105/tpc.109.071399
10.1104/pp.112.194720
10.1093/bioinformatics/btp698
10.1073/pnas.97.13.6960
10.1016/S0074-7696(04)38002-2
10.1101/gr.074492.107
10.1038/268365a0
10.1046/j.1365-313X.1994.06030447.x
10.1186/s12870-017-0992-8
10.1093/nar/12.24.9249
10.2307/3870324
10.1007/s00438-004-1058-9
10.1111/nph.14530
10.1007/s10059-011-0036-4
10.1093/gbe/evw003
10.1007/BF00020088
10.1111/nph.14361
10.1534/genetics.109.108514
10.1186/1471-2229-14-45
10.1007/BF00334522
10.1016/S1055-7903(03)00194-5
10.1007/BF00336777
10.3389/fpls.2015.00883
10.1006/jmbi.1997.1581
10.1007/s00294-004-0549-x
10.1073/pnas.0408302101
10.1007/s00122-008-0790-7
10.1016/B978-0-12-394279-1.00009-0
10.1242/jcs.88.4.431
10.1016/j.mito.2007.10.002
10.1093/nar/28.13.2571
10.1038/ng0197-57
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Kozik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Kozik et al 2019 Kozik et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Kozik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Kozik et al 2019 Kozik et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1008373
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE




Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate The alternative reality of plant mitochondrial DNA
EISSN 1553-7404
ExternalDocumentID 2291478422
oai_doaj_org_article_af3ae37085934f5ca6a45bbcfb529d62
PMC6742443
A600424828
31469821
10_1371_journal_pgen_1008373
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
United States--US
Netherlands
California
GeographicLocations_xml – name: United States
– name: Netherlands
– name: United States--US
– name: California
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: MCB-1413152
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
M~E
ID FETCH-LOGICAL-c726t-751fd1286c2256942c0c8186e77d4a1ab3c618b38a76466c8b1d786a199cf33d3
IEDL.DBID BENPR
ISICitedReferencesCount 288
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486222200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:12:51 EST 2021
Fri Oct 03 12:45:18 EDT 2025
Tue Nov 04 01:57:45 EST 2025
Sun Nov 09 10:59:55 EST 2025
Sat Nov 29 14:53:20 EST 2025
Tue Nov 11 10:34:12 EST 2025
Tue Nov 04 17:20:08 EST 2025
Thu Nov 13 15:09:09 EST 2025
Thu Nov 13 15:42:24 EST 2025
Thu Nov 13 15:33:07 EST 2025
Thu May 22 21:23:33 EDT 2025
Thu Apr 03 07:08:13 EDT 2025
Tue Nov 18 22:09:42 EST 2025
Sat Nov 29 04:23:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-751fd1286c2256942c0c8186e77d4a1ab3c618b38a76466c8b1d786a199cf33d3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Genetwister Technologies B.V., Wageningen, The Netherlands
The authors have declared that no competing interests exist.
ORCID 0000-0001-6541-9329
0000-0001-7240-4889
0000-0001-6777-6565
0000-0002-1125-3172
0000-0003-3842-9462
0000-0002-7512-592X
OpenAccessLink https://www.proquest.com/docview/2291478422?pq-origsite=%requestingapplication%
PMID 31469821
PQID 2291478422
PQPubID 1436339
ParticipantIDs plos_journals_2291478422
doaj_primary_oai_doaj_org_article_af3ae37085934f5ca6a45bbcfb529d62
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6742443
proquest_miscellaneous_2283110960
proquest_journals_2291478422
gale_infotracmisc_A600424828
gale_infotracacademiconefile_A600424828
gale_incontextgauss_ISR_A600424828
gale_incontextgauss_ISN_A600424828
gale_incontextgauss_IOV_A600424828
gale_healthsolutions_A600424828
pubmed_primary_31469821
crossref_citationtrail_10_1371_journal_pgen_1008373
crossref_primary_10_1371_journal_pgen_1008373
PublicationCentury 2000
PublicationDate 20190830
PublicationDateYYYYMMDD 2019-08-30
PublicationDate_xml – month: 8
  year: 2019
  text: 20190830
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P McDermott (pgen.1008373.ref060) 2008; 117
S Backert (pgen.1008373.ref006) 2000; 37
EL Wynn (pgen.1008373.ref025) 2019; 9
A Sakai (pgen.1008373.ref070) 2004; 238
BL Ward (pgen.1008373.ref003) 1981; 25
AJ Bendich (pgen.1008373.ref004) 1993; 24
DR Zerbino (pgen.1008373.ref089) 2008; 18
M Klein (pgen.1008373.ref045) 1994; 6
DJ Oldenburg (pgen.1008373.ref030) 1998; 276
JA Siqueira (pgen.1008373.ref017) 2018; 23
JD Palmer (pgen.1008373.ref018) 2000; 97
JD Palmer (pgen.1008373.ref057) 1983; 301
OM Vargas (pgen.1008373.ref062) 2017; 214
S Koren (pgen.1008373.ref076) 2017; 27
MV Sanchez-Puerta (pgen.1008373.ref048) 2017; 214
JR Shearman (pgen.1008373.ref043) 2014; 14
VV Goremykin (pgen.1008373.ref064) 2009; 26
H Handa (pgen.1008373.ref083) 2008; 8
DJ Oldenburg (pgen.1008373.ref005) 1996; 8
DJ Oldenburg (pgen.1008373.ref031) 2001; 310
MP Arrieta-Montiel (pgen.1008373.ref050) 2009; 183
DR Pring (pgen.1008373.ref058) 1982; 186
M Unseld (pgen.1008373.ref046) 1997; 15
CS Levings (pgen.1008373.ref056) 1983; 80
H Dai (pgen.1008373.ref068) 2005; 33
JM Gualberto (pgen.1008373.ref071) 2014; 19
C-S Chin (pgen.1008373.ref075) 2016; 13
Y-J Kim (pgen.1008373.ref016) 2018; 23
JD Palmer (pgen.1008373.ref026) 1984; 307
X Huang (pgen.1008373.ref090) 1999; 9
G Belliard (pgen.1008373.ref002) 1979; 281
M Iorizzo (pgen.1008373.ref065) 2012; 12
AO Richardson (pgen.1008373.ref037) 2013; 11
JN Spelbrink (pgen.1008373.ref067) 2001; Vol. 28
H Li (pgen.1008373.ref091) 2010; 26
JP Mower (pgen.1008373.ref033) 2012; 4
M Paillard (pgen.1008373.ref055) 1985; 4
JD Palmer (pgen.1008373.ref028) 1986; 14
DB Sloan (pgen.1008373.ref011) 2012; 10
LW Cole (pgen.1008373.ref022) 2018
M Iorizzo (pgen.1008373.ref084) 2016; 48
J-S Parent (pgen.1008373.ref080) 2011; 156
M Miller-Messmer (pgen.1008373.ref081) 2012; 159
JR Shearman (pgen.1008373.ref047) 2016; 6
E Skippington (pgen.1008373.ref012) 2015; 112
DJ Oldenburg (pgen.1008373.ref078) 2013; 237
Y Notsu (pgen.1008373.ref019) 2002; 268
G Petersen (pgen.1008373.ref013) 2017; 12
T Kubo (pgen.1008373.ref039) 2000; 28
S Backert (pgen.1008373.ref044) 1997; 2
V Shedge (pgen.1008373.ref049) 2007; 19
DW Rice (pgen.1008373.ref042) 2013; 342
CJ Grassa (pgen.1008373.ref063) 2016; 4
KL Adams (pgen.1008373.ref009) 2002; 99
N Cheng (pgen.1008373.ref034) 2017; 213
W Guo (pgen.1008373.ref021) 2016; 33
L Kovar (pgen.1008373.ref074) 2018
L Cappadocia (pgen.1008373.ref079) 2010; 22
K Kühn (pgen.1008373.ref051) 2012; 63
KL Adams (pgen.1008373.ref010) 2003; 29
F Quetier (pgen.1008373.ref001) 1977; 268
DB Sloan (pgen.1008373.ref007) 2013; 200
E Skippington (pgen.1008373.ref024) 2017; 17
Y Cho (pgen.1008373.ref020) 2004; 101
JD Palmer (pgen.1008373.ref072) 1988; 118
H Handa (pgen.1008373.ref054) 2003; 31
Y-S Lo (pgen.1008373.ref069) 2011; 31
AJ Bendich (pgen.1008373.ref077) 1990; 17
I Miyakawa (pgen.1008373.ref066) 1987; 88
S Reyes-Chin-Wo (pgen.1008373.ref088) 2017; 8
JD Palmer (pgen.1008373.ref038) 1988; 28
S Janicka (pgen.1008373.ref052) 2012; 72
JI Davila (pgen.1008373.ref082) 2011; 9
A Christensen (pgen.1008373.ref023) 2018
G Drouin (pgen.1008373.ref036) 2008; 49
SR Silva (pgen.1008373.ref073) 2017; 12
KH Wolfe (pgen.1008373.ref035) 1987; 84
M Satoh (pgen.1008373.ref040) 2004; 272
DJ Oldenburg (pgen.1008373.ref008) 2015; 6
A Maréchal (pgen.1008373.ref041) 2010; 186
S Chang (pgen.1008373.ref087) 1993; 11
DM Lonsdale (pgen.1008373.ref027) 1984; 12
M Manchekar (pgen.1008373.ref032) 2006; 356
C Wallet (pgen.1008373.ref053) 2015; 27
JM Warren (pgen.1008373.ref061) 2016; 8
KL Liberatore (pgen.1008373.ref015) 2016; 100
SO Rogers (pgen.1008373.ref086) 1985; 5
MM Robison (pgen.1008373.ref059) 2005; 47
P Lehwark (pgen.1008373.ref092) 2018
O Van Aken (pgen.1008373.ref014) 2015; 20
AJ Bendich (pgen.1008373.ref029) 1996; 255
JO Allen (pgen.1008373.ref085) 2007; 177
G Marçais (pgen.1008373.ref093) 2018; 14
References_xml – volume: 27
  start-page: 722
  issue: 5
  year: 2017
  ident: pgen.1008373.ref076
  article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation
  publication-title: Genome Res
  doi: 10.1101/gr.215087.116
– volume: 2
  start-page: 477
  issue: 12
  year: 1997
  ident: pgen.1008373.ref044
  article-title: The mystery of the rings: structure and replication of mitochondrial genomes from higher plants
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(97)01148-5
– volume: 20
  start-page: 754
  issue: 11
  year: 2015
  ident: pgen.1008373.ref014
  article-title: Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2015.08.002
– volume: 301
  start-page: 301725a0
  issue: 5902
  year: 1983
  ident: pgen.1008373.ref057
  article-title: An unusual mitochondrial DNA plasmid in the genus Brassica
  publication-title: Nature
  doi: 10.1038/301725a0
– year: 2018
  ident: pgen.1008373.ref074
  article-title: PacBio-based mitochondrial genome assembly of Leucaena trichandra (Leguminosae) and an intrageneric assessment of mitochondrial RNA editing
  publication-title: Genome Biol Evol
– volume: 4
  issue: 5
  year: 2016
  ident: pgen.1008373.ref063
  article-title: Complete Mitochondrial Genome Sequence of Sunflower (Helianthus annuus L.)
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00981-16
– volume: 268
  start-page: 434
  issue: 4
  year: 2002
  ident: pgen.1008373.ref019
  article-title: The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-002-0767-1
– volume: 33
  start-page: 1448
  issue: 6
  year: 2016
  ident: pgen.1008373.ref021
  article-title: Ginkgo and Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw024
– volume: 4
  start-page: 670
  issue: 5
  year: 2012
  ident: pgen.1008373.ref033
  article-title: Evidence against equimolarity of large repeat arrangements and a predominant master circle structure of the mitochondrial genome from a monkeyflower (Mimulus guttatus) lineage with cryptic CMS
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evs042
– volume: 19
  start-page: 323
  issue: Pt B
  year: 2014
  ident: pgen.1008373.ref071
  article-title: DNA-binding proteins in plant mitochondria: implications for transcription
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2014.02.004
– volume: 23
  start-page: 731
  issue: 8
  year: 2018
  ident: pgen.1008373.ref017
  article-title: Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2018.05.005
– year: 2018
  ident: pgen.1008373.ref092
  article-title: GB2sequin—A file converter preparing custom GenBank files for database submission
  publication-title: Genomics
– volume: 10
  start-page: e1001241
  issue: 1
  year: 2012
  ident: pgen.1008373.ref011
  article-title: Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001241
– volume: 186
  start-page: 180
  issue: 2
  year: 1982
  ident: pgen.1008373.ref058
  article-title: Plasmid-like DNAs associated with mitochondria of cytoplasmic male-sterile Sorghum
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00331848
– volume: 49
  start-page: 827
  issue: 3
  year: 2008
  ident: pgen.1008373.ref036
  article-title: Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2008.09.009
– volume: 186
  start-page: 299
  issue: 2
  year: 2010
  ident: pgen.1008373.ref041
  article-title: Recombination and the maintenance of plant organelle genome stability
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2010.03195.x
– volume: 255
  start-page: 564
  issue: 4
  year: 1996
  ident: pgen.1008373.ref029
  article-title: Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0048
– volume: 4
  start-page: 1125
  issue: 5
  year: 1985
  ident: pgen.1008373.ref055
  article-title: Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1985.tb03749.x
– volume: 31
  start-page: 5907
  issue: 20
  year: 2003
  ident: pgen.1008373.ref054
  article-title: The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg795
– volume: 118
  start-page: 341
  issue: 2
  year: 1988
  ident: pgen.1008373.ref072
  article-title: Intraspecific variation and multicircularity in Brassica mitochondrial DNAs
  publication-title: Genetics
  doi: 10.1093/genetics/118.2.341
– volume: 99
  start-page: 9905
  issue: 15
  year: 2002
  ident: pgen.1008373.ref009
  article-title: Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.042694899
– volume: 100
  start-page: 238
  year: 2016
  ident: pgen.1008373.ref015
  article-title: The role of mitochondria in plant development and stress tolerance
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2016.03.033
– volume: 310
  start-page: 549
  issue: 3
  year: 2001
  ident: pgen.1008373.ref031
  article-title: Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4783
– volume: 28
  start-page: 87
  issue: 1
  year: 1988
  ident: pgen.1008373.ref038
  article-title: Plant mitochondrial DNA evolved rapidly in structure, but slowly in sequence
  publication-title: Journal of Molecular Evolution
  doi: 10.1007/BF02143500
– volume: 25
  start-page: 793
  issue: 3
  year: 1981
  ident: pgen.1008373.ref003
  article-title: The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae)
  publication-title: Cell
  doi: 10.1016/0092-8674(81)90187-2
– volume: 12
  start-page: e0180484
  issue: 7
  year: 2017
  ident: pgen.1008373.ref073
  article-title: The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180484
– volume: 11
  start-page: 113
  issue: 2
  year: 1993
  ident: pgen.1008373.ref087
  article-title: A Simple and Efficient Method for Isolating RNA from Pine Trees
  publication-title: Plant Molecular Biology Reporter
  doi: 10.1007/BF02670468
– volume: 307
  start-page: 437
  issue: 5950
  year: 1984
  ident: pgen.1008373.ref026
  article-title: Tripartite structure of the Brassica campestris mitochondrial genome
  publication-title: Nature
  doi: 10.1038/307437a0
– volume: 37
  start-page: 304
  issue: 5
  year: 2000
  ident: pgen.1008373.ref006
  article-title: Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.)
  publication-title: Curr Genet
  doi: 10.1007/s002940050532
– volume: 13
  start-page: 1050
  issue: 12
  year: 2016
  ident: pgen.1008373.ref075
  article-title: Phased diploid genome assembly with single-molecule real-time sequencing
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4035
– volume: 9
  start-page: 64
  year: 2011
  ident: pgen.1008373.ref082
  article-title: Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-9-64
– volume: 84
  start-page: 9054
  issue: 24
  year: 1987
  ident: pgen.1008373.ref035
  article-title: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.24.9054
– volume: 356
  start-page: 288
  issue: 2
  year: 2006
  ident: pgen.1008373.ref032
  article-title: DNA recombination activity in soybean mitochondria
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.11.070
– volume: 8
  start-page: 14953
  year: 2017
  ident: pgen.1008373.ref088
  article-title: Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce
  publication-title: Nat Commun
  doi: 10.1038/ncomms14953
– volume: 213
  start-page: 751
  issue: 2
  year: 2017
  ident: pgen.1008373.ref034
  article-title: Correlation between mtDNA complexity and mtDNA replication mode in developing cotyledon mitochondria during mung bean seed germination
  publication-title: New Phytol
  doi: 10.1111/nph.14158
– volume: 12
  start-page: 61
  year: 2012
  ident: pgen.1008373.ref065
  article-title: De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-12-61
– volume: 48
  start-page: 657
  issue: 6
  year: 2016
  ident: pgen.1008373.ref084
  article-title: A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution
  publication-title: Nat Genet
  doi: 10.1038/ng.3565
– volume: 23
  start-page: 53
  issue: 1
  year: 2018
  ident: pgen.1008373.ref016
  article-title: Molecular Control of Male Fertility for Crop Hybrid Breeding
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.10.001
– volume: 200
  start-page: 978
  issue: 4
  year: 2013
  ident: pgen.1008373.ref007
  article-title: One ring to rule them all? Genome sequencing provides new insights into the “master circle” model of plant mitochondrial DNA structure
  publication-title: New Phytol
  doi: 10.1111/nph.12395
– volume: 33
  start-page: 4725
  issue: 15
  year: 2005
  ident: pgen.1008373.ref068
  article-title: Structural and functional characterizations of mung bean mitochondrial nucleoids
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki783
– volume: 156
  start-page: 254
  issue: 1
  year: 2011
  ident: pgen.1008373.ref080
  article-title: Divergent roles for the two PolI-like organelle DNA polymerases of Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.173849
– start-page: 11
  volume-title: Annual Plant Reviews online
  year: 2018
  ident: pgen.1008373.ref023
  doi: 10.1002/9781119312994.apr0544
– volume: 14
  start-page: 9755
  issue: 24
  year: 1986
  ident: pgen.1008373.ref028
  article-title: Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/14.24.9755
– volume: 14
  start-page: e1005944
  issue: 1
  year: 2018
  ident: pgen.1008373.ref093
  article-title: MUMmer4: A fast and versatile genome alignment system
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005944
– volume: 12
  start-page: e0177606
  issue: 5
  year: 2017
  ident: pgen.1008373.ref013
  article-title: Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177606
– volume: 6
  start-page: 31533
  year: 2016
  ident: pgen.1008373.ref047
  article-title: The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads
  publication-title: Sci Rep
  doi: 10.1038/srep31533
– volume: Vol. 28
  start-page: 223
  year: 2001
  ident: pgen.1008373.ref067
  article-title: Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria
  publication-title: Nature Genetics
  doi: 10.1038/90058
– volume: 72
  start-page: 423
  issue: 3
  year: 2012
  ident: pgen.1008373.ref052
  article-title: A RAD52-like single-stranded DNA binding protein affects mitochondrial DNA repair by recombination
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2012.05097.x
– volume: 11
  start-page: 29
  issue: 1
  year: 2013
  ident: pgen.1008373.ref037
  article-title: The “fossilized” mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-11-29
– volume: 237
  start-page: 603
  issue: 2
  year: 2013
  ident: pgen.1008373.ref078
  article-title: The amount and integrity of mtDNA in maize decline with development
  publication-title: Planta
  doi: 10.1007/s00425-012-1802-z
– volume: 9
  start-page: 868
  issue: 9
  year: 1999
  ident: pgen.1008373.ref090
  article-title: CAP3: A DNA sequence assembly program
  publication-title: Genome Res
  doi: 10.1101/gr.9.9.868
– volume: 9
  start-page: 549
  issue: 2
  year: 2019
  ident: pgen.1008373.ref025
  article-title: Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification
  publication-title: Incidence and Evolution. G3
– volume: 80
  start-page: 4055
  issue: 13
  year: 1983
  ident: pgen.1008373.ref056
  article-title: Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.80.13.4055
– volume: 177
  start-page: 1173
  issue: 2
  year: 2007
  ident: pgen.1008373.ref085
  article-title: Comparisons among two fertile and three male-sterile mitochondrial genomes of maize
  publication-title: Genetics
  doi: 10.1534/genetics.107.073312
– volume: 281
  start-page: 401
  issue: 5730
  year: 1979
  ident: pgen.1008373.ref002
  article-title: Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion
  publication-title: Nature
  doi: 10.1038/281401a0
– year: 2018
  ident: pgen.1008373.ref022
  article-title: High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants
  publication-title: Mol Biol Evol
– volume: 342
  start-page: 1468
  issue: 6165
  year: 2013
  ident: pgen.1008373.ref042
  article-title: Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella
  publication-title: Science
  doi: 10.1126/science.1246275
– volume: 19
  start-page: 1251
  issue: 4
  year: 2007
  ident: pgen.1008373.ref049
  article-title: Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048355
– volume: 26
  start-page: 99
  issue: 1
  year: 2009
  ident: pgen.1008373.ref064
  article-title: Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn226
– volume: 112
  start-page: E3515
  issue: 27
  year: 2015
  ident: pgen.1008373.ref012
  article-title: Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1504491112
– volume: 22
  start-page: 1849
  issue: 6
  year: 2010
  ident: pgen.1008373.ref079
  article-title: Crystal structures of DNA-Whirly complexes and their role in Arabidopsis organelle genome repair
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.071399
– volume: 159
  start-page: 211
  issue: 1
  year: 2012
  ident: pgen.1008373.ref081
  article-title: RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.194720
– volume: 26
  start-page: 589
  issue: 5
  year: 2010
  ident: pgen.1008373.ref091
  article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– volume: 97
  start-page: 6960
  issue: 13
  year: 2000
  ident: pgen.1008373.ref018
  article-title: Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.13.6960
– volume: 238
  start-page: 59
  year: 2004
  ident: pgen.1008373.ref070
  article-title: Organelle nuclei in higher plants: structure, composition, function, and evolution
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(04)38002-2
– volume: 18
  start-page: 821
  issue: 5
  year: 2008
  ident: pgen.1008373.ref089
  article-title: Velvet: algorithms for de novo short read assembly using de Bruijn graphs
  publication-title: Genome Res
  doi: 10.1101/gr.074492.107
– volume: 27
  start-page: 2907
  issue: 10
  year: 2015
  ident: pgen.1008373.ref053
  article-title: The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis
  publication-title: Plant Cell
– volume: 268
  start-page: 365
  issue: 5618
  year: 1977
  ident: pgen.1008373.ref001
  article-title: Heterogeneous population of mitochondrial DNA molecules in higher plants
  publication-title: Nature
  doi: 10.1038/268365a0
– volume: 6
  start-page: 447
  issue: 3
  year: 1994
  ident: pgen.1008373.ref045
  article-title: Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1994.06030447.x
– volume: 17
  start-page: 49
  issue: 1
  year: 2017
  ident: pgen.1008373.ref024
  article-title: Comparative mitogenomics indicates respiratory competence in parasitic Viscum despite loss of complex I and extreme sequence divergence, and reveals horizontal gene transfer and remarkable variation in genome size
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-017-0992-8
– volume: 12
  start-page: 9249
  issue: 24
  year: 1984
  ident: pgen.1008373.ref027
  article-title: The physical map and organisatlon of the mitochondrial genome from the fertile cytoplasm of maize
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/12.24.9249
– volume: 8
  start-page: 447
  issue: 3
  year: 1996
  ident: pgen.1008373.ref005
  article-title: Size and Structure of Replicating Mitochondrial DNA in Cultured Tobacco Cells
  publication-title: Plant Cell
  doi: 10.2307/3870324
– volume: 272
  start-page: 247
  issue: 3
  year: 2004
  ident: pgen.1008373.ref040
  article-title: The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-004-1058-9
– volume: 214
  start-page: 1736
  issue: 4
  year: 2017
  ident: pgen.1008373.ref062
  article-title: Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium)
  publication-title: New Phytol
  doi: 10.1111/nph.14530
– volume: 31
  start-page: 217
  issue: 3
  year: 2011
  ident: pgen.1008373.ref069
  article-title: Characterization of the structure and DNA complexity of mung bean mitochondrial nucleoids
  publication-title: Mol Cells
  doi: 10.1007/s10059-011-0036-4
– volume: 8
  start-page: 364
  issue: 2
  year: 2016
  ident: pgen.1008373.ref061
  article-title: Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evw003
– volume: 5
  start-page: 69
  issue: 2
  year: 1985
  ident: pgen.1008373.ref086
  article-title: Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues
  publication-title: Plant Mol Biol
  doi: 10.1007/BF00020088
– volume: 214
  start-page: 376
  issue: 1
  year: 2017
  ident: pgen.1008373.ref048
  article-title: Unparalleled replacement of native mitochondrial genes by foreign homologs in a holoparasitic plant
  publication-title: New Phytol
  doi: 10.1111/nph.14361
– volume: 183
  start-page: 1261
  issue: 4
  year: 2009
  ident: pgen.1008373.ref050
  article-title: Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity
  publication-title: Genetics
  doi: 10.1534/genetics.109.108514
– volume: 14
  start-page: 45
  year: 2014
  ident: pgen.1008373.ref043
  article-title: Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-14-45
– volume: 17
  start-page: 421
  issue: 5
  year: 1990
  ident: pgen.1008373.ref077
  article-title: Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria
  publication-title: Curr Genet
  doi: 10.1007/BF00334522
– volume: 29
  start-page: 380
  issue: 3
  year: 2003
  ident: pgen.1008373.ref010
  article-title: Evolution of mitochondrial gene content: gene loss and transfer to the nucleus
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/S1055-7903(03)00194-5
– volume: 24
  start-page: 279
  issue: 4
  year: 1993
  ident: pgen.1008373.ref004
  article-title: Reaching for the ring: the study of mitochondrial genome structure
  publication-title: Curr Genet
  doi: 10.1007/BF00336777
– volume: 6
  start-page: 883
  year: 2015
  ident: pgen.1008373.ref008
  article-title: DNA maintenance in plastids and mitochondria of plants
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00883
– volume: 276
  start-page: 745
  issue: 4
  year: 1998
  ident: pgen.1008373.ref030
  article-title: The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.1581
– volume: 47
  start-page: 57
  issue: 1
  year: 2005
  ident: pgen.1008373.ref059
  article-title: A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (Daucus carota L.)
  publication-title: Curr Genet
  doi: 10.1007/s00294-004-0549-x
– volume: 101
  start-page: 17741
  issue: 51
  year: 2004
  ident: pgen.1008373.ref020
  article-title: Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0408302101
– volume: 117
  start-page: 459
  issue: 3
  year: 2008
  ident: pgen.1008373.ref060
  article-title: The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-008-0790-7
– volume: 63
  start-page: 215
  year: 2012
  ident: pgen.1008373.ref051
  article-title: Recombination in the Stability, Repair and Evolution of the Mitochondrial Genome
  publication-title: Adv Bot Res
  doi: 10.1016/B978-0-12-394279-1.00009-0
– volume: 88
  start-page: 431
  issue: Pt 4
  year: 1987
  ident: pgen.1008373.ref066
  article-title: Isolation of morphologically intact mitochondrial nucleoids from the yeast, Saccharomyces cerevisiae
  publication-title: J Cell Sci
  doi: 10.1242/jcs.88.4.431
– volume: 8
  start-page: 15
  issue: 1
  year: 2008
  ident: pgen.1008373.ref083
  article-title: Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions?
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2007.10.002
– volume: 28
  start-page: 2571
  issue: 13
  year: 2000
  ident: pgen.1008373.ref039
  article-title: The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys(GCA)
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.13.2571
– volume: 15
  start-page: 57
  issue: 1
  year: 1997
  ident: pgen.1008373.ref046
  article-title: The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides
  publication-title: Nat Genet
  doi: 10.1038/ng0197-57
SSID ssj0035897
Score 2.6769261
Snippet Plant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held view across the broad community of life scientists...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1008373
SubjectTerms Analysis
Biochemistry
Biology and Life Sciences
Chromosome Mapping - methods
Deoxyribonucleic acid
DNA
DNA repair
DNA sequencing
DNA, Mitochondrial - genetics
DNA, Plant - genetics
Domestication
Engineering and Technology
Evolution
Fluorescence
Fluorescence microscopy
Gene mapping
Genes
Genes, Plant - genetics
Genetic research
Genome, Mitochondrial - genetics
Genome, Plant - genetics
Genomes
Genomics
Isoforms
Lactuca - genetics
Lactuca saligna
Lactuca serriola
Microscopy
Mitochondria
Mitochondria - genetics
Mitochondrial DNA
Plant genetics
Plant mitochondria
Plant sciences
Recombination
Recombination, Genetic - genetics
Repair & maintenance
Research and analysis methods
Scientists
Sequence Analysis, DNA - methods
Software
Species
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA4yKPgi3rfuqFEEn-pOmjZpfRsvi4LMiquybyXXdWFsh-nMgv_ec5JO2crC7oOvzddAzy3nNMl3CHlVuLIwyhcpsx4KFAUupfPCpiVzxs-cB5cKJK5f5GJRnpxUXy-0-sIzYZEeOAruQHmuHJeBlyv3MK9QeaG18brIKhujL2Q9u2IqxmBelLGtSlHwVEJZ31-a45Id9Dp6swIF4RkBqND4aFEK3P1DhJ6slm13Wfr57ynKC8vS4V1yp88n6Tx-xz1ywzX3ya3YYfLPA3IMZkDDjngTGL4p5IiYeNPW09USpEp_g0tDCGwsWiL9sJi_pUcN4GBJo7Z1HW3aDV1vl44ivyvMtXxIfhx-_P7-U9r3UUiNzMQmlQXzFtYhYcB5RZVnZmaQyM5JaXPFlOZGsFLzUkmRC2FKzawshWJVZTznlj8ik6Zt3B6hgjOttZ3BBA4SsbxytvIefN5qSM1ElhC-E2RtepJx7HWxrMPOmYRiI8qlRvHXvfgTkg5vrSLJxhX4d6ijAYsU2eEBGE7dG059leEk5DlquI73TQdHr-cibAdDJZqQlwGBNBkNnsM5Vduuqz8f_bwG6HhxHdC3Eeh1D_ItyMyo_oIESB45ukbI6QgJEcGMhvfQaHei6-osq1guyzyDj57uDPny4RfDME6KB_Aa124RU3IkpxWzhDyOdj-InzNsQ5qxhMiRR4z0Mx5pzn4FKnMh8aIlf_I_FLpPbkM2W4Uf_rMpmWzWW_eU3DTnm7Nu_SzEh78zIGih
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLaggLQX7myFAgYh8ZQRx4md8FYuFUhTNzFAe4t8hUklqZoWiX_POU4ayLSJ8Rp_sZzP5xwfx_ZnQl5kLs-M8lnErIcJigKX0mlmo5w542PnwaWCiOuBnM_zk5Pi6M9E8cwKPpfsVcfp_hIIxTV9mFHxq-RawoXALVyzo4Nt5OVZXsjueNxFbw6Gn6DS38fi0XJRN-clmmf3S_41AM1u_W_Tb5ObXapJp61t3CFXXHWX3Ggvn_x1jxyDhdCwWF4F8W8K6SPm5LT2dLkAwukP8HaIjpVFI6Xv5tPX9LACHIx21NauoVW9pqvNwlGUfoW6FvfJl9n7z28_RN0VC5GRiVhHMmPewhAlDPi1KNLExAY17pyUNlVMaW4EyzXPlRSpECbXzMpcKFYUxnNu-QMyqurK7REqONNa2xgqcJCjpYWzhfcQDqyGrE0kY8K3zJem0x_HazAWZVhUkzAPaXkpka6yo2tMov6tZau_8Q_8G-zUHovq2eEB9EvZOWOpPFeOy6D1lnqwVaHSTGvjdZYUFpv6FE2ibI-i9jGgnIqwUgyT1DF5HhCooFHhFp1vatM05cfDr5cAHc8vA_o0AL3sQL4Gzozqzk4A8yjfNUBOBkgIFmZQvIdWvqWuKZOkYKnM0wQ-erK1_POLn_XFWCnuzatcvUFMzlG3VsRjsts6Sk8_Z3hDacLGRA5caNA_w5Lq9HtQORcSz2Dyhxe3-BHZgfS1CH_44wkZrVcb95hcNz_Xp83qSQgNvwGh92JC
  priority: 102
  providerName: Public Library of Science
Title The alternative reality of plant mitochondrial DNA: One ring does not rule them all
URI https://www.ncbi.nlm.nih.gov/pubmed/31469821
https://www.proquest.com/docview/2291478422
https://www.proquest.com/docview/2283110960
https://pubmed.ncbi.nlm.nih.gov/PMC6742443
https://doaj.org/article/af3ae37085934f5ca6a45bbcfb529d62
http://dx.doi.org/10.1371/journal.pgen.1008373
Volume 15
WOSCitedRecordID wos000486222200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYBxIvfMMKoxiExFNYHSd2wgvqYBWTRldtgMpTlPhjTCpJaVok_nvuHDcQNMEkXvJQ_2KlvvP5zj7_jpDnsUlilds4YNpCgJLDlCqiWAcJM8oOjYUp5Uhcj-Rkksxm6dRvuNU-rXJjE52h1pXCPfK9MExZJJMoDF8vvgVYNQpPV30JjS2yjUxlUY9s7x9MpicbW8zjpCmvEsc8kBDe-8tzXLI9L6uXCxAU5gpApMY7i5Pj8G8tdW8xr-qL3NA_syl_W57GN__3j90iN7xjSkeNJt0mV0x5h1xrSlX-uEtOQZ-oO1ovHVU4BWcTPXhaWbqYg3joV7ANYEtLjSpN305Gr-hxCThYG6muTE3LakWX67mhSBQLfc3vkY_jgw9v3gW-IEOgZChWgYyZ1bCgCQVWQKRRqIYKGfGMlDrKWV5wJVhS8CSXIhJCJQXTMhE5S1NlOdf8PumVVWl2CBWcFUWhh9CBAY8uSo1OrQXjoQvw8UTYJ3wjiUx5tnIsmjHP3BGchKilGZcM5Zd5-fVJ0L61aNg6_oHfRyG3WOTadj9Uy7PMT90stzw3XDpmuMiCZos8iotC2SIOU42f-gRVJGsurrYWIxsJd64MIW2fPHMI5NsoMaHnLF_XdXZ4_OkSoNPJZUAnHdALD7IVjJnK_U0LGHkk--ogdztIMC2q07yDWr8Zujr7pavw5kabL25-2jZjp5jJV5pqjZiEI8utGPbJg2bitMPPGdYzDVmfyM6U6sin21Kef3Gc6ELijU3-8O-f9YhcB4c3dWcCw13SWy3X5jG5qr6vzuvlgGzJmXTPZOANycDt0cBzPD0aYF7wFFqmh--nn38CNyR9ng
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGAcEL37DCYAaBeAqL48ROkBAqjGnVRofYQH0LiT_GpJKUpgXtn-Jv5M5JA0ET7GUPvNYXKz3f73wXn39HyOPIxJHKbOQxbSFByQBSeRhpL2ZGWd9YgJQjcd2Vo1E8HifvVsiP5V0YLKtc-kTnqHWp8Bv5RhAkLJRxGAQvp1897BqFp6vLFhq1WeyY4--QslUvhpuwvk-CYOvNwettr-kq4CkZiLknI2Y1eGWhwJRFEgbKV0jrZqTUYcaynCvB4pzHmRShECrOmZaxyFiSKMu55jDvOXIe_LjEEjI5bhM8HsV1M5co4p7kid9c1eOSbTSW8WwKZoGVCZAX8s5W6DoGtPtCbzopq5OC3j9rN3_bDLeu_m9qvEauNGE3HdQ4uU5WTHGDXKwbcR7fJPuAFuoKBwpHhE4hlMb8hJaWTidgfPQLeD7YKQqNgKWbo8FzuleAHOz8VJemokU5p7PFxFCkwYW5JrfIhzP5R7dJrygLs0qo4CzPc-3DBAbi1TAxOrEWXKPOIYIVQZ_w5cqnquFix5Ygk9QdMErIyWq9pGgvaWMvfeK1T01rLpJ_yL9Co2plkUnc_VDODtPGMaWZ5Znh0vHehRZwK7IwynNl8yhINL7qOppkWl_Lbf1hOhDu1BwS9j555CSQTaTAcqXDbFFV6XDv4ymE9kenEXrfEXraCNkSdKay5h4JaB6pzDqSax1JcJyqM7yKKFuqrkp_YQOeXKLn5OGH7TBOinWKhSkXKBNz5PAVfp_cqYHaqp8z7NYasD6RHQh31qc7Uhx9dozvQuJ9VH7376-1Ti5tH7zdTXeHo5175DKE9ok7_fDXSG8-W5j75IL6Nj-qZg-c26Lk01kD_CeSatBm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFBAX3tBAoQsCcTKxvfaujYRQShoRtXKjFlBvxt5HqRTsECeg_jV-HTN-gVEFvfTANft5lYznm53Nzn5DyDNfB75MjG85ysAGJQFKpZ6vrMDR0tjaAKVKEdc9EUXB0VE4XSM_mrswWFbZxMQyUKtc4n_kA9cNHU8EnusOTF0WMR2N38y_WthBCk9am3YalYvs6tPvsH0rXk9G8K6fu-545_3bd1bdYcCSwuVLS_iOURChuQS35qHnSluixJsWQnmJk6RMcidIWZAI7nEug9RRIuCJE4bSMKYYzHuJrAtIMoBd69s70fSgWQeYH1StXXyfWYCw64t7TDiD2k9ezsFJsE4BdomsszCW_QPaVaI3n-XFWSnwn5Wcvy2N4xv_s1Fvkut1Qk6HFYNukTWd3SZXqhadp3fIIfCIliUFWSmRTiHJxp0LzQ2dz8At6ReIibCGZAqpTEfR8BXdzwAHOQFVuS5oli_pYjXTFAVyYa7ZXfLhQn7RPdLL8kxvEMqZk6apsmECDZmsF2oVGgNBU6WQ23K3T1jjBbGsVdqxWcgsLo8eBezWKrvE6Dtx7Tt9YrVPzSuVkn_gt9HBWixqjJcf5IvjuA5ZcWJYopkoFfE8A4zmieenqTSp74YKv-oWumdcXdhtI2U85OV5Omzl--RpiUCdkQyd6zhZFUU82f94DtBhdB7QQQf0ogaZHGwmk_qGCVgeRc46yM0OEkKq7AxvIOMa0xXxL57Akw2Tzh5-0g7jpFjBmOl8hZiAobovt_vkfkXa1vzMwT6urtMnokPnzvvpjmQnn0steC7wpip78PevtUWuAq_jvUm0-5Bcg5w_LI9F7E3SWy5W-hG5LL8tT4rF4zqGUfLpohn-E7TZ2oc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+alternative+reality+of+plant+mitochondrial+DNA%3A+One+ring+does+not+rule+them+all&rft.jtitle=PLoS+genetics&rft.au=Kozik%2C+Alexander&rft.au=Rowan%2C+Beth+A&rft.au=Lavelle%2C+Dean&rft.au=Berke%2C+Lidija&rft.date=2019-08-30&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1371%2Fjournal.pgen.1008373&rft.externalDBID=ISN&rft.externalDocID=A600424828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon