Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model

With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). T...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS genetics Ročník 17; číslo 11; s. e1009922
Hlavní autoři: Lin, Zhaotong, Deng, Yangqing, Pan, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 18.11.2021
Public Library of Science (PLoS)
Témata:
ISSN:1553-7404, 1553-7390, 1553-7404
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.
AbstractList With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.
With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.
With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference. For causal inference, inverse-variance weighting (IVW) and Egger regression are two of the most widely applied Mendelian randomization methods nowadays. IVW is the most powerful under the perhaps too restrictive assumption that all IVs are valid, while Egger regression is often unnecessarily too flexible in assuming all IVs to be invalid with uncorrelated pleiotropic effects. In spite of their usefulness, we point out their limitations: an IVW estimate of a causal effect would be biased if some/all IVs have directional pleiotropic effects, and an Egger regression estimate has too large a variance, leading to its loss of power. Accordingly we propose a mixture model to combine them to take advantage of their strengths while overcoming their major limitations. Furthermore, we propose a model-averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference. Through simulations and applications to some publicly available large-scale GWAS summary data, we demonstrate the superiority of our methods over IVW and Egger regression (and over some other state-of-the-art MR methods in some scenarios).
Audience Academic
Author Pan, Wei
Lin, Zhaotong
Deng, Yangqing
AuthorAffiliation University of Cambridge, UNITED KINGDOM
Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
AuthorAffiliation_xml – name: Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
– name: University of Cambridge, UNITED KINGDOM
Author_xml – sequence: 1
  givenname: Zhaotong
  orcidid: 0000-0001-8723-4392
  surname: Lin
  fullname: Lin, Zhaotong
– sequence: 2
  givenname: Yangqing
  orcidid: 0000-0001-6218-3437
  surname: Deng
  fullname: Deng, Yangqing
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-1159-0582
  surname: Pan
  fullname: Pan, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34793444$$D View this record in MEDLINE/PubMed
BookMark eNqVk2uL1DAUhousuBf9B6IFQfTDjLn1Ej8Iy7DqwOqCt68hbU87GdpkNknH1Z_grzadmV2nyyJKoS3J875JTs57HB1ooyGKHmM0xTTDr5amt1q201UDeooR4pyQe9ERThI6yRhiB3v_h9Gxc0uEaJLz7EF0SFnGKWPsKPo1M12htNJN7BcQO29BN37hYlPHSq_BOpispVVSlxB_B9Us_MBKXcVnTQM2ttBYcE4ZHfj4A-gK2kDHNiCmUz-lH6Z6t1HFnbryvYXB_Y_QxZ0JqofR_Vq2Dh7tvifR17dnX2bvJ-cX7-az0_NJmZHUTxghLC0lwxiytKA1Cm9W8SRnPCEIFbSoU5ahikicc57SouJZRotcyjqrGKrpSfR067tqjRO7MjpBUow4I0EaiPmWqIxcipVVnbQ_hJFKbAaMbYS0XpUtiOCKgeSUI14zhjCHsiSkJglKgWU0CV5vdqv1RQdVCdpb2Y5MxzNaLURj1iJPB1MaDF7sDKy57MF50SlXQttKDaYP-044xzlFLA3os1vo3afbUY0MB1C6NmHdcjAVp2nOkpQxMux7egcVngo6VYZWrFUYHwlejgSB8XDlG9k7J-afP_0H-_Hf2YtvY_b5HrsA2YZWNm0_9KAbg0_2b-XmOq6DEQC2BUprnLNQ3yAYiSF_16UVQ_7ELn9B9vqWrFR-E4FQPdX-Xfwb92w2XQ
CitedBy_id crossref_primary_10_1016_j_ecoenv_2023_115660
crossref_primary_10_1186_s12905_025_03909_7
crossref_primary_10_3389_fgene_2023_1230113
crossref_primary_10_1002_brb3_70787
crossref_primary_10_1016_j_jad_2024_12_075
crossref_primary_10_1007_s00439_025_02739_9
crossref_primary_10_1097_MD_0000000000035127
crossref_primary_10_1007_s13167_024_00384_2
crossref_primary_10_1007_s11255_025_04593_0
crossref_primary_10_1186_s12920_025_02143_2
crossref_primary_10_3389_fmicb_2024_1336673
crossref_primary_10_1186_s12944_024_02087_z
crossref_primary_10_1007_s00223_024_01207_2
crossref_primary_10_1097_MD_0000000000042582
crossref_primary_10_5607_en25009
crossref_primary_10_1111_eci_14129
crossref_primary_10_1016_j_ijcard_2025_133609
crossref_primary_10_3389_fnut_2023_1106769
crossref_primary_10_3389_fendo_2024_1367621
crossref_primary_10_1210_clinem_dgae264
crossref_primary_10_1371_journal_pgen_1010166
crossref_primary_10_3389_fcvm_2023_1080982
crossref_primary_10_3389_fgene_2023_1242614
crossref_primary_10_3390_cimb46120833
crossref_primary_10_2147_COPD_S519630
crossref_primary_10_1007_s12672_025_01980_y
crossref_primary_10_1186_s12931_023_02610_3
crossref_primary_10_3389_fphar_2025_1436972
crossref_primary_10_3389_fneur_2024_1405086
crossref_primary_10_3389_fgene_2024_1334473
crossref_primary_10_1002_jcsm_13614
crossref_primary_10_3389_fnut_2024_1466126
crossref_primary_10_1007_s12672_024_01637_2
crossref_primary_10_3389_fmed_2024_1429783
crossref_primary_10_1038_s41598_025_94053_7
crossref_primary_10_3389_fimmu_2025_1420132
crossref_primary_10_3389_fimmu_2024_1454021
crossref_primary_10_3389_fpsyt_2024_1465381
crossref_primary_10_1016_j_exger_2025_112842
crossref_primary_10_1016_j_heliyon_2024_e30415
crossref_primary_10_1097_MD_0000000000043432
crossref_primary_10_1097_MD_0000000000038259
crossref_primary_10_5051_jpis_2403420171
crossref_primary_10_1007_s44254_024_00063_5
crossref_primary_10_18332_tid_203865
crossref_primary_10_1016_j_xhgg_2025_100449
crossref_primary_10_1186_s12957_025_03814_1
crossref_primary_10_1007_s00784_023_04874_x
crossref_primary_10_1093_braincomms_fcaf098
crossref_primary_10_1111_eci_13893
crossref_primary_10_1186_s12920_025_02127_2
crossref_primary_10_1093_postmj_qgaf037
crossref_primary_10_1681_ASN_0000000678
crossref_primary_10_1016_j_heliyon_2024_e40381
crossref_primary_10_1007_s00586_023_07839_6
crossref_primary_10_1016_j_clnesp_2024_06_018
crossref_primary_10_1186_s12920_023_01575_y
crossref_primary_10_1186_s12920_023_01783_6
crossref_primary_10_3389_fmicb_2024_1398618
crossref_primary_10_1142_S2661341725500038
crossref_primary_10_1186_s12967_024_05796_2
crossref_primary_10_1002_advs_202409398
crossref_primary_10_1161_STROKEAHA_124_049093
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107873
crossref_primary_10_1186_s12933_025_02851_0
crossref_primary_10_1038_s41598_025_93644_8
crossref_primary_10_1186_s12951_022_01466_x
crossref_primary_10_1111_cns_70296
crossref_primary_10_1038_s41598_024_72559_w
crossref_primary_10_1161_HYPERTENSIONAHA_124_24252
crossref_primary_10_3389_fendo_2022_1090867
crossref_primary_10_1002_brb3_70512
crossref_primary_10_1007_s12672_025_02367_9
crossref_primary_10_1080_09603123_2025_2502635
crossref_primary_10_1007_s12672_025_02863_y
crossref_primary_10_1097_MD_0000000000041081
crossref_primary_10_1186_s13148_023_01476_y
crossref_primary_10_1186_s13063_024_08366_5
crossref_primary_10_1186_s12872_023_03567_3
crossref_primary_10_1038_s41598_024_79336_9
crossref_primary_10_1177_15579883251336056
crossref_primary_10_1111_jocd_16763
crossref_primary_10_1016_j_compbiomed_2024_108858
crossref_primary_10_1515_jtim_2024_0017
crossref_primary_10_1080_09581596_2025_2519808
crossref_primary_10_1038_s41514_025_00265_6
crossref_primary_10_1097_MD_0000000000040301
crossref_primary_10_1097_MD_0000000000041115
crossref_primary_10_1089_gtmb_2023_0594
crossref_primary_10_1371_journal_pone_0283014
crossref_primary_10_1111_joor_13916
crossref_primary_10_1097_MD_0000000000041757
crossref_primary_10_3389_fneur_2023_1295051
crossref_primary_10_3389_fnut_2024_1286593
crossref_primary_10_1016_j_asjsur_2024_08_066
crossref_primary_10_1177_10870547251349252
crossref_primary_10_1186_s12931_025_03219_4
crossref_primary_10_1186_s12888_024_05514_8
crossref_primary_10_1186_s12888_025_06777_5
crossref_primary_10_1097_MD_0000000000038318
crossref_primary_10_1177_13872877241309674
crossref_primary_10_3389_fimmu_2024_1297454
crossref_primary_10_1186_s12890_024_02906_0
crossref_primary_10_3390_ijms241914982
crossref_primary_10_1186_s12887_025_05424_y
crossref_primary_10_1111_aji_70036
crossref_primary_10_1097_MD_0000000000037355
crossref_primary_10_1186_s12885_023_10737_1
crossref_primary_10_1038_s41387_025_00370_1
crossref_primary_10_1186_s12967_022_03407_6
crossref_primary_10_1210_clinem_dgac566
crossref_primary_10_1371_journal_pgen_1010762
crossref_primary_10_1038_s41598_024_55993_8
crossref_primary_10_3389_fgene_2023_1285274
crossref_primary_10_3389_fonc_2024_1364834
crossref_primary_10_1097_JS9_0000000000001814
crossref_primary_10_1002_brb3_70073
crossref_primary_10_1097_MD_0000000000042814
crossref_primary_10_1038_s41598_024_71059_1
crossref_primary_10_1038_s41598_025_15191_6
crossref_primary_10_1097_JS9_0000000000001795
crossref_primary_10_1093_postmj_qgaf004
crossref_primary_10_1007_s00403_025_04072_7
crossref_primary_10_1177_09612033241227276
crossref_primary_10_3389_fendo_2024_1453277
crossref_primary_10_3389_fonc_2023_1185466
crossref_primary_10_1097_CM9_0000000000003800
crossref_primary_10_1016_j_asjsur_2024_04_149
crossref_primary_10_1016_j_heliyon_2024_e35904
crossref_primary_10_3389_fmed_2024_1453502
crossref_primary_10_3389_fphar_2025_1531384
crossref_primary_10_1097_MD_0000000000041731
crossref_primary_10_3389_fgene_2024_1449881
crossref_primary_10_1002_ijc_34466
crossref_primary_10_1007_s12672_025_03219_2
crossref_primary_10_3389_fcell_2023_1125233
crossref_primary_10_1016_j_ajhg_2023_02_014
crossref_primary_10_2147_JPR_S522207
crossref_primary_10_1210_clinem_dgac393
crossref_primary_10_1016_j_clbc_2025_06_001
crossref_primary_10_1371_journal_pone_0308815
crossref_primary_10_1186_s41065_024_00329_9
crossref_primary_10_3389_fcimb_2024_1404745
crossref_primary_10_3389_fendo_2024_1298531
crossref_primary_10_1038_s41598_024_84116_6
crossref_primary_10_3389_fmicb_2023_1230125
crossref_primary_10_1080_14740338_2025_2484474
crossref_primary_10_3389_fgene_2024_1330682
crossref_primary_10_1002_brb3_3551
crossref_primary_10_1186_s12933_023_02019_8
crossref_primary_10_1016_j_ijcha_2024_101501
crossref_primary_10_1016_j_jpsychores_2024_111620
crossref_primary_10_1186_s13098_025_01829_y
crossref_primary_10_3389_fgene_2022_792558
crossref_primary_10_1002_rai2_12125
crossref_primary_10_1039_D4FO05538A
crossref_primary_10_1093_cercor_bhad529
crossref_primary_10_1007_s00784_024_05512_w
crossref_primary_10_1002_clc_24101
crossref_primary_10_1038_s41598_024_62695_8
crossref_primary_10_62347_VUZH4644
crossref_primary_10_1186_s12905_025_03729_9
crossref_primary_10_1007_s11255_024_04094_6
crossref_primary_10_1097_MD_0000000000039591
crossref_primary_10_1016_j_dld_2023_08_044
crossref_primary_10_1167_iovs_64_13_4
crossref_primary_10_3390_nu16234103
crossref_primary_10_1016_j_rmed_2025_108157
crossref_primary_10_1016_j_ibneur_2025_03_006
crossref_primary_10_1186_s12890_025_03779_7
crossref_primary_10_1038_s41467_024_50385_y
crossref_primary_10_1002_gepi_22544
crossref_primary_10_1016_j_amjsurg_2024_115809
crossref_primary_10_1016_j_pnpbp_2023_110886
crossref_primary_10_2147_CCID_S523136
crossref_primary_10_1002_fsn3_70456
crossref_primary_10_1016_j_asjsur_2024_05_197
crossref_primary_10_3389_fgene_2023_1111144
crossref_primary_10_3390_ijms25115981
crossref_primary_10_1097_MD_0000000000041794
crossref_primary_10_1038_s41598_024_59211_3
crossref_primary_10_1049_syb2_70021
crossref_primary_10_1111_jnc_16056
crossref_primary_10_3389_fendo_2024_1428433
crossref_primary_10_1097_MD_0000000000037467
crossref_primary_10_1007_s00210_025_04091_1
crossref_primary_10_1155_mi_5707884
crossref_primary_10_1097_HEP_0000000000000837
crossref_primary_10_1155_2024_4564596
crossref_primary_10_1038_s41598_025_94303_8
crossref_primary_10_3389_fendo_2024_1313651
crossref_primary_10_3389_fendo_2024_1378757
Cites_doi 10.1111/j.2517-6161.1977.tb01600.x
10.2307/2533961
10.1198/016214502753479356
10.1038/s41588-018-0307-5
10.1201/b18084
10.1038/ng.2797
10.1038/nature19806
10.1016/j.ajhg.2020.12.006
10.1007/s40484-020-0202-9
10.1093/ije/dyg070
10.1161/CIRCRESAHA.117.312086
10.1001/jamacardio.2017.1572
10.1002/gepi.21758
10.1016/j.ajhg.2021.05.014
10.1038/s41467-020-17668-6
10.1007/s10654-017-0255-x
10.1093/ije/dyx191
10.1038/ng.520
10.1038/ng.2383
10.1002/gepi.22380
10.1080/01621459.1992.10475276
10.1093/bioinformatics/btaa985
10.1038/s41588-018-0205-x
10.1093/ije/dyx102
10.1038/s41467-019-14156-4
10.1038/ng.3097
10.1038/s41588-018-0099-7
10.1111/j.2517-6161.1982.tb01203.x
10.1002/gepi.22295
10.1002/gepi.21965
10.1038/s41588-017-0014-7
10.1038/nature14177
10.1214/aos/1176344136
10.1093/ije/dyx192
10.1038/s41588-018-0058-3
10.1038/s41588-020-0631-4
10.1016/0167-9473(92)90042-E
10.1093/ije/dyv080
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Lin et al 2021 Lin et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Lin et al 2021 Lin et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1009922
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Opposing Viewpoints (In Context)
Canada (Gale in Context)
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Combining inverse-variance weighting and Egger regression in MR using a mixture of regressions model
EISSN 1553-7404
ExternalDocumentID 2610942470
oai_doaj_org_article_aaf1e283909f44019ecc22f2506e4735
PMC8639093
A684564425
34793444
10_1371_journal_pgen_1009922
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM113250
– fundername: NIA NIH HHS
  grantid: R01 AG065636
– fundername: NIA NIH HHS
  grantid: R01 AG069895
– fundername: NIGMS NIH HHS
  grantid: R01 GM126002
– fundername: NHLBI NIH HHS
  grantid: R01 HL116720
– fundername: NIA NIH HHS
  grantid: RF1 AG067924
– fundername: ;
  grantid: R01 AG069895, RF1 AG067924, R01 AG065636, R01 HL116720, R01GM113250 and R01GM126002
– fundername: ;
  grantid: R01 AG065636
– fundername: ;
  grantid: DMS 1711226
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c726t-42246ca411e76b3f076b4d958495200b3bf6470d2a189963bd9773b8aaf7d40f3
IEDL.DBID BENPR
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720118900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Sun Jun 04 12:48:19 EDT 2023
Fri Oct 03 12:22:20 EDT 2025
Tue Nov 04 02:01:43 EST 2025
Fri Sep 05 08:04:07 EDT 2025
Sat Nov 29 14:35:11 EST 2025
Tue Nov 11 10:05:39 EST 2025
Tue Nov 04 17:32:03 EST 2025
Thu Nov 13 14:50:52 EST 2025
Thu Nov 13 15:06:11 EST 2025
Thu Nov 13 15:07:48 EST 2025
Thu May 22 21:22:04 EDT 2025
Wed Feb 19 02:10:51 EST 2025
Tue Nov 18 22:28:58 EST 2025
Sat Nov 29 06:26:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c726t-42246ca411e76b3f076b4d958495200b3bf6470d2a189963bd9773b8aaf7d40f3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-6218-3437
0000-0001-8723-4392
0000-0002-1159-0582
OpenAccessLink https://www.proquest.com/docview/2610942470?pq-origsite=%requestingapplication%
PMID 34793444
PQID 2610942470
PQPubID 1436339
ParticipantIDs plos_journals_2610942470
doaj_primary_oai_doaj_org_article_aaf1e283909f44019ecc22f2506e4735
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639093
proquest_miscellaneous_2599183046
proquest_journals_2610942470
gale_infotracmisc_A684564425
gale_infotracacademiconefile_A684564425
gale_incontextgauss_ISR_A684564425
gale_incontextgauss_ISN_A684564425
gale_incontextgauss_IOV_A684564425
gale_healthsolutions_A684564425
pubmed_primary_34793444
crossref_primary_10_1371_journal_pgen_1009922
crossref_citationtrail_10_1371_journal_pgen_1009922
PublicationCentury 2000
PublicationDate 2021-11-18
PublicationDateYYYYMMDD 2021-11-18
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Shao (pgen.1009922.ref021) 2012
Z Zhu (pgen.1009922.ref043) 2018; 9
G Qi (pgen.1009922.ref013) 2019; 10
M Horikoshi (pgen.1009922.ref032) 2016; 538
G Davey Smith (pgen.1009922.ref001) 2003; 32
X Zhu (pgen.1009922.ref003) 2020
X Shen (pgen.1009922.ref019) 2002; 97
CJ Willer (pgen.1009922.ref028) 2013; 45
EA Slob (pgen.1009922.ref027) 2020; 44
Y Lu (pgen.1009922.ref031) 2016; 7
J Dupuis (pgen.1009922.ref034) 2010; 42
EA Slob (pgen.1009922.ref023) 2017; 46
DA Lawlor (pgen.1009922.ref025) 2016; 45
KJ Gleason (pgen.1009922.ref044) 2021; 45
AP Dempster (pgen.1009922.ref011) 1977; 39
J Bowden (pgen.1009922.ref005) 2015; 44
E Evangelou (pgen.1009922.ref033) 2018; 50
S Burgess (pgen.1009922.ref004) 2013; 37
Katherine A Knutson (pgen.1009922.ref042) 2021; 9
H Xue (pgen.1009922.ref014) 2021; 108
FP Hartwig (pgen.1009922.ref008) 2017; 46
J Bowden (pgen.1009922.ref006) 2016; 40
L Breiman (pgen.1009922.ref020) 1992; 87
J Morrison (pgen.1009922.ref026) 2020; 52
TA Louis (pgen.1009922.ref016) 1982; 44
S Burgess (pgen.1009922.ref015) 2017; 32
ST Buckland (pgen.1009922.ref018) 1997; 53
J Bowden (pgen.1009922.ref022) 2017; 2
R Malik (pgen.1009922.ref037) 2018; 50
S Burgess (pgen.1009922.ref002) 2015
G Celeux (pgen.1009922.ref010) 1992; 14
M Liu (pgen.1009922.ref035) 2019; 51
M Verbanck (pgen.1009922.ref007) 2018; 50
F Demenais (pgen.1009922.ref039) 2018; 50
J Bowden (pgen.1009922.ref024) 2017; 46
Z Yuan (pgen.1009922.ref041) 2020; 11
AE Locke (pgen.1009922.ref030) 2015; 518
X Zhu (pgen.1009922.ref009) 2021; 37
K Wang (pgen.1009922.ref045) 2021; 11
G Schwarz (pgen.1009922.ref017) 1978; 6
AR Wood (pgen.1009922.ref029) 2014; 46
L Liu (pgen.1009922.ref040) 2021; 108
S Burgess (pgen.1009922.ref012) 2020; 11
P van der Harst (pgen.1009922.ref036) 2018; 122
AP Morris (pgen.1009922.ref038) 2012; 44
References_xml – volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: pgen.1009922.ref011
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 53
  start-page: 603
  issue: 2
  year: 1997
  ident: pgen.1009922.ref018
  article-title: Model Selection: An Integral Part of Inference
  publication-title: Biometrics
  doi: 10.2307/2533961
– volume: 97
  start-page: 210
  issue: 457
  year: 2002
  ident: pgen.1009922.ref019
  article-title: Adaptive model selection
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502753479356
– volume: 51
  start-page: 237
  issue: 2
  year: 2019
  ident: pgen.1009922.ref035
  article-title: Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use
  publication-title: Nature genetics
  doi: 10.1038/s41588-018-0307-5
– volume-title: Mendelian randomization: methods for using genetic variants in causal estimation
  year: 2015
  ident: pgen.1009922.ref002
  doi: 10.1201/b18084
– volume: 45
  start-page: 1274
  issue: 11
  year: 2013
  ident: pgen.1009922.ref028
  article-title: Discovery and refinement of loci associated with lipid levels
  publication-title: Nature genetics
  doi: 10.1038/ng.2797
– volume: 538
  start-page: 248
  issue: 7624
  year: 2016
  ident: pgen.1009922.ref032
  article-title: Genome-wide associations for birth weight and correlations with adult disease
  publication-title: Nature
  doi: 10.1038/nature19806
– volume: 108
  start-page: 240
  issue: 2
  year: 2021
  ident: pgen.1009922.ref040
  article-title: Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2020.12.006
– volume: 9
  start-page: 185
  issue: 2
  year: 2021
  ident: pgen.1009922.ref042
  article-title: Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease
  publication-title: Quantitative Biology
  doi: 10.1007/s40484-020-0202-9
– volume: 32
  start-page: 1
  issue: 1
  year: 2003
  ident: pgen.1009922.ref001
  article-title: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
  publication-title: International journal of epidemiology
  doi: 10.1093/ije/dyg070
– volume: 122
  start-page: 433
  issue: 3
  year: 2018
  ident: pgen.1009922.ref036
  article-title: Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease
  publication-title: Circulation research
  doi: 10.1161/CIRCRESAHA.117.312086
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: pgen.1009922.ref013
  article-title: Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects
  publication-title: Nature communications
– volume: 2
  start-page: 929
  issue: 8
  year: 2017
  ident: pgen.1009922.ref022
  article-title: Difficulties in testing the instrument strength independent of direct effect assumption in Mendelian randomization
  publication-title: JAMA cardiology
  doi: 10.1001/jamacardio.2017.1572
– volume: 37
  start-page: 658
  issue: 7
  year: 2013
  ident: pgen.1009922.ref004
  article-title: Mendelian randomization analysis with multiple genetic variants using summarized data
  publication-title: Genetic epidemiology
  doi: 10.1002/gepi.21758
– volume: 108
  start-page: 1251
  issue: 7
  year: 2021
  ident: pgen.1009922.ref014
  article-title: Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2021.05.014
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: pgen.1009922.ref041
  article-title: Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies
  publication-title: Nature communications
  doi: 10.1038/s41467-020-17668-6
– volume: 32
  start-page: 377
  issue: 5
  year: 2017
  ident: pgen.1009922.ref015
  article-title: Interpreting findings from Mendelian randomization using the MR-Egger method
  publication-title: European journal of epidemiology
  doi: 10.1007/s10654-017-0255-x
– volume: 46
  start-page: 2094
  issue: 6
  year: 2017
  ident: pgen.1009922.ref023
  article-title: A note on the use of Egger regression in Mendelian randomization studies
  publication-title: International journal of epidemiology
  doi: 10.1093/ije/dyx191
– volume: 42
  start-page: 105
  issue: 2
  year: 2010
  ident: pgen.1009922.ref034
  article-title: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  publication-title: Nature genetics
  doi: 10.1038/ng.520
– volume: 44
  start-page: 981
  issue: 9
  year: 2012
  ident: pgen.1009922.ref038
  article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
  publication-title: Nature genetics
  doi: 10.1038/ng.2383
– volume: 45
  start-page: 353
  issue: 4
  year: 2021
  ident: pgen.1009922.ref044
  article-title: A robust two-sample transcriptome-wide Mendelian randomization method integrating GWAS with multi-tissue eQTL summary statistics
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.22380
– volume: 87
  start-page: 738
  issue: 419
  year: 1992
  ident: pgen.1009922.ref020
  article-title: The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1992.10475276
– volume: 37
  start-page: 1390
  issue: 10
  year: 2021
  ident: pgen.1009922.ref009
  article-title: An iterative approach to detect pleiotropy and perform Mendelian Randomization analysis using GWAS summary statistics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa985
– volume: 50
  start-page: 1412
  issue: 10
  year: 2018
  ident: pgen.1009922.ref033
  article-title: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits
  publication-title: Nature genetics
  doi: 10.1038/s41588-018-0205-x
– volume: 46
  start-page: 1985
  issue: 6
  year: 2017
  ident: pgen.1009922.ref008
  article-title: Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
  publication-title: International journal of epidemiology
  doi: 10.1093/ije/dyx102
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: pgen.1009922.ref012
  article-title: A robust and efficient method for Mendelian randomization with hundreds of genetic variants
  publication-title: Nature communications
  doi: 10.1038/s41467-019-14156-4
– volume: 46
  start-page: 1173
  issue: 11
  year: 2014
  ident: pgen.1009922.ref029
  article-title: Defining the role of common variation in the genomic and biological architecture of adult human height
  publication-title: Nature genetics
  doi: 10.1038/ng.3097
– volume: 50
  start-page: 693
  issue: 5
  year: 2018
  ident: pgen.1009922.ref007
  article-title: Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases
  publication-title: Nature genetics
  doi: 10.1038/s41588-018-0099-7
– volume: 44
  start-page: 226
  issue: 2
  year: 1982
  ident: pgen.1009922.ref016
  article-title: Finding the observed information matrix when using the EM algorithm
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 44
  start-page: 313
  issue: 4
  year: 2020
  ident: pgen.1009922.ref027
  article-title: A comparison of robust Mendelian randomization methods using summary data
  publication-title: Genetic epidemiology
  doi: 10.1002/gepi.22295
– volume: 40
  start-page: 304
  issue: 4
  year: 2016
  ident: pgen.1009922.ref006
  article-title: Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
  publication-title: Genetic epidemiology
  doi: 10.1002/gepi.21965
– volume: 45
  start-page: 1866
  issue: 6
  year: 2016
  ident: pgen.1009922.ref025
  article-title: Triangulation in aetiological epidemiology
  publication-title: International journal of epidemiology
– volume: 50
  start-page: 42
  issue: 1
  year: 2018
  ident: pgen.1009922.ref039
  article-title: Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks
  publication-title: Nature genetics
  doi: 10.1038/s41588-017-0014-7
– volume: 518
  start-page: 197
  issue: 7538
  year: 2015
  ident: pgen.1009922.ref030
  article-title: Genetic studies of body mass index yield new insights for obesity biology
  publication-title: Nature
  doi: 10.1038/nature14177
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: pgen.1009922.ref017
  article-title: Estimating the dimension of a model
  publication-title: Annals of statistics
  doi: 10.1214/aos/1176344136
– start-page: 1
  year: 2020
  ident: pgen.1009922.ref003
  article-title: Mendelian randomization and pleiotropy analysis
  publication-title: Quantitative Biology
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: pgen.1009922.ref043
  article-title: Causal associations between risk factors and common diseases inferred from GWAS summary data
  publication-title: Nature communications
– volume-title: The jackknife and bootstrap
  year: 2012
  ident: pgen.1009922.ref021
– volume: 46
  start-page: 2097
  issue: 6
  year: 2017
  ident: pgen.1009922.ref024
  article-title: Misconceptions on the use of MR-Egger regression and the evaluation of the InSIDE assumption
  publication-title: International journal of epidemiology
  doi: 10.1093/ije/dyx192
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: pgen.1009922.ref031
  article-title: New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  publication-title: Nature communications
– volume: 50
  start-page: 524
  issue: 4
  year: 2018
  ident: pgen.1009922.ref037
  article-title: Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes
  publication-title: Nature genetics
  doi: 10.1038/s41588-018-0058-3
– volume: 52
  start-page: 740
  issue: 7
  year: 2020
  ident: pgen.1009922.ref026
  article-title: Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics
  publication-title: Nature genetics
  doi: 10.1038/s41588-020-0631-4
– volume: 14
  start-page: 315
  issue: 3
  year: 1992
  ident: pgen.1009922.ref010
  article-title: A classification EM algorithm for clustering and two stochastic versions
  publication-title: Computational statistics & Data analysis
  doi: 10.1016/0167-9473(92)90042-E
– volume: 44
  start-page: 512
  issue: 2
  year: 2015
  ident: pgen.1009922.ref005
  article-title: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
  publication-title: International journal of epidemiology
  doi: 10.1093/ije/dyv080
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: pgen.1009922.ref045
  article-title: Effect of selection bias on two sample summary data based Mendelian randomization
  publication-title: Scientific reports
SSID ssj0035897
Score 2.7013679
Snippet With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009922
SubjectTerms Algorithms
Biology and Life Sciences
Estimates
Genetic diversity
Genetic Pleiotropy - genetics
Genetic Predisposition to Disease
Genetic variation
Genome-wide association studies
Genome-Wide Association Study - statistics & numerical data
Humans
Linear models (Statistics)
Linear regression models
Medicine and Health Sciences
Mendelian Randomization Analysis - statistics & numerical data
Methods
Physical Sciences
Pleiotropy
Polymorphism, Single Nucleotide - genetics
Regression Analysis
Research and Analysis Methods
Risk factors
Single-nucleotide polymorphism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQCiQuiPJqSgGDkDiFbmzHSY4FtQIJFsRLvVlxYqcrtc5qs9vCX-BXM2NnQ4MqtQcue1h_zmpnnPGMPfMNIS-t1MYYi7ShJYuFFCbWVWpjDq5CwepKWusLhT9ks1l-dFR8vtDqC3PCAj1wENxeWdrEwB5YTAsrIBgo4DcZs7BzS4Ntc9H6gtezCaaCDeZpHtqqpCmPM5jbF83xLNnrdfR6AQrCHAEkZh1tSp67f7DQk8VJ213mfv6bRXlhWzq8S-70_iTdD_9ji9ww7h65FTpM_rpPfsP7rn0PCAqeHsXKENesjjvaWjp3mJJh4jMIl1H39NwfkyK2dDU9aBqzpEvThExZB3j6EQ_M8WCEwhZXt6d9ESfF7HmYRU_nP_FGAp_-d2JHfbudB-T74cG3t-_ivv1CXGVMrmKBXHNVKZLEZFJzO4VPURfgsRTI1aS5tlJk05qVCQRtkusafEmuc9BYVoup5Q_JxLXObBMqM5vwVGhRFkbksoLQ1VpwTaY2ZdqwIiJ8I39V9dzk2CLjRPkLtwxilCBOhVpTvdYiEg-zFoGb4wr8G1TtgEVmbf8FrDfVrzd11XqLyDNcGCqUqQ72Qe3LHJl5wARG5IVHILuGw_Sdplx3nXr_6cc1QF9n1wF9GYFe9SDbgsyqsq-rAMkjtdcIuTtCgiGpRsPbuNY3ousUQyp-wUDHMHOz_i8ffj4M40Mxb8-Zdg2YFOKPHG_fI_IovC6D-H0NsxAiItnoRRrpZzzi5seeAT2XqB--8z8U-pjcZpinhKmd-S6ZrJZr84TcrM5W82751JuVP_EKfIg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgAYlLedNAAYOQOKUktteJjwV1BVJZKl7qLYoTO12pTVab3Rb-Ar-aGcebkqoV5bKH9efIGtvjGXvmG0JeW6mNMRZpQ3MWCilMqIuxDTmYCoqVhbTWJQrvJdNpenCg9s8cxXMv-DyJ33qZbs9BoPimj0Sq18kNxqXEEK7J_t5a8_JxqhKfHndZz8Hx41j6e108mh817UWG5vl4yb8OoMmd_x36XbLhTU26062Ne-Saqe-TW13xyV8PyG9QBdqVh6BgBFJMGqmr5WFLG0tnNUZrmPAEPGlcFvTU3aAiNq9LultVZkEXpuqCaGvA0094l453JhROv7I59vmdFAProRc9nv3Exwr8-lnHlrpKPA_J98nut_cfQl-ZISwSJpehQBq6IhdxbBKpuY3gV5QKjBmFNE6aaytFEpUsj8Gfk1yXYGZynea5TUoRWf6IjOqmNpuEysTGfCy0yJURqSzAq7UWrJbIjpk2TAWErycsKzxtOVbPOMrcW1wC7ksnzgylnHkpByTse8072o5_4N_hWuixSLrt_oDpzPwezmD0sQFzTEXKCvBLFSx_xiwYkdJgBeeAvMCVlHUZrL3qyHZkiqQ9oB0D8sohkHijxsieKl-1bfbx848rgL5OrwL6MgC98SDbgMyK3KdcgOSR9WuA3BogQccUg-ZN3Bxr0bUZQ5Z-wWCOoed6w1zc_LJvxo9iSF9tmhVgxuCapPgwH5DH3f7qxe_Sm4UQAUkGO28wP8OWenboyNFTifPDn1w-4qfkNsPAJIzlTLfIaLlYmWfkZnGynLWL506j_AE-L3ep
  priority: 102
  providerName: Public Library of Science
Title Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model
URI https://www.ncbi.nlm.nih.gov/pubmed/34793444
https://www.proquest.com/docview/2610942470
https://www.proquest.com/docview/2599183046
https://pubmed.ncbi.nlm.nih.gov/PMC8639093
https://doaj.org/article/aaf1e283909f44019ecc22f2506e4735
http://dx.doi.org/10.1371/journal.pgen.1009922
Volume 17
WOSCitedRecordID wos000720118900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboFiQuvKGBshiExCl0Ezt2ckIt2hWV2iUqD5VTlIedrtQmy2a3wF_gVzPjeFOCKqjExYd4HCUeezwznvmGkJdaZEopjbChqe9ywZWb5YF2GagKkV_kQmuTKHwgp9Pw-DiKrcOtsWGVa5loBHVR5-gj3_ERF5z7XI7ezL-6WDUKb1dtCY0NsolIZXxANvfG0_hoLYtZELblVYKAuRLMe5s8x6S3Y3n1eg6MwlgBBGjtHU4Gw7-T1IP5ad1cpob-GU352_E0uf2_P3aH3LKKKd1tV9Jdck1V98iNtlTlj_vkJwiOzBSToKAyUkwxqcrlSUNrTWcVxnYo9xzsblxE9JvxtyJtWhV0XJZqQReqbENuK6Cnh-h5Rw8LhbOyqM9sNijFMHwYRc9m3_FqA99-MbChpm7PA_JpMv749p1r6zi4ufTF0uUIWpen3POUFBnTI2h5EYHqEyHoU8YyLeD3Cz_1wPoTLCtAKWVZmKZaFnyk2UMyqOpKbREqpPZYwDOeRoqHIgcbWGvQcUY68DPlRw5hawYmuQU5x1obp4m5uZNg7LTTmSDbE8t2h7jdqHkL8vEP-j1cGx0tQnSbB_WiTOyOT-DrPQXKWzSKNAcrNoLN4vsaVE6hsN6zQ57hykrafNdO0CS7IkSIH5ClDnlhKBCmo8I4oDJdNU2y__7zFYg-TK9CdNQjemWJdA1zlqc2QQNmHjHCepTbPUqQSHmvews3y3rqmuRiicPI9Sa4vPt5140vxQDAStUroAnAkAnxGt8hj9r91k2_SYbmnDtE9nZijz_9nmp2YqDUQ4H8YY___llPyE0fQ5kw-jPcJoPlYqWekuv5-XLWLIZkQx5L04ZDK3-GxrUD7SQ-GGI4cQw98f5h_OUXOxiS9w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoILb2igUINAnEI3tmMnB4QKtOqq2wVBi_YW8rDTldpkSXZb-hf4MfxGZpJsSlAFvfTAdf3ZG41nxjP2PAh5bmSktTZYNjRktpBC21HsGpuDqeCzJJbGVInCQzUaeeOx_3GJ_FzkwmBY5UInVoo6yWO8I19jWBdcMKH6b6bfbOwaha-rixYaNVts65NjcNnK14P3sL8vGNvc2H23ZTddBexYMTmzBZZQi0PhOFrJiBtw5COR-HAQ-1iCKOKRkfAvCQsd8EUkjxIwkXjkhaFRiegbDuteIpdBjysMIVPj1sHjrlc3c3Fdbivu95tUPa6ctYYzXk2BLTAyAcvBdo7CqmNAey70pgd5eZbR-2fs5m-H4ebN_42Mt8iNxuym67Wc3CZLOrtDrtaNOE_ukh-gFqOqVQYFg5hiAk2WzvZLmhs6yTByRdtHYYEXQJoeV7fJiA2zhG6kqS5oodM6oDgDPN3BdwW8P6JgCST5YZPrSjHJAGbRw8l3fLjB1U8nlrTqSnSP7F0IIe6TXpZneplQqYzDXRGJ0NfCkzFwmDFgwfWNyyLNfIvwBcMEcVPCHTuJHATVu6QCV64mZ4BsFjRsZhG7nTWtS5j8A_8WebHFYgHy6oe8SINGnwXw9Y4G09Tv-0aAj-6DKmDMgEEtNXaztsgqcnJQZ_O2ajRYlx4WMIKTwiLPKgQWIckwyikN52UZDD58OQfo8-g8oE8d0MsGZHKgWRw26SdAeayA1kGudJCgb-PO8DIK54J0ZXAqUjBzIXRnDz9th3FRDG_MdD4HjAtumodBChZ5UMt3S_4q1VsIYRHVkfzO_nRHssl-VSjek7g__OHfP2uVXNva3RkGw8Fo-xG5zjBoC-NcvRXSmxVz_ZhciY9mk7J4Umk7Sr5etF74BTaj5aE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3tBAoQaBOIXd2M7rgFBLd8WqZalKQb2FPOx0pTZZkt2W_gV-Er-OmcRJCaqglx64rj97o_HMeMaeByEvlBNJKRWWDQ2ZKRwhzSi2lcnBVPBZEjtKVYnC2-5k4u3v-ztL5GeTC4NhlY1OrBR1ksd4R95nWBdcMOEO-kqHRexsjt7OvpnYQQpfWpt2GjWLbMnTE3DfyjfjTdjrl4yNhnvv3pu6w4AZu8yZmwLLqcWhsCzpOhFX4NRHIvHhUPaxHFHEI-XAPyYstMAvcXiUgLnEIy8MlZuIgeKw7hWy7IKRAdK1vDGc7Ow25wC3vbq1i21zExADnbjHXauv-eT1DJgE4xSwOGznYKz6B7SnRG92mJfnmcB_RnL-djSObv3PRL1NbmqDnK7XEnSHLMnsLrlWt-g8vUd-gMKMqiYaFExliqk1WTo_KGmu6DTDmBZpHocFXg1JelLdMyM2zBI6TFNZ0EKmdahxBnj6AV8c8GaJgo2Q5Ec6C5Zi-gHMokfT7_ikg6ufTSxp1a_oPvl8KYR4QHpZnskVQh1XWdwWkQh9KTwnBt9fKbDtBspmkWS-QXjDPEGsi7tjj5HDoHqxdMHJq8kZIMsFmuUMYrazZnVxk3_gN5AvWyyWJq9-yIs00JougK-3JBit_sBXArx3H5QEYwpMbUdin2uDrCFXB3Web6tgg3XHw9JGcIYY5HmFwPIkGfJkGi7KMhh__HIB0KfJRUC7HdArDVI50CwOdWIKUB5ro3WQqx0kaOK4M7yCgtqQrgzOxAtmNgJ4_vCzdhgXxcDHTOYLwNjgwHkYvmCQh7Wst-SvksCFEAZxO1qgsz_dkWx6UJWQ9xzcH_7o75-1Rq6DOgi2x5Otx-QGw2guDID1VklvXizkE3I1Pp5Py-KpVn2UfL1sxfALg67vwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+the+strengths+of+inverse-variance+weighting+and+Egger+regression+in+Mendelian+randomization+using+a+mixture+of+regressions+model&rft.jtitle=PLoS+genetics&rft.au=Lin%2C+Zhaotong&rft.au=Deng%2C+Yangqing&rft.au=Pan%2C+Wei&rft.date=2021-11-18&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pgen.1009922&rft.externalDocID=A684564425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon