Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model
With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). T...
Uloženo v:
| Vydáno v: | PLoS genetics Ročník 17; číslo 11; s. e1009922 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Public Library of Science
18.11.2021
Public Library of Science (PLoS) |
| Témata: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference. |
|---|---|
| AbstractList | With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference. With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference.With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference. With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality between a pair of traits, an exposure and an outcome. It depends on using genetic variants, typically SNPs, as instrumental variables (IVs). The inverse-variance weighted (IVW) method (with a fixed-effect meta-analysis model) is most powerful when all IVs are valid; however, when horizontal pleiotropy is present, it may lead to biased inference. On the other hand, Egger regression is one of the most widely used methods robust to (uncorrelated) pleiotropy, but it suffers from loss of power. We propose a two-component mixture of regressions to combine and thus take advantage of both IVW and Egger regression; it is often both more efficient (i.e. higher powered) and more robust to pleiotropy (i.e. controlling type I error) than either IVW or Egger regression alone by accounting for both valid and invalid IVs respectively. We propose a model averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference for finite samples. Through extensive simulations and applications to the GWAS summary data of 48 risk factor-disease pairs and 63 genetically uncorrelated trait pairs, we showcase that our proposed methods could often control type I error better while achieving much higher power than IVW and Egger regression (and sometimes than several other new/popular MR methods). We expect that our proposed methods will be a useful addition to the toolbox of Mendelian randomization for causal inference. For causal inference, inverse-variance weighting (IVW) and Egger regression are two of the most widely applied Mendelian randomization methods nowadays. IVW is the most powerful under the perhaps too restrictive assumption that all IVs are valid, while Egger regression is often unnecessarily too flexible in assuming all IVs to be invalid with uncorrelated pleiotropic effects. In spite of their usefulness, we point out their limitations: an IVW estimate of a causal effect would be biased if some/all IVs have directional pleiotropic effects, and an Egger regression estimate has too large a variance, leading to its loss of power. Accordingly we propose a mixture model to combine them to take advantage of their strengths while overcoming their major limitations. Furthermore, we propose a model-averaging approach and a novel data perturbation scheme to account for uncertainties in model/IV selection, leading to more robust statistical inference. Through simulations and applications to some publicly available large-scale GWAS summary data, we demonstrate the superiority of our methods over IVW and Egger regression (and over some other state-of-the-art MR methods in some scenarios). |
| Audience | Academic |
| Author | Pan, Wei Lin, Zhaotong Deng, Yangqing |
| AuthorAffiliation | University of Cambridge, UNITED KINGDOM Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America |
| AuthorAffiliation_xml | – name: Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America – name: University of Cambridge, UNITED KINGDOM |
| Author_xml | – sequence: 1 givenname: Zhaotong orcidid: 0000-0001-8723-4392 surname: Lin fullname: Lin, Zhaotong – sequence: 2 givenname: Yangqing orcidid: 0000-0001-6218-3437 surname: Deng fullname: Deng, Yangqing – sequence: 3 givenname: Wei orcidid: 0000-0002-1159-0582 surname: Pan fullname: Pan, Wei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34793444$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk2uL1DAUhousuBf9B6IFQfTDjLn1Ej8Iy7DqwOqCt68hbU87GdpkNknH1Z_grzadmV2nyyJKoS3J875JTs57HB1ooyGKHmM0xTTDr5amt1q201UDeooR4pyQe9ERThI6yRhiB3v_h9Gxc0uEaJLz7EF0SFnGKWPsKPo1M12htNJN7BcQO29BN37hYlPHSq_BOpispVVSlxB_B9Us_MBKXcVnTQM2ttBYcE4ZHfj4A-gK2kDHNiCmUz-lH6Z6t1HFnbryvYXB_Y_QxZ0JqofR_Vq2Dh7tvifR17dnX2bvJ-cX7-az0_NJmZHUTxghLC0lwxiytKA1Cm9W8SRnPCEIFbSoU5ahikicc57SouJZRotcyjqrGKrpSfR067tqjRO7MjpBUow4I0EaiPmWqIxcipVVnbQ_hJFKbAaMbYS0XpUtiOCKgeSUI14zhjCHsiSkJglKgWU0CV5vdqv1RQdVCdpb2Y5MxzNaLURj1iJPB1MaDF7sDKy57MF50SlXQttKDaYP-044xzlFLA3os1vo3afbUY0MB1C6NmHdcjAVp2nOkpQxMux7egcVngo6VYZWrFUYHwlejgSB8XDlG9k7J-afP_0H-_Hf2YtvY_b5HrsA2YZWNm0_9KAbg0_2b-XmOq6DEQC2BUprnLNQ3yAYiSF_16UVQ_7ELn9B9vqWrFR-E4FQPdX-Xfwb92w2XQ |
| CitedBy_id | crossref_primary_10_1016_j_ecoenv_2023_115660 crossref_primary_10_1186_s12905_025_03909_7 crossref_primary_10_3389_fgene_2023_1230113 crossref_primary_10_1002_brb3_70787 crossref_primary_10_1016_j_jad_2024_12_075 crossref_primary_10_1007_s00439_025_02739_9 crossref_primary_10_1097_MD_0000000000035127 crossref_primary_10_1007_s13167_024_00384_2 crossref_primary_10_1007_s11255_025_04593_0 crossref_primary_10_1186_s12920_025_02143_2 crossref_primary_10_3389_fmicb_2024_1336673 crossref_primary_10_1186_s12944_024_02087_z crossref_primary_10_1007_s00223_024_01207_2 crossref_primary_10_1097_MD_0000000000042582 crossref_primary_10_5607_en25009 crossref_primary_10_1111_eci_14129 crossref_primary_10_1016_j_ijcard_2025_133609 crossref_primary_10_3389_fnut_2023_1106769 crossref_primary_10_3389_fendo_2024_1367621 crossref_primary_10_1210_clinem_dgae264 crossref_primary_10_1371_journal_pgen_1010166 crossref_primary_10_3389_fcvm_2023_1080982 crossref_primary_10_3389_fgene_2023_1242614 crossref_primary_10_3390_cimb46120833 crossref_primary_10_2147_COPD_S519630 crossref_primary_10_1007_s12672_025_01980_y crossref_primary_10_1186_s12931_023_02610_3 crossref_primary_10_3389_fphar_2025_1436972 crossref_primary_10_3389_fneur_2024_1405086 crossref_primary_10_3389_fgene_2024_1334473 crossref_primary_10_1002_jcsm_13614 crossref_primary_10_3389_fnut_2024_1466126 crossref_primary_10_1007_s12672_024_01637_2 crossref_primary_10_3389_fmed_2024_1429783 crossref_primary_10_1038_s41598_025_94053_7 crossref_primary_10_3389_fimmu_2025_1420132 crossref_primary_10_3389_fimmu_2024_1454021 crossref_primary_10_3389_fpsyt_2024_1465381 crossref_primary_10_1016_j_exger_2025_112842 crossref_primary_10_1016_j_heliyon_2024_e30415 crossref_primary_10_1097_MD_0000000000043432 crossref_primary_10_1097_MD_0000000000038259 crossref_primary_10_5051_jpis_2403420171 crossref_primary_10_1007_s44254_024_00063_5 crossref_primary_10_18332_tid_203865 crossref_primary_10_1016_j_xhgg_2025_100449 crossref_primary_10_1186_s12957_025_03814_1 crossref_primary_10_1007_s00784_023_04874_x crossref_primary_10_1093_braincomms_fcaf098 crossref_primary_10_1111_eci_13893 crossref_primary_10_1186_s12920_025_02127_2 crossref_primary_10_1093_postmj_qgaf037 crossref_primary_10_1681_ASN_0000000678 crossref_primary_10_1016_j_heliyon_2024_e40381 crossref_primary_10_1007_s00586_023_07839_6 crossref_primary_10_1016_j_clnesp_2024_06_018 crossref_primary_10_1186_s12920_023_01575_y crossref_primary_10_1186_s12920_023_01783_6 crossref_primary_10_3389_fmicb_2024_1398618 crossref_primary_10_1142_S2661341725500038 crossref_primary_10_1186_s12967_024_05796_2 crossref_primary_10_1002_advs_202409398 crossref_primary_10_1161_STROKEAHA_124_049093 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107873 crossref_primary_10_1186_s12933_025_02851_0 crossref_primary_10_1038_s41598_025_93644_8 crossref_primary_10_1186_s12951_022_01466_x crossref_primary_10_1111_cns_70296 crossref_primary_10_1038_s41598_024_72559_w crossref_primary_10_1161_HYPERTENSIONAHA_124_24252 crossref_primary_10_3389_fendo_2022_1090867 crossref_primary_10_1002_brb3_70512 crossref_primary_10_1007_s12672_025_02367_9 crossref_primary_10_1080_09603123_2025_2502635 crossref_primary_10_1007_s12672_025_02863_y crossref_primary_10_1097_MD_0000000000041081 crossref_primary_10_1186_s13148_023_01476_y crossref_primary_10_1186_s13063_024_08366_5 crossref_primary_10_1186_s12872_023_03567_3 crossref_primary_10_1038_s41598_024_79336_9 crossref_primary_10_1177_15579883251336056 crossref_primary_10_1111_jocd_16763 crossref_primary_10_1016_j_compbiomed_2024_108858 crossref_primary_10_1515_jtim_2024_0017 crossref_primary_10_1080_09581596_2025_2519808 crossref_primary_10_1038_s41514_025_00265_6 crossref_primary_10_1097_MD_0000000000040301 crossref_primary_10_1097_MD_0000000000041115 crossref_primary_10_1089_gtmb_2023_0594 crossref_primary_10_1371_journal_pone_0283014 crossref_primary_10_1111_joor_13916 crossref_primary_10_1097_MD_0000000000041757 crossref_primary_10_3389_fneur_2023_1295051 crossref_primary_10_3389_fnut_2024_1286593 crossref_primary_10_1016_j_asjsur_2024_08_066 crossref_primary_10_1177_10870547251349252 crossref_primary_10_1186_s12931_025_03219_4 crossref_primary_10_1186_s12888_024_05514_8 crossref_primary_10_1186_s12888_025_06777_5 crossref_primary_10_1097_MD_0000000000038318 crossref_primary_10_1177_13872877241309674 crossref_primary_10_3389_fimmu_2024_1297454 crossref_primary_10_1186_s12890_024_02906_0 crossref_primary_10_3390_ijms241914982 crossref_primary_10_1186_s12887_025_05424_y crossref_primary_10_1111_aji_70036 crossref_primary_10_1097_MD_0000000000037355 crossref_primary_10_1186_s12885_023_10737_1 crossref_primary_10_1038_s41387_025_00370_1 crossref_primary_10_1186_s12967_022_03407_6 crossref_primary_10_1210_clinem_dgac566 crossref_primary_10_1371_journal_pgen_1010762 crossref_primary_10_1038_s41598_024_55993_8 crossref_primary_10_3389_fgene_2023_1285274 crossref_primary_10_3389_fonc_2024_1364834 crossref_primary_10_1097_JS9_0000000000001814 crossref_primary_10_1002_brb3_70073 crossref_primary_10_1097_MD_0000000000042814 crossref_primary_10_1038_s41598_024_71059_1 crossref_primary_10_1038_s41598_025_15191_6 crossref_primary_10_1097_JS9_0000000000001795 crossref_primary_10_1093_postmj_qgaf004 crossref_primary_10_1007_s00403_025_04072_7 crossref_primary_10_1177_09612033241227276 crossref_primary_10_3389_fendo_2024_1453277 crossref_primary_10_3389_fonc_2023_1185466 crossref_primary_10_1097_CM9_0000000000003800 crossref_primary_10_1016_j_asjsur_2024_04_149 crossref_primary_10_1016_j_heliyon_2024_e35904 crossref_primary_10_3389_fmed_2024_1453502 crossref_primary_10_3389_fphar_2025_1531384 crossref_primary_10_1097_MD_0000000000041731 crossref_primary_10_3389_fgene_2024_1449881 crossref_primary_10_1002_ijc_34466 crossref_primary_10_1007_s12672_025_03219_2 crossref_primary_10_3389_fcell_2023_1125233 crossref_primary_10_1016_j_ajhg_2023_02_014 crossref_primary_10_2147_JPR_S522207 crossref_primary_10_1210_clinem_dgac393 crossref_primary_10_1016_j_clbc_2025_06_001 crossref_primary_10_1371_journal_pone_0308815 crossref_primary_10_1186_s41065_024_00329_9 crossref_primary_10_3389_fcimb_2024_1404745 crossref_primary_10_3389_fendo_2024_1298531 crossref_primary_10_1038_s41598_024_84116_6 crossref_primary_10_3389_fmicb_2023_1230125 crossref_primary_10_1080_14740338_2025_2484474 crossref_primary_10_3389_fgene_2024_1330682 crossref_primary_10_1002_brb3_3551 crossref_primary_10_1186_s12933_023_02019_8 crossref_primary_10_1016_j_ijcha_2024_101501 crossref_primary_10_1016_j_jpsychores_2024_111620 crossref_primary_10_1186_s13098_025_01829_y crossref_primary_10_3389_fgene_2022_792558 crossref_primary_10_1002_rai2_12125 crossref_primary_10_1039_D4FO05538A crossref_primary_10_1093_cercor_bhad529 crossref_primary_10_1007_s00784_024_05512_w crossref_primary_10_1002_clc_24101 crossref_primary_10_1038_s41598_024_62695_8 crossref_primary_10_62347_VUZH4644 crossref_primary_10_1186_s12905_025_03729_9 crossref_primary_10_1007_s11255_024_04094_6 crossref_primary_10_1097_MD_0000000000039591 crossref_primary_10_1016_j_dld_2023_08_044 crossref_primary_10_1167_iovs_64_13_4 crossref_primary_10_3390_nu16234103 crossref_primary_10_1016_j_rmed_2025_108157 crossref_primary_10_1016_j_ibneur_2025_03_006 crossref_primary_10_1186_s12890_025_03779_7 crossref_primary_10_1038_s41467_024_50385_y crossref_primary_10_1002_gepi_22544 crossref_primary_10_1016_j_amjsurg_2024_115809 crossref_primary_10_1016_j_pnpbp_2023_110886 crossref_primary_10_2147_CCID_S523136 crossref_primary_10_1002_fsn3_70456 crossref_primary_10_1016_j_asjsur_2024_05_197 crossref_primary_10_3389_fgene_2023_1111144 crossref_primary_10_3390_ijms25115981 crossref_primary_10_1097_MD_0000000000041794 crossref_primary_10_1038_s41598_024_59211_3 crossref_primary_10_1049_syb2_70021 crossref_primary_10_1111_jnc_16056 crossref_primary_10_3389_fendo_2024_1428433 crossref_primary_10_1097_MD_0000000000037467 crossref_primary_10_1007_s00210_025_04091_1 crossref_primary_10_1155_mi_5707884 crossref_primary_10_1097_HEP_0000000000000837 crossref_primary_10_1155_2024_4564596 crossref_primary_10_1038_s41598_025_94303_8 crossref_primary_10_3389_fendo_2024_1313651 crossref_primary_10_3389_fendo_2024_1378757 |
| Cites_doi | 10.1111/j.2517-6161.1977.tb01600.x 10.2307/2533961 10.1198/016214502753479356 10.1038/s41588-018-0307-5 10.1201/b18084 10.1038/ng.2797 10.1038/nature19806 10.1016/j.ajhg.2020.12.006 10.1007/s40484-020-0202-9 10.1093/ije/dyg070 10.1161/CIRCRESAHA.117.312086 10.1001/jamacardio.2017.1572 10.1002/gepi.21758 10.1016/j.ajhg.2021.05.014 10.1038/s41467-020-17668-6 10.1007/s10654-017-0255-x 10.1093/ije/dyx191 10.1038/ng.520 10.1038/ng.2383 10.1002/gepi.22380 10.1080/01621459.1992.10475276 10.1093/bioinformatics/btaa985 10.1038/s41588-018-0205-x 10.1093/ije/dyx102 10.1038/s41467-019-14156-4 10.1038/ng.3097 10.1038/s41588-018-0099-7 10.1111/j.2517-6161.1982.tb01203.x 10.1002/gepi.22295 10.1002/gepi.21965 10.1038/s41588-017-0014-7 10.1038/nature14177 10.1214/aos/1176344136 10.1093/ije/dyx192 10.1038/s41588-018-0058-3 10.1038/s41588-020-0631-4 10.1016/0167-9473(92)90042-E 10.1093/ije/dyv080 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Lin et al 2021 Lin et al |
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Lin et al 2021 Lin et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1009922 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Opposing Viewpoints (In Context) Canada (Gale in Context) Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Combining inverse-variance weighting and Egger regression in MR using a mixture of regressions model |
| EISSN | 1553-7404 |
| ExternalDocumentID | 2610942470 oai_doaj_org_article_aaf1e283909f44019ecc22f2506e4735 PMC8639093 A684564425 34793444 10_1371_journal_pgen_1009922 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM113250 – fundername: NIA NIH HHS grantid: R01 AG065636 – fundername: NIA NIH HHS grantid: R01 AG069895 – fundername: NIGMS NIH HHS grantid: R01 GM126002 – fundername: NHLBI NIH HHS grantid: R01 HL116720 – fundername: NIA NIH HHS grantid: RF1 AG067924 – fundername: ; grantid: R01 AG069895, RF1 AG067924, R01 AG065636, R01 HL116720, R01GM113250 and R01GM126002 – fundername: ; grantid: R01 AG065636 – fundername: ; grantid: DMS 1711226 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM AAPBV ABPTK |
| ID | FETCH-LOGICAL-c726t-42246ca411e76b3f076b4d958495200b3bf6470d2a189963bd9773b8aaf7d40f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 206 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720118900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Sun Jun 04 12:48:19 EDT 2023 Fri Oct 03 12:22:20 EDT 2025 Tue Nov 04 02:01:43 EST 2025 Fri Sep 05 08:04:07 EDT 2025 Sat Nov 29 14:35:11 EST 2025 Tue Nov 11 10:05:39 EST 2025 Tue Nov 04 17:32:03 EST 2025 Thu Nov 13 14:50:52 EST 2025 Thu Nov 13 15:06:11 EST 2025 Thu Nov 13 15:07:48 EST 2025 Thu May 22 21:22:04 EDT 2025 Wed Feb 19 02:10:51 EST 2025 Tue Nov 18 22:28:58 EST 2025 Sat Nov 29 06:26:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c726t-42246ca411e76b3f076b4d958495200b3bf6470d2a189963bd9773b8aaf7d40f3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-6218-3437 0000-0001-8723-4392 0000-0002-1159-0582 |
| OpenAccessLink | https://www.proquest.com/docview/2610942470?pq-origsite=%requestingapplication% |
| PMID | 34793444 |
| PQID | 2610942470 |
| PQPubID | 1436339 |
| ParticipantIDs | plos_journals_2610942470 doaj_primary_oai_doaj_org_article_aaf1e283909f44019ecc22f2506e4735 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8639093 proquest_miscellaneous_2599183046 proquest_journals_2610942470 gale_infotracmisc_A684564425 gale_infotracacademiconefile_A684564425 gale_incontextgauss_ISR_A684564425 gale_incontextgauss_ISN_A684564425 gale_incontextgauss_IOV_A684564425 gale_healthsolutions_A684564425 pubmed_primary_34793444 crossref_primary_10_1371_journal_pgen_1009922 crossref_citationtrail_10_1371_journal_pgen_1009922 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-18 |
| PublicationDateYYYYMMDD | 2021-11-18 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2021 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | J Shao (pgen.1009922.ref021) 2012 Z Zhu (pgen.1009922.ref043) 2018; 9 G Qi (pgen.1009922.ref013) 2019; 10 M Horikoshi (pgen.1009922.ref032) 2016; 538 G Davey Smith (pgen.1009922.ref001) 2003; 32 X Zhu (pgen.1009922.ref003) 2020 X Shen (pgen.1009922.ref019) 2002; 97 CJ Willer (pgen.1009922.ref028) 2013; 45 EA Slob (pgen.1009922.ref027) 2020; 44 Y Lu (pgen.1009922.ref031) 2016; 7 J Dupuis (pgen.1009922.ref034) 2010; 42 EA Slob (pgen.1009922.ref023) 2017; 46 DA Lawlor (pgen.1009922.ref025) 2016; 45 KJ Gleason (pgen.1009922.ref044) 2021; 45 AP Dempster (pgen.1009922.ref011) 1977; 39 J Bowden (pgen.1009922.ref005) 2015; 44 E Evangelou (pgen.1009922.ref033) 2018; 50 S Burgess (pgen.1009922.ref004) 2013; 37 Katherine A Knutson (pgen.1009922.ref042) 2021; 9 H Xue (pgen.1009922.ref014) 2021; 108 FP Hartwig (pgen.1009922.ref008) 2017; 46 J Bowden (pgen.1009922.ref006) 2016; 40 L Breiman (pgen.1009922.ref020) 1992; 87 J Morrison (pgen.1009922.ref026) 2020; 52 TA Louis (pgen.1009922.ref016) 1982; 44 S Burgess (pgen.1009922.ref015) 2017; 32 ST Buckland (pgen.1009922.ref018) 1997; 53 J Bowden (pgen.1009922.ref022) 2017; 2 R Malik (pgen.1009922.ref037) 2018; 50 S Burgess (pgen.1009922.ref002) 2015 G Celeux (pgen.1009922.ref010) 1992; 14 M Liu (pgen.1009922.ref035) 2019; 51 M Verbanck (pgen.1009922.ref007) 2018; 50 F Demenais (pgen.1009922.ref039) 2018; 50 J Bowden (pgen.1009922.ref024) 2017; 46 Z Yuan (pgen.1009922.ref041) 2020; 11 AE Locke (pgen.1009922.ref030) 2015; 518 X Zhu (pgen.1009922.ref009) 2021; 37 K Wang (pgen.1009922.ref045) 2021; 11 G Schwarz (pgen.1009922.ref017) 1978; 6 AR Wood (pgen.1009922.ref029) 2014; 46 L Liu (pgen.1009922.ref040) 2021; 108 S Burgess (pgen.1009922.ref012) 2020; 11 P van der Harst (pgen.1009922.ref036) 2018; 122 AP Morris (pgen.1009922.ref038) 2012; 44 |
| References_xml | – volume: 39 start-page: 1 issue: 1 year: 1977 ident: pgen.1009922.ref011 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 53 start-page: 603 issue: 2 year: 1997 ident: pgen.1009922.ref018 article-title: Model Selection: An Integral Part of Inference publication-title: Biometrics doi: 10.2307/2533961 – volume: 97 start-page: 210 issue: 457 year: 2002 ident: pgen.1009922.ref019 article-title: Adaptive model selection publication-title: Journal of the American Statistical Association doi: 10.1198/016214502753479356 – volume: 51 start-page: 237 issue: 2 year: 2019 ident: pgen.1009922.ref035 article-title: Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use publication-title: Nature genetics doi: 10.1038/s41588-018-0307-5 – volume-title: Mendelian randomization: methods for using genetic variants in causal estimation year: 2015 ident: pgen.1009922.ref002 doi: 10.1201/b18084 – volume: 45 start-page: 1274 issue: 11 year: 2013 ident: pgen.1009922.ref028 article-title: Discovery and refinement of loci associated with lipid levels publication-title: Nature genetics doi: 10.1038/ng.2797 – volume: 538 start-page: 248 issue: 7624 year: 2016 ident: pgen.1009922.ref032 article-title: Genome-wide associations for birth weight and correlations with adult disease publication-title: Nature doi: 10.1038/nature19806 – volume: 108 start-page: 240 issue: 2 year: 2021 ident: pgen.1009922.ref040 article-title: Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2020.12.006 – volume: 9 start-page: 185 issue: 2 year: 2021 ident: pgen.1009922.ref042 article-title: Integrating brain imaging endophenotypes with GWAS for Alzheimer’s disease publication-title: Quantitative Biology doi: 10.1007/s40484-020-0202-9 – volume: 32 start-page: 1 issue: 1 year: 2003 ident: pgen.1009922.ref001 article-title: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? publication-title: International journal of epidemiology doi: 10.1093/ije/dyg070 – volume: 122 start-page: 433 issue: 3 year: 2018 ident: pgen.1009922.ref036 article-title: Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease publication-title: Circulation research doi: 10.1161/CIRCRESAHA.117.312086 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: pgen.1009922.ref013 article-title: Mendelian randomization analysis using mixture models for robust and efficient estimation of causal effects publication-title: Nature communications – volume: 2 start-page: 929 issue: 8 year: 2017 ident: pgen.1009922.ref022 article-title: Difficulties in testing the instrument strength independent of direct effect assumption in Mendelian randomization publication-title: JAMA cardiology doi: 10.1001/jamacardio.2017.1572 – volume: 37 start-page: 658 issue: 7 year: 2013 ident: pgen.1009922.ref004 article-title: Mendelian randomization analysis with multiple genetic variants using summarized data publication-title: Genetic epidemiology doi: 10.1002/gepi.21758 – volume: 108 start-page: 1251 issue: 7 year: 2021 ident: pgen.1009922.ref014 article-title: Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2021.05.014 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: pgen.1009922.ref041 article-title: Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies publication-title: Nature communications doi: 10.1038/s41467-020-17668-6 – volume: 32 start-page: 377 issue: 5 year: 2017 ident: pgen.1009922.ref015 article-title: Interpreting findings from Mendelian randomization using the MR-Egger method publication-title: European journal of epidemiology doi: 10.1007/s10654-017-0255-x – volume: 46 start-page: 2094 issue: 6 year: 2017 ident: pgen.1009922.ref023 article-title: A note on the use of Egger regression in Mendelian randomization studies publication-title: International journal of epidemiology doi: 10.1093/ije/dyx191 – volume: 42 start-page: 105 issue: 2 year: 2010 ident: pgen.1009922.ref034 article-title: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk publication-title: Nature genetics doi: 10.1038/ng.520 – volume: 44 start-page: 981 issue: 9 year: 2012 ident: pgen.1009922.ref038 article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes publication-title: Nature genetics doi: 10.1038/ng.2383 – volume: 45 start-page: 353 issue: 4 year: 2021 ident: pgen.1009922.ref044 article-title: A robust two-sample transcriptome-wide Mendelian randomization method integrating GWAS with multi-tissue eQTL summary statistics publication-title: Genetic Epidemiology doi: 10.1002/gepi.22380 – volume: 87 start-page: 738 issue: 419 year: 1992 ident: pgen.1009922.ref020 article-title: The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1992.10475276 – volume: 37 start-page: 1390 issue: 10 year: 2021 ident: pgen.1009922.ref009 article-title: An iterative approach to detect pleiotropy and perform Mendelian Randomization analysis using GWAS summary statistics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa985 – volume: 50 start-page: 1412 issue: 10 year: 2018 ident: pgen.1009922.ref033 article-title: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits publication-title: Nature genetics doi: 10.1038/s41588-018-0205-x – volume: 46 start-page: 1985 issue: 6 year: 2017 ident: pgen.1009922.ref008 article-title: Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption publication-title: International journal of epidemiology doi: 10.1093/ije/dyx102 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: pgen.1009922.ref012 article-title: A robust and efficient method for Mendelian randomization with hundreds of genetic variants publication-title: Nature communications doi: 10.1038/s41467-019-14156-4 – volume: 46 start-page: 1173 issue: 11 year: 2014 ident: pgen.1009922.ref029 article-title: Defining the role of common variation in the genomic and biological architecture of adult human height publication-title: Nature genetics doi: 10.1038/ng.3097 – volume: 50 start-page: 693 issue: 5 year: 2018 ident: pgen.1009922.ref007 article-title: Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases publication-title: Nature genetics doi: 10.1038/s41588-018-0099-7 – volume: 44 start-page: 226 issue: 2 year: 1982 ident: pgen.1009922.ref016 article-title: Finding the observed information matrix when using the EM algorithm publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 44 start-page: 313 issue: 4 year: 2020 ident: pgen.1009922.ref027 article-title: A comparison of robust Mendelian randomization methods using summary data publication-title: Genetic epidemiology doi: 10.1002/gepi.22295 – volume: 40 start-page: 304 issue: 4 year: 2016 ident: pgen.1009922.ref006 article-title: Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator publication-title: Genetic epidemiology doi: 10.1002/gepi.21965 – volume: 45 start-page: 1866 issue: 6 year: 2016 ident: pgen.1009922.ref025 article-title: Triangulation in aetiological epidemiology publication-title: International journal of epidemiology – volume: 50 start-page: 42 issue: 1 year: 2018 ident: pgen.1009922.ref039 article-title: Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks publication-title: Nature genetics doi: 10.1038/s41588-017-0014-7 – volume: 518 start-page: 197 issue: 7538 year: 2015 ident: pgen.1009922.ref030 article-title: Genetic studies of body mass index yield new insights for obesity biology publication-title: Nature doi: 10.1038/nature14177 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: pgen.1009922.ref017 article-title: Estimating the dimension of a model publication-title: Annals of statistics doi: 10.1214/aos/1176344136 – start-page: 1 year: 2020 ident: pgen.1009922.ref003 article-title: Mendelian randomization and pleiotropy analysis publication-title: Quantitative Biology – volume: 9 start-page: 1 issue: 1 year: 2018 ident: pgen.1009922.ref043 article-title: Causal associations between risk factors and common diseases inferred from GWAS summary data publication-title: Nature communications – volume-title: The jackknife and bootstrap year: 2012 ident: pgen.1009922.ref021 – volume: 46 start-page: 2097 issue: 6 year: 2017 ident: pgen.1009922.ref024 article-title: Misconceptions on the use of MR-Egger regression and the evaluation of the InSIDE assumption publication-title: International journal of epidemiology doi: 10.1093/ije/dyx192 – volume: 7 start-page: 1 issue: 1 year: 2016 ident: pgen.1009922.ref031 article-title: New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk publication-title: Nature communications – volume: 50 start-page: 524 issue: 4 year: 2018 ident: pgen.1009922.ref037 article-title: Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes publication-title: Nature genetics doi: 10.1038/s41588-018-0058-3 – volume: 52 start-page: 740 issue: 7 year: 2020 ident: pgen.1009922.ref026 article-title: Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics publication-title: Nature genetics doi: 10.1038/s41588-020-0631-4 – volume: 14 start-page: 315 issue: 3 year: 1992 ident: pgen.1009922.ref010 article-title: A classification EM algorithm for clustering and two stochastic versions publication-title: Computational statistics & Data analysis doi: 10.1016/0167-9473(92)90042-E – volume: 44 start-page: 512 issue: 2 year: 2015 ident: pgen.1009922.ref005 article-title: Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression publication-title: International journal of epidemiology doi: 10.1093/ije/dyv080 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: pgen.1009922.ref045 article-title: Effect of selection bias on two sample summary data based Mendelian randomization publication-title: Scientific reports |
| SSID | ssj0035897 |
| Score | 2.7013679 |
| Snippet | With the increasing availability of large-scale GWAS summary data on various traits, Mendelian randomization (MR) has become commonly used to infer causality... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1009922 |
| SubjectTerms | Algorithms Biology and Life Sciences Estimates Genetic diversity Genetic Pleiotropy - genetics Genetic Predisposition to Disease Genetic variation Genome-wide association studies Genome-Wide Association Study - statistics & numerical data Humans Linear models (Statistics) Linear regression models Medicine and Health Sciences Mendelian Randomization Analysis - statistics & numerical data Methods Physical Sciences Pleiotropy Polymorphism, Single Nucleotide - genetics Regression Analysis Research and Analysis Methods Risk factors Single-nucleotide polymorphism |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQCiQuiPJqSgGDkDiFbmzHSY4FtQIJFsRLvVlxYqcrtc5qs9vCX-BXM2NnQ4MqtQcue1h_zmpnnPGMPfMNIS-t1MYYi7ShJYuFFCbWVWpjDq5CwepKWusLhT9ks1l-dFR8vtDqC3PCAj1wENxeWdrEwB5YTAsrIBgo4DcZs7BzS4Ntc9H6gtezCaaCDeZpHtqqpCmPM5jbF83xLNnrdfR6AQrCHAEkZh1tSp67f7DQk8VJ213mfv6bRXlhWzq8S-70_iTdD_9ji9ww7h65FTpM_rpPfsP7rn0PCAqeHsXKENesjjvaWjp3mJJh4jMIl1H39NwfkyK2dDU9aBqzpEvThExZB3j6EQ_M8WCEwhZXt6d9ESfF7HmYRU_nP_FGAp_-d2JHfbudB-T74cG3t-_ivv1CXGVMrmKBXHNVKZLEZFJzO4VPURfgsRTI1aS5tlJk05qVCQRtkusafEmuc9BYVoup5Q_JxLXObBMqM5vwVGhRFkbksoLQ1VpwTaY2ZdqwIiJ8I39V9dzk2CLjRPkLtwxilCBOhVpTvdYiEg-zFoGb4wr8G1TtgEVmbf8FrDfVrzd11XqLyDNcGCqUqQ72Qe3LHJl5wARG5IVHILuGw_Sdplx3nXr_6cc1QF9n1wF9GYFe9SDbgsyqsq-rAMkjtdcIuTtCgiGpRsPbuNY3ousUQyp-wUDHMHOz_i8ffj4M40Mxb8-Zdg2YFOKPHG_fI_IovC6D-H0NsxAiItnoRRrpZzzi5seeAT2XqB--8z8U-pjcZpinhKmd-S6ZrJZr84TcrM5W82751JuVP_EKfIg priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgAYlLedNAAYOQOKUktteJjwV1BVJZKl7qLYoTO12pTVab3Rb-Ar-aGcebkqoV5bKH9efIGtvjGXvmG0JeW6mNMRZpQ3MWCilMqIuxDTmYCoqVhbTWJQrvJdNpenCg9s8cxXMv-DyJ33qZbs9BoPimj0Sq18kNxqXEEK7J_t5a8_JxqhKfHndZz8Hx41j6e108mh817UWG5vl4yb8OoMmd_x36XbLhTU26062Ne-Saqe-TW13xyV8PyG9QBdqVh6BgBFJMGqmr5WFLG0tnNUZrmPAEPGlcFvTU3aAiNq9LultVZkEXpuqCaGvA0094l453JhROv7I59vmdFAProRc9nv3Exwr8-lnHlrpKPA_J98nut_cfQl-ZISwSJpehQBq6IhdxbBKpuY3gV5QKjBmFNE6aaytFEpUsj8Gfk1yXYGZynea5TUoRWf6IjOqmNpuEysTGfCy0yJURqSzAq7UWrJbIjpk2TAWErycsKzxtOVbPOMrcW1wC7ksnzgylnHkpByTse8072o5_4N_hWuixSLrt_oDpzPwezmD0sQFzTEXKCvBLFSx_xiwYkdJgBeeAvMCVlHUZrL3qyHZkiqQ9oB0D8sohkHijxsieKl-1bfbx848rgL5OrwL6MgC98SDbgMyK3KdcgOSR9WuA3BogQccUg-ZN3Bxr0bUZQ5Z-wWCOoed6w1zc_LJvxo9iSF9tmhVgxuCapPgwH5DH3f7qxe_Sm4UQAUkGO28wP8OWenboyNFTifPDn1w-4qfkNsPAJIzlTLfIaLlYmWfkZnGynLWL506j_AE-L3ep priority: 102 providerName: Public Library of Science |
| Title | Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34793444 https://www.proquest.com/docview/2610942470 https://www.proquest.com/docview/2599183046 https://pubmed.ncbi.nlm.nih.gov/PMC8639093 https://doaj.org/article/aaf1e283909f44019ecc22f2506e4735 http://dx.doi.org/10.1371/journal.pgen.1009922 |
| Volume | 17 |
| WOSCitedRecordID | wos000720118900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboFiQuvKGBshiExCl0Ezt2ckIt2hWV2iUqD5VTlIedrtQmy2a3wF_gVzPjeFOCKqjExYd4HCUeezwznvmGkJdaZEopjbChqe9ywZWb5YF2GagKkV_kQmuTKHwgp9Pw-DiKrcOtsWGVa5loBHVR5-gj3_ERF5z7XI7ezL-6WDUKb1dtCY0NsolIZXxANvfG0_hoLYtZELblVYKAuRLMe5s8x6S3Y3n1eg6MwlgBBGjtHU4Gw7-T1IP5ad1cpob-GU352_E0uf2_P3aH3LKKKd1tV9Jdck1V98iNtlTlj_vkJwiOzBSToKAyUkwxqcrlSUNrTWcVxnYo9xzsblxE9JvxtyJtWhV0XJZqQReqbENuK6Cnh-h5Rw8LhbOyqM9sNijFMHwYRc9m3_FqA99-MbChpm7PA_JpMv749p1r6zi4ufTF0uUIWpen3POUFBnTI2h5EYHqEyHoU8YyLeD3Cz_1wPoTLCtAKWVZmKZaFnyk2UMyqOpKbREqpPZYwDOeRoqHIgcbWGvQcUY68DPlRw5hawYmuQU5x1obp4m5uZNg7LTTmSDbE8t2h7jdqHkL8vEP-j1cGx0tQnSbB_WiTOyOT-DrPQXKWzSKNAcrNoLN4vsaVE6hsN6zQ57hykrafNdO0CS7IkSIH5ClDnlhKBCmo8I4oDJdNU2y__7zFYg-TK9CdNQjemWJdA1zlqc2QQNmHjHCepTbPUqQSHmvews3y3rqmuRiicPI9Sa4vPt5140vxQDAStUroAnAkAnxGt8hj9r91k2_SYbmnDtE9nZijz_9nmp2YqDUQ4H8YY___llPyE0fQ5kw-jPcJoPlYqWekuv5-XLWLIZkQx5L04ZDK3-GxrUD7SQ-GGI4cQw98f5h_OUXOxiS9w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKAoILb2igUINAnEI3tmMnB4QKtOqq2wVBi_YW8rDTldpkSXZb-hf4MfxGZpJsSlAFvfTAdf3ZG41nxjP2PAh5bmSktTZYNjRktpBC21HsGpuDqeCzJJbGVInCQzUaeeOx_3GJ_FzkwmBY5UInVoo6yWO8I19jWBdcMKH6b6bfbOwaha-rixYaNVts65NjcNnK14P3sL8vGNvc2H23ZTddBexYMTmzBZZQi0PhOFrJiBtw5COR-HAQ-1iCKOKRkfAvCQsd8EUkjxIwkXjkhaFRiegbDuteIpdBjysMIVPj1sHjrlc3c3Fdbivu95tUPa6ctYYzXk2BLTAyAcvBdo7CqmNAey70pgd5eZbR-2fs5m-H4ebN_42Mt8iNxuym67Wc3CZLOrtDrtaNOE_ukh-gFqOqVQYFg5hiAk2WzvZLmhs6yTByRdtHYYEXQJoeV7fJiA2zhG6kqS5oodM6oDgDPN3BdwW8P6JgCST5YZPrSjHJAGbRw8l3fLjB1U8nlrTqSnSP7F0IIe6TXpZneplQqYzDXRGJ0NfCkzFwmDFgwfWNyyLNfIvwBcMEcVPCHTuJHATVu6QCV64mZ4BsFjRsZhG7nTWtS5j8A_8WebHFYgHy6oe8SINGnwXw9Y4G09Tv-0aAj-6DKmDMgEEtNXaztsgqcnJQZ_O2ajRYlx4WMIKTwiLPKgQWIckwyikN52UZDD58OQfo8-g8oE8d0MsGZHKgWRw26SdAeayA1kGudJCgb-PO8DIK54J0ZXAqUjBzIXRnDz9th3FRDG_MdD4HjAtumodBChZ5UMt3S_4q1VsIYRHVkfzO_nRHssl-VSjek7g__OHfP2uVXNva3RkGw8Fo-xG5zjBoC-NcvRXSmxVz_ZhciY9mk7J4Umk7Sr5etF74BTaj5aE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFhAX3tBAoQaBOIXd2M7rgFBLd8WqZalKQb2FPOx0pTZZkt2W_gV-Er-OmcRJCaqglx64rj97o_HMeMaeByEvlBNJKRWWDQ2ZKRwhzSi2lcnBVPBZEjtKVYnC2-5k4u3v-ztL5GeTC4NhlY1OrBR1ksd4R95nWBdcMOEO-kqHRexsjt7OvpnYQQpfWpt2GjWLbMnTE3DfyjfjTdjrl4yNhnvv3pu6w4AZu8yZmwLLqcWhsCzpOhFX4NRHIvHhUPaxHFHEI-XAPyYstMAvcXiUgLnEIy8MlZuIgeKw7hWy7IKRAdK1vDGc7Ow25wC3vbq1i21zExADnbjHXauv-eT1DJgE4xSwOGznYKz6B7SnRG92mJfnmcB_RnL-djSObv3PRL1NbmqDnK7XEnSHLMnsLrlWt-g8vUd-gMKMqiYaFExliqk1WTo_KGmu6DTDmBZpHocFXg1JelLdMyM2zBI6TFNZ0EKmdahxBnj6AV8c8GaJgo2Q5Ec6C5Zi-gHMokfT7_ikg6ufTSxp1a_oPvl8KYR4QHpZnskVQh1XWdwWkQh9KTwnBt9fKbDtBspmkWS-QXjDPEGsi7tjj5HDoHqxdMHJq8kZIMsFmuUMYrazZnVxk3_gN5AvWyyWJq9-yIs00JougK-3JBit_sBXArx3H5QEYwpMbUdin2uDrCFXB3Web6tgg3XHw9JGcIYY5HmFwPIkGfJkGi7KMhh__HIB0KfJRUC7HdArDVI50CwOdWIKUB5ro3WQqx0kaOK4M7yCgtqQrgzOxAtmNgJ4_vCzdhgXxcDHTOYLwNjgwHkYvmCQh7Wst-SvksCFEAZxO1qgsz_dkWx6UJWQ9xzcH_7o75-1Rq6DOgi2x5Otx-QGw2guDID1VklvXizkE3I1Pp5Py-KpVn2UfL1sxfALg67vwg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+the+strengths+of+inverse-variance+weighting+and+Egger+regression+in+Mendelian+randomization+using+a+mixture+of+regressions+model&rft.jtitle=PLoS+genetics&rft.au=Lin%2C+Zhaotong&rft.au=Deng%2C+Yangqing&rft.au=Pan%2C+Wei&rft.date=2021-11-18&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=17&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pgen.1009922&rft.externalDocID=A684564425 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |