Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation

Time series segmentation, which is also known as multiple‐change‐point detection, is a well‐established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second‐order structure of a high dimensional time series. In a ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Jg. 77; H. 2; S. 475 - 507
Hauptverfasser: Cho, Haeran, Fryzlewicz, Piotr
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Royal Statistical Society 01.03.2015
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Schlagworte:
ISSN:1369-7412, 1467-9868
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Time series segmentation, which is also known as multiple‐change‐point detection, is a well‐established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second‐order structure of a high dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to combine cumulative sum statistics obtained from local periodograms and cross‐periodograms of the components of the input time series. However, the standard ‘maximum’ and ‘average’ methods for doing so often fail in high dimensions when, for example, the change points are sparse across the panel or the cumulative sum statistics are spuriously large. We propose the sparsified binary segmentation algorithm which aggregates the cumulative sum statistics by adding only those that pass a certain threshold. This ‘sparsifying’ step reduces the influence of irrelevant noisy contributions, which is particularly beneficial in high dimensions. To show the consistency of sparsified binary segmentation, we introduce the multivariate locally stationary wavelet model for time series, which is a separate contribution of this work.
AbstractList Time series segmentation, which is also known as multiple‐ ;change-point detection, is a well-established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second-order structure of a high dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to combine cumulative sum statistics obtained from local periodograms and cross‐ ;periodograms of the components of the input time series. However, the standard 'maximum' and 'average' methods for doing so often fail in high dimensions when, for example, the change points are sparse across the panel or the cumulative sum statistics are spuriously large. We propose the sparsified binary segmentation algorithm which aggregates the cumulative sum statistics by adding only those that pass a certain threshold. This 'sparsifying' step reduces the influence of irrelevant noisy contributions, which is particularly beneficial in high dimensions. To show the consistency of sparsified binary segmentation, we introduce the multivariate locally stationary wavelet model for time series, which is a separate contribution of this work. Reprinted by permission of Blackwell Publishers
Time series segmentation, which is also known as multiple-change-point detection, is a well-established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second-order structure of a high dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to combine cumulative sum statistics obtained from local periodograms and cross-periodograms of the components of the input time series. However, the standard 'maximum' and 'average' methods for doing so often fail in high dimensions when, for example, the change points are sparse across the panel or the cumulative sum statistics are spuriously large. We propose the sparsified binary segmentation algorithm which aggregates the cumulative sum statistics by adding only those that pass a certain threshold. This 'sparsifying' step reduces the influence of irrelevant noisy contributions, which is particularly beneficial in high dimensions. To show the consistency of sparsified binary segmentation, we introduce the multivariate locally stationary wavelet model for time series, which is a separate contribution of this work.
Summary Time series segmentation, which is also known as multiple‐change‐point detection, is a well‐established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second‐order structure of a high dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to combine cumulative sum statistics obtained from local periodograms and cross‐periodograms of the components of the input time series. However, the standard ‘maximum’ and ‘average’ methods for doing so often fail in high dimensions when, for example, the change points are sparse across the panel or the cumulative sum statistics are spuriously large. We propose the sparsified binary segmentation algorithm which aggregates the cumulative sum statistics by adding only those that pass a certain threshold. This ‘sparsifying’ step reduces the influence of irrelevant noisy contributions, which is particularly beneficial in high dimensions. To show the consistency of sparsified binary segmentation, we introduce the multivariate locally stationary wavelet model for time series, which is a separate contribution of this work.
Summary Time series segmentation, which is also known as multiple-change-point detection, is a well-established problem. However, few solutions have been designed specifically for high dimensional situations. Our interest is in segmenting the second-order structure of a high dimensional time series. In a generic step of a binary segmentation algorithm for multivariate time series, one natural solution is to combine cumulative sum statistics obtained from local periodograms and cross-periodograms of the components of the input time series. However, the standard 'maximum' and 'average' methods for doing so often fail in high dimensions when, for example, the change points are sparse across the panel or the cumulative sum statistics are spuriously large. We propose the sparsified binary segmentation algorithm which aggregates the cumulative sum statistics by adding only those that pass a certain threshold. This 'sparsifying' step reduces the influence of irrelevant noisy contributions, which is particularly beneficial in high dimensions. To show the consistency of sparsified binary segmentation, we introduce the multivariate locally stationary wavelet model for time series, which is a separate contribution of this work.
Author Cho, Haeran
Fryzlewicz, Piotr
Author_xml – sequence: 1
  fullname: Cho, Haeran
– sequence: 2
  fullname: Fryzlewicz, Piotr
BookMark eNqNkcFu1DAQhiNUJNrChTsiEpcKKcV2Ejs-0hUtldoiWAoSF8txJlkv2TjYXqA3HqHPyJMwaaCHCiF88cj_94_G_-wlO4MbIEkeU3JI8bzwIdSHlBEh7yW7tOAikxWvdrDOucxEQdmDZC-ENcHDRb6bdOfbPtqxh58_rs1KD91UjM4OMW0ggonWDWnrfLqy3Spt7AaGgE-6TyPWaQBvIaRfrU7DqH2wrYUmre2g_RWKHeJRTz0eJvdb3Qd49PveTy6PX71fvM7O3pycLl6eZUYwnNAIHEwLyIWpKsPrBgjPqdS6bqucE94QURhoBBe0qUGWoOvaUE4JyJqKVub7ycHcd_TuyxZCVBsbDPS9HsBtg6IVybEHKf8D5ZhQyTgrEX12B127rccUJqokRAouGVLPZ8p4F4KHVo3ebjAJRYma1qOm9aib9SBM7sDGzlFFr23_dwudLd9sD1f_aK7eLZdHfzxPZs86ROdvPawQohAFRz2bdRsifL_Vtf-s8PeiVB8vTtTRp7cXyw-LYyWQfzrzrXZKd94GdblkhHJCKGNUVvkvEu7KAA
CitedBy_id crossref_primary_10_1109_TIT_2015_2495361
crossref_primary_10_1016_j_ecosta_2021_04_008
crossref_primary_10_1007_s00477_024_02713_3
crossref_primary_10_1016_j_ymssp_2020_106987
crossref_primary_10_1109_TKDE_2023_3347356
crossref_primary_10_2196_38661
crossref_primary_10_1080_00949655_2022_2083127
crossref_primary_10_1073_pnas_1702654114
crossref_primary_10_1016_j_csda_2023_107913
crossref_primary_10_1214_25_AOS2501
crossref_primary_10_1080_02626667_2019_1669792
crossref_primary_10_1080_07474938_2018_1454378
crossref_primary_10_1016_j_ecosta_2021_10_004
crossref_primary_10_1162_imag_a_00520
crossref_primary_10_1007_s42952_022_00183_3
crossref_primary_10_1016_j_media_2021_102252
crossref_primary_10_1016_j_scs_2025_106759
crossref_primary_10_1016_j_jspi_2018_10_003
crossref_primary_10_1214_20_AOS1994
crossref_primary_10_1007_s00477_020_01817_w
crossref_primary_10_1155_2018_8371085
crossref_primary_10_1016_j_jeconom_2020_06_005
crossref_primary_10_1016_j_measurement_2018_10_089
crossref_primary_10_1016_j_cie_2023_108986
crossref_primary_10_3389_fmars_2023_1150488
crossref_primary_10_1016_j_spl_2021_109228
crossref_primary_10_1155_2023_3879096
crossref_primary_10_1080_07350015_2024_2362269
crossref_primary_10_1038_s41467_017_02456_6
crossref_primary_10_3390_e22010055
crossref_primary_10_1016_j_jspi_2021_07_006
crossref_primary_10_1186_s12859_021_04221_5
crossref_primary_10_1002_sta4_284
crossref_primary_10_1007_s42519_021_00170_7
crossref_primary_10_1109_TSP_2020_2993145
crossref_primary_10_1002_jae_2769
crossref_primary_10_1080_07350015_2021_2016425
crossref_primary_10_1016_j_jmva_2019_104582
crossref_primary_10_1073_pnas_1804649115
crossref_primary_10_1080_01621459_2020_1785477
crossref_primary_10_1111_sjos_12368
crossref_primary_10_3390_math12050750
crossref_primary_10_1111_rssa_12695
crossref_primary_10_1007_s10182_024_00516_z
crossref_primary_10_1214_25_EJS2413
crossref_primary_10_1080_01621459_2014_957545
crossref_primary_10_1002_sta4_359
crossref_primary_10_1080_01621459_2024_2302200
crossref_primary_10_1080_02331888_2017_1335314
crossref_primary_10_1214_24_AOS2414
crossref_primary_10_1016_j_cnsns_2024_108500
crossref_primary_10_1109_TSP_2019_2953670
crossref_primary_10_1214_17_AOS1662
crossref_primary_10_3390_axioms13090643
crossref_primary_10_1016_j_sigpro_2019_107299
crossref_primary_10_1080_10618600_2022_2127738
crossref_primary_10_1214_19_BA1173
crossref_primary_10_1016_j_jeconom_2020_07_039
crossref_primary_10_1080_02664763_2025_2543051
crossref_primary_10_1111_rssb_12540
crossref_primary_10_1007_s00180_020_01028_5
crossref_primary_10_1177_1550147718776863
crossref_primary_10_1109_TMI_2021_3131142
crossref_primary_10_1007_s11749_019_00655_5
crossref_primary_10_1523_JNEUROSCI_2588_20_2021
crossref_primary_10_1007_s11222_017_9784_0
crossref_primary_10_1080_01621459_2020_1770097
crossref_primary_10_3390_stats6010007
crossref_primary_10_1080_07350015_2022_2076686
crossref_primary_10_1080_01621459_2023_2199962
crossref_primary_10_1080_03610926_2020_1760298
crossref_primary_10_1214_15_AOS1347
crossref_primary_10_23919_comex_2024XBL0210
crossref_primary_10_1016_j_jspi_2023_03_003
crossref_primary_10_1080_23737484_2022_2056546
crossref_primary_10_1109_TIT_2024_3423325
crossref_primary_10_1109_TSP_2023_3333546
crossref_primary_10_1016_j_atmosres_2020_105126
crossref_primary_10_1016_j_csda_2023_107705
crossref_primary_10_1515_snde_2025_0009
crossref_primary_10_1007_s11222_025_10643_5
crossref_primary_10_1016_j_ecosta_2021_07_009
crossref_primary_10_1111_rssb_12156
crossref_primary_10_1109_TIT_2023_3242297
crossref_primary_10_1002_env_2762
crossref_primary_10_1007_s13253_018_0324_y
crossref_primary_10_1109_ACCESS_2022_3152206
crossref_primary_10_1016_j_fishres_2022_106548
crossref_primary_10_3390_e22040374
crossref_primary_10_1007_s00362_023_01461_w
crossref_primary_10_1007_s41109_024_00641_3
crossref_primary_10_1111_rssb_12406
crossref_primary_10_1111_sjos_12589
crossref_primary_10_1093_jjfinec_nbaa032
crossref_primary_10_1080_10618600_2023_2182312
crossref_primary_10_1093_jrsssb_qkad048
crossref_primary_10_1016_j_jmva_2021_104942
crossref_primary_10_1080_00401706_2022_2124307
crossref_primary_10_1007_s11222_024_10553_y
crossref_primary_10_1111_sjos_12460
crossref_primary_10_1007_s10115_016_0987_z
crossref_primary_10_1080_00401706_2023_2183261
crossref_primary_10_1080_03610926_2024_2446396
crossref_primary_10_1146_annurev_statistics_031219_041138
crossref_primary_10_1080_24725854_2023_2212725
crossref_primary_10_1111_sjos_12465
crossref_primary_10_1016_j_neuroimage_2021_118635
crossref_primary_10_3389_fenvs_2018_00121
crossref_primary_10_1007_s11045_017_0513_9
crossref_primary_10_1007_s11222_020_09966_2
crossref_primary_10_3390_s21248487
crossref_primary_10_1007_s11222_024_10428_2
crossref_primary_10_1214_21_AOS2098
crossref_primary_10_1016_j_jhydrol_2020_124640
crossref_primary_10_1080_01621459_2018_1476238
crossref_primary_10_1002_cjs_11721
crossref_primary_10_1016_j_jspi_2020_08_002
crossref_primary_10_1111_rssb_12121
crossref_primary_10_1007_s11749_024_00926_w
crossref_primary_10_1111_rssb_12243
crossref_primary_10_3389_fninf_2018_00067
crossref_primary_10_1016_j_ymssp_2024_111173
crossref_primary_10_1080_10485252_2018_1504943
crossref_primary_10_1016_j_jmva_2021_104833
crossref_primary_10_1214_20_AOS1953
crossref_primary_10_3390_e24111652
crossref_primary_10_1360_SSM_2024_0052
crossref_primary_10_1007_s10479_023_05756_x
crossref_primary_10_1002_sta4_126
crossref_primary_10_1109_TIT_2021_3130330
crossref_primary_10_1111_biom_13547
crossref_primary_10_1080_10618600_2021_1987257
crossref_primary_10_1016_j_acha_2015_11_003
crossref_primary_10_1007_s11222_024_10416_6
crossref_primary_10_1109_ACCESS_2023_3318318
crossref_primary_10_1111_rssc_12169
crossref_primary_10_1145_3508020
crossref_primary_10_1016_j_measurement_2024_115472
crossref_primary_10_1080_10618600_2021_1950005
crossref_primary_10_1214_24_AOS2360
crossref_primary_10_1111_rssb_12375
crossref_primary_10_1016_j_irfa_2024_103662
crossref_primary_10_1016_j_neucom_2022_09_021
crossref_primary_10_1016_j_jmva_2017_12_005
crossref_primary_10_1016_j_iswa_2025_200504
crossref_primary_10_1109_ACCESS_2022_3162399
crossref_primary_10_1371_journal_pone_0260110
crossref_primary_10_1002_asmb_2373
crossref_primary_10_1007_s11222_023_10261_z
crossref_primary_10_1093_jrsssc_qlad014
crossref_primary_10_1080_00401706_2018_1438926
crossref_primary_10_1002_widm_70016
crossref_primary_10_1080_01621459_2021_1893178
crossref_primary_10_1007_s00362_020_01196_y
crossref_primary_10_1080_01621459_2022_2079514
crossref_primary_10_1038_s41598_024_60201_8
crossref_primary_10_1016_j_ymssp_2017_06_003
crossref_primary_10_1080_01621459_2017_1319840
crossref_primary_10_1080_10618600_2023_2240864
crossref_primary_10_1016_j_jeconom_2018_05_003
crossref_primary_10_1007_s10618_023_00974_0
crossref_primary_10_1016_j_csda_2025_108240
crossref_primary_10_1016_j_ecosta_2021_10_008
crossref_primary_10_1016_j_ins_2020_08_112
crossref_primary_10_1002_cjs_11826
crossref_primary_10_1016_j_cie_2024_110141
crossref_primary_10_1007_s13171_021_00248_1
crossref_primary_10_1080_00401706_2022_2054861
crossref_primary_10_1007_s42952_020_00060_x
crossref_primary_10_1016_j_measurement_2020_108124
crossref_primary_10_1016_j_jeconom_2022_02_003
crossref_primary_10_1080_01621459_2024_2392903
crossref_primary_10_1007_s11425_016_0058_5
crossref_primary_10_1109_JSEN_2024_3402828
crossref_primary_10_1016_j_csda_2015_07_009
crossref_primary_10_1007_s13349_021_00520_w
Cites_doi 10.1023/A:1016130108440
10.1080/01621459.1997.10474026
10.1137/1132110
10.1093/biomet/asq007
10.5705/ss.2009.280
10.1198/016214501753168244
10.1111/1467-9892.00172
10.1162/003465304323023886
10.1007/978-1-4612-1718-3
10.1111/rssb.12015
10.1111/j.1467-9868.2005.00532.x
10.1111/j.1467-9892.2012.00796.x
10.1214/09-AOS707
10.1111/j.1467-9868.2006.00558.x
10.1111/j.1467-9892.2008.00585.x
10.1007/BF02523391
10.1111/1467-9868.00231
10.1198/016214504000001448
10.1007/s11222-010-9200-5
10.1007/s10986-006-0028-9
10.1002/9780470317020
10.1111/j.1467-9892.2010.00685.x
10.1146/annurev-economics-061109-080451
10.1198/016214505000000745
10.1214/14-AOS1245
ContentType Journal Article
Copyright Copyright © 2015 The Royal Statistical Society and Blackwell Publishing Ltd.
2014 Royal Statistical Society
Copyright © 2015 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2015 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2014 Royal Statistical Society
– notice: Copyright © 2015 The Royal Statistical Society and Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12079
DatabaseName AGRIS
Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


CrossRef
AGRICOLA

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 507
ExternalDocumentID 3575989601
10_1111_rssb_12079
RSSB12079
24774746
ark_67375_WNG_BZQNSVCF_7
US201600122198
Genre article
Feature
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAPXW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABHUG
ABIVO
ABLJU
ABPFR
ABPTD
ABPVW
ABWST
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVGU
AFVYC
AFXHP
AFXKK
AFZJQ
AGJLS
AIHXQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EFSUC
EJD
EMK
F00
F5P
FBQ
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OJZSN
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AANHP
AARHZ
AAUAY
AAWIL
ABAWQ
ABDFA
ABEJV
ABPQH
ABPQP
ABXSQ
ACHJO
ACRPL
ACYXJ
ADNMO
ADZMN
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
ATGXG
BCRHZ
BSCLL
H13
IPSME
NU-
OIG
ALUQN
AAYXX
CITATION
O8X
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c7269-c7000a7e37c88c6bde06319aabf83606d074ced7671dbe95eabbc1610e9b17f93
IEDL.DBID DRFUL
ISICitedReferencesCount 241
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349206900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:08:03 EDT 2025
Sun Sep 28 08:56:22 EDT 2025
Mon Nov 10 01:08:33 EST 2025
Tue Nov 18 21:07:16 EST 2025
Sat Nov 29 05:52:02 EST 2025
Wed Jan 22 16:58:07 EST 2025
Thu Jul 03 22:43:42 EDT 2025
Tue Nov 11 03:30:24 EST 2025
Wed Dec 27 19:24:55 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c7269-c7000a7e37c88c6bde06319aabf83606d074ced7671dbe95eabbc1610e9b17f93
Notes http://dx.doi.org/10.1111/rssb.12079
ark:/67375/WNG-BZQNSVCF-7
istex:FEAD5F63FD3724A1F2D837E9F94008CE22609A5F
ArticleID:RSSB12079
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jrsssb/article-pdf/77/2/475/49214713/jrsssb_77_2_475.pdf
PQID 1650097692
PQPubID 39359
PageCount 33
ParticipantIDs proquest_miscellaneous_1803074059
proquest_miscellaneous_1667352625
proquest_journals_1650097692
crossref_primary_10_1111_rssb_12079
crossref_citationtrail_10_1111_rssb_12079
wiley_primary_10_1111_rssb_12079_RSSB12079
jstor_primary_24774746
istex_primary_ark_67375_WNG_BZQNSVCF_7
fao_agris_US201600122198
PublicationCentury 2000
PublicationDate March 2015
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: March 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationTitleAlternate J. R. Stat. Soc. B
PublicationYear 2015
Publisher Royal Statistical Society
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Royal Statistical Society
– name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Vidakovic, B. (1999) Statistical Modeling by Wavelets. New York: Wiley.
Sanderson, J., Fryzlewicz, P. and Jones, M. (2010) Estimating linear dependence between non-stationary time series using the locally stationary wavelet model. Biometrika, 97, 435-446.
Cho, H. and Fryzlewicz, P. (2011) Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets. Statist. Comput., 21, 671-681.
Mikosch, T. and Staˇricaˇ, C. (2004) Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ. Statist., 86, 378-390.
Fryzlewicz, P., Van Bellegem, S. and von Sachs, R. (2003) Forecasting non-stationary time series by wavelet process modelling. Ann. Inst. Statist. Math., 55, 737-764.
Chen, J. and Gupta, A. K. (1997) Testing and locating variance change-points with application to stock prices. J. Am. Statist. Ass., 92, 739-747.
Korostelev, A. (1987) On minimax estimation of a discontinuous signal. Theor. Probab. Appl., 32, 727-730.
Dwivedi, Y. and Subba Rao, S. (2011) A test for second-order stationarity of a time series based on the discrete Fourier transform. J. Time Ser. Anal., 32, 68-91.
Ombao, H., von Sachs, R. and Guo, W. (2005) SLEX analysis of multivariate nonstationary time series. J. Am. Statist. Ass., 100, 519-531.
Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Statist. Soc. B, 68, 49-67.
Inclán, C. and Tiao, G. C. (1994) Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Statist. Ass., 89, 913-923.
Johnson, N. and Kotz, S. (1970) Distributions in Statistics: Continuous Univariate Distributions, vol. 1. Boston: Houghton Mifflin.
Ombao, H. C., Raz, J. A., von Sachs, R. and Guo, W. (2002) The SLEX model of a non-stationary random process. Ann. Inst. Statist. Math., 54, 171-200.
Aue, A., Hörmann, S., Horváth, L. and Reimherr, M. (2009) Break detection in the covariance structure of multivariate time series models. Ann. Statist., 37, 4046-4087.
Ombao, H. C., Raz, J. A., von Sachs, R. and Malow, B. A. (2001) Automatic statistical analysis of bivariate nonstationary time series. J. Am. Statist. Ass., 96, 543-560.
Nason, G. P. and Silverman, B. W. (1995) The Stationary Wavelet Transform and Some Statistical Applications, .281-300. New York: Springer.
Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2008) Break detection for a class of nonlinear time series models. J. Time Ser. Anal., 29, 834-867.
Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2006) Structural break estimation for non-stationary time series. J. Am. Statist. Ass., 101, 223-239.
Fan, J., Lv, J. and Qi, L. (2011) Sparse high-dimensional models in economics. Ann. Rev. Econ., 3, 291-317.
Fryzlewicz, P. (2005) Modelling and forecasting financial log-returns as locally stationary wavelet processes. J. App. Statist., 32, 503-528.
Fryzlewicz, P. (2014) Wild Binary Segmentation for multiple change-point detection. Ann. Statist., to be published.
Nason, G. P., von Sachs, R. and Kroisandt, G. (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J. R. Statist. Soc. B, 62, 271-292.
Vert, J. and Bleakley, K. (2010) Fast detection of multiple change-points shared by many signals using group LARS. Adv. Neur. Inform. Process. Syst., 23, 2343-2351.
Lavielle, M. and Teyssière, G. (2006) Detection of multiple change-points in multivariate time series. Lith. Math. J., 46, 287-306.
Bosq, D. (1998) Nonparametric Statistics for Stochastic Processes: Estimation and Prediction. New York: Springer.
Groen, J., Kapetanios, G. and Price, S. (2013) Multivariate methods for monitoring structural change. J. Multiv. Time Ser., 28, 250-274.
Horváth, L. and Hušková, M. (2012) Change-point detection in panel data. J. Time Ser. Anal., 33, 631-648.
Fryzlewicz, P. and Nason, G. (2006) Haar-Fisz estimation of evolutionary wavelet spectra. J. R. Statist. Soc. B, 68, 611-634.
Lavielle, M. and Moulines, E. (2000) Least-squares estimation of an unknown number of shifts in a time series. J. Time Ser. Anal., 21, 33-59.
Nason, G. P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
Cho, H. and Fryzlewicz, P. (2012) Multiscale and multilevel technique for consistent segmentation of nonstationary time series. Statist. Sin., 22, 207-229.
2004; 86
2010; 97
1987; 32
2013; 28
2000; 21
2002; 54
1998
1994; 89
2011; 32
1995
1970
1992
2011; 3
2012; 33
2003; 55
1999
2010; 23
1997; 92
2006; 68
2006; 46
2005; 100
2008; 29
2013; 75
2000; 62
2011; 21
2005; 32
2014
2013
2012; 22
2006; 101
2009; 37
2001; 96
Horváth (2023021709291111800_rssb12079-cit-0015) 2012; 33
Ombao (2023021709291111800_rssb12079-cit-0028) 2005; 100
Lavielle (2023021709291111800_rssb12079-cit-0020) 2000; 21
Fryzlewicz (2023021709291111800_rssb12079-cit-0011) 2014
Nason (2023021709291111800_rssb12079-cit-0025) 1995
Venkatraman (2023021709291111800_rssb12079-cit-0030) 1992
Fryzlewicz (2023021709291111800_rssb12079-cit-0013) 2003; 55
Groen (2023021709291111800_rssb12079-cit-0014) 2013; 28
Ombao (2023021709291111800_rssb12079-cit-0026) 2002; 54
Aue (2023021709291111800_rssb12079-cit-0001) 2009; 37
Davis (2023021709291111800_rssb12079-cit-0006) 2006; 101
Vidakovic (2023021709291111800_rssb12079-cit-0032) 1999
Lavielle (2023021709291111800_rssb12079-cit-0021) 2006; 46
Sanderson (2023021709291111800_rssb12079-cit-0029) 2010; 97
Fryzlewicz (2023021709291111800_rssb12079-cit-0012) 2006; 68
Nason (2023021709291111800_rssb12079-cit-0023) 2013; 75
Fryzlewicz (2023021709291111800_rssb12079-cit-0010) 2005; 32
Mikosch (2023021709291111800_rssb12079-cit-0022) 2004; 86
Nason (2023021709291111800_rssb12079-cit-0024) 2000; 62
Ombao (2023021709291111800_rssb12079-cit-0027) 2001; 96
Cho (2023021709291111800_rssb12079-cit-0004) 2011; 21
Korostelev (2023021709291111800_rssb12079-cit-0019) 1987; 32
Fan (2023021709291111800_rssb12079-cit-0009) 2011; 3
Inclán (2023021709291111800_rssb12079-cit-0016) 1994; 89
Chen (2023021709291111800_rssb12079-cit-0003) 1997; 92
Bosq (2023021709291111800_rssb12079-cit-0002) 1998
Johnson (2023021709291111800_rssb12079-cit-0018) 1970
Cho (2023021709291111800_rssb12079-cit-0005) 2012; 22
Yuan (2023021709291111800_rssb12079-cit-0033) 2006; 68
Jentsch (2023021709291111800_rssb12079-cit-0017) 2013
Dwivedi (2023021709291111800_rssb12079-cit-0008) 2011; 32
Vert (2023021709291111800_rssb12079-cit-0031) 2010; 23
Davis (2023021709291111800_rssb12079-cit-0007) 2008; 29
References_xml – reference: Ombao, H., von Sachs, R. and Guo, W. (2005) SLEX analysis of multivariate nonstationary time series. J. Am. Statist. Ass., 100, 519-531.
– reference: Cho, H. and Fryzlewicz, P. (2011) Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets. Statist. Comput., 21, 671-681.
– reference: Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2006) Structural break estimation for non-stationary time series. J. Am. Statist. Ass., 101, 223-239.
– reference: Inclán, C. and Tiao, G. C. (1994) Use of cumulative sums of squares for retrospective detection of changes of variance. J. Am. Statist. Ass., 89, 913-923.
– reference: Fan, J., Lv, J. and Qi, L. (2011) Sparse high-dimensional models in economics. Ann. Rev. Econ., 3, 291-317.
– reference: Mikosch, T. and Staˇricaˇ, C. (2004) Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects. Rev. Econ. Statist., 86, 378-390.
– reference: Nason, G. P. (2013) A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J. R. Statist. Soc. B, 75, 879-904.
– reference: Fryzlewicz, P. (2014) Wild Binary Segmentation for multiple change-point detection. Ann. Statist., to be published.
– reference: Lavielle, M. and Teyssière, G. (2006) Detection of multiple change-points in multivariate time series. Lith. Math. J., 46, 287-306.
– reference: Bosq, D. (1998) Nonparametric Statistics for Stochastic Processes: Estimation and Prediction. New York: Springer.
– reference: Davis, R. A., Lee, T. C. M. and Rodriguez-Yam, G. A. (2008) Break detection for a class of nonlinear time series models. J. Time Ser. Anal., 29, 834-867.
– reference: Groen, J., Kapetanios, G. and Price, S. (2013) Multivariate methods for monitoring structural change. J. Multiv. Time Ser., 28, 250-274.
– reference: Sanderson, J., Fryzlewicz, P. and Jones, M. (2010) Estimating linear dependence between non-stationary time series using the locally stationary wavelet model. Biometrika, 97, 435-446.
– reference: Horváth, L. and Hušková, M. (2012) Change-point detection in panel data. J. Time Ser. Anal., 33, 631-648.
– reference: Fryzlewicz, P. and Nason, G. (2006) Haar-Fisz estimation of evolutionary wavelet spectra. J. R. Statist. Soc. B, 68, 611-634.
– reference: Dwivedi, Y. and Subba Rao, S. (2011) A test for second-order stationarity of a time series based on the discrete Fourier transform. J. Time Ser. Anal., 32, 68-91.
– reference: Cho, H. and Fryzlewicz, P. (2012) Multiscale and multilevel technique for consistent segmentation of nonstationary time series. Statist. Sin., 22, 207-229.
– reference: Johnson, N. and Kotz, S. (1970) Distributions in Statistics: Continuous Univariate Distributions, vol. 1. Boston: Houghton Mifflin.
– reference: Lavielle, M. and Moulines, E. (2000) Least-squares estimation of an unknown number of shifts in a time series. J. Time Ser. Anal., 21, 33-59.
– reference: Chen, J. and Gupta, A. K. (1997) Testing and locating variance change-points with application to stock prices. J. Am. Statist. Ass., 92, 739-747.
– reference: Fryzlewicz, P. (2005) Modelling and forecasting financial log-returns as locally stationary wavelet processes. J. App. Statist., 32, 503-528.
– reference: Ombao, H. C., Raz, J. A., von Sachs, R. and Malow, B. A. (2001) Automatic statistical analysis of bivariate nonstationary time series. J. Am. Statist. Ass., 96, 543-560.
– reference: Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Statist. Soc. B, 68, 49-67.
– reference: Fryzlewicz, P., Van Bellegem, S. and von Sachs, R. (2003) Forecasting non-stationary time series by wavelet process modelling. Ann. Inst. Statist. Math., 55, 737-764.
– reference: Korostelev, A. (1987) On minimax estimation of a discontinuous signal. Theor. Probab. Appl., 32, 727-730.
– reference: Ombao, H. C., Raz, J. A., von Sachs, R. and Guo, W. (2002) The SLEX model of a non-stationary random process. Ann. Inst. Statist. Math., 54, 171-200.
– reference: Nason, G. P., von Sachs, R. and Kroisandt, G. (2000) Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. J. R. Statist. Soc. B, 62, 271-292.
– reference: Vert, J. and Bleakley, K. (2010) Fast detection of multiple change-points shared by many signals using group LARS. Adv. Neur. Inform. Process. Syst., 23, 2343-2351.
– reference: Vidakovic, B. (1999) Statistical Modeling by Wavelets. New York: Wiley.
– reference: Aue, A., Hörmann, S., Horváth, L. and Reimherr, M. (2009) Break detection in the covariance structure of multivariate time series models. Ann. Statist., 37, 4046-4087.
– reference: Nason, G. P. and Silverman, B. W. (1995) The Stationary Wavelet Transform and Some Statistical Applications, .281-300. New York: Springer.
– volume: 23
  start-page: 2343
  year: 2010
  end-page: 2351
  article-title: Fast detection of multiple change‐points shared by many signals using group LARS
  publication-title: Adv. Neur. Inform. Process. Syst.
– volume: 22
  start-page: 207
  year: 2012
  end-page: 229
  article-title: Multiscale and multilevel technique for consistent segmentation of nonstationary time series
  publication-title: Statist. Sin.
– volume: 101
  start-page: 223
  year: 2006
  end-page: 239
  article-title: Structural break estimation for non‐stationary time series
  publication-title: J. Am. Statist. Ass.
– volume: 89
  start-page: 913
  year: 1994
  end-page: 923
  article-title: Use of cumulative sums of squares for retrospective detection of changes of variance
  publication-title: J. Am. Statist. Ass.
– volume: 62
  start-page: 271
  year: 2000
  end-page: 292
  article-title: Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum
  publication-title: J. R. Statist. Soc. B
– volume: 32
  start-page: 727
  year: 1987
  end-page: 730
  article-title: On minimax estimation of a discontinuous signal
  publication-title: Theor. Probab. Appl.
– volume: 68
  start-page: 611
  year: 2006
  end-page: 634
  article-title: Haar–Fisz estimation of evolutionary wavelet spectra
  publication-title: J. R. Statist. Soc. B
– volume: 97
  start-page: 435
  year: 2010
  end-page: 446
  article-title: Estimating linear dependence between non‐stationary time series using the locally stationary wavelet model
  publication-title: Biometrika
– volume: 28
  start-page: 250
  year: 2013
  end-page: 274
  article-title: Multivariate methods for monitoring structural change
  publication-title: J. Multiv. Time Ser.
– volume: 37
  start-page: 4046–4087
  year: 2009
  article-title: Break detection in the covariance structure of multivariate time series models
  publication-title: Ann. Statist.
– volume: 96
  start-page: 543
  year: 2001
  end-page: 560
  article-title: Automatic statistical analysis of bivariate nonstationary time series
  publication-title: J. Am. Statist. Ass.
– volume: 55
  start-page: 737
  year: 2003
  end-page: 764
  article-title: Forecasting non‐stationary time series by wavelet process modelling
  publication-title: Ann. Inst. Statist. Math.
– year: 1992
– volume: 86
  start-page: 378
  year: 2004
  end-page: 390
  article-title: Nonstationarities in financial time series, the long‐range dependence, and the IGARCH effects
  publication-title: Rev. Econ. Statist.
– volume: 54
  start-page: 171
  year: 2002
  end-page: 200
  article-title: The SLEX model of a non‐stationary random process
  publication-title: Ann. Inst. Statist. Math.
– year: 1998
– volume: 29
  start-page: 834
  year: 2008
  end-page: 867
  article-title: Break detection for a class of nonlinear time series models
  publication-title: J. Time Ser. Anal.
– volume: 75
  start-page: 879
  year: 2013
  end-page: 904
  article-title: A test for second‐order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series
  publication-title: J. R. Statist. Soc. B
– volume: 100
  start-page: 519
  year: 2005
  end-page: 531
  article-title: SLEX analysis of multivariate nonstationary time series.
  publication-title: Am. Statist. Ass.
– volume: 21
  start-page: 33
  year: 2000
  end-page: 59
  article-title: Least‐squares estimation of an unknown number of shifts in a time series
  publication-title: J. Time Ser. Anal.
– volume: 92
  start-page: 739
  year: 1997
  end-page: 747
  article-title: Testing and locating variance change‐points with application to stock prices
  publication-title: J. Am. Statist. Ass.
– volume: 21
  start-page: 671
  year: 2011
  end-page: 681
  article-title: Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets
  publication-title: Statist. Comput.
– start-page: 281
  year: 1995
  end-page: 300
– volume: 33
  start-page: 631
  year: 2012
  end-page: 648
  article-title: Change‐point detection in panel data
  publication-title: J. Time Ser. Anal.
– volume: 68
  start-page: 49
  year: 2006
  end-page: 67
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Statist. Soc. B
– volume: 32
  start-page: 68
  year: 2011
  end-page: 91
  article-title: A test for second‐order stationarity of a time series based on the discrete Fourier transform
  publication-title: J. Time Ser. Anal.
– volume: 32
  start-page: 503
  year: 2005
  end-page: 528
  article-title: Modelling and forecasting financial log‐returns as locally stationary wavelet processes
  publication-title: J. App. Statist.
– volume: 46
  start-page: 287
  year: 2006
  end-page: 306
  article-title: Detection of multiple change‐points in multivariate time series
  publication-title: Lith. Math. J.
– year: 2014
  article-title: Wild Binary Segmentation for multiple change‐point detection
  publication-title: Ann. Statist.
– volume: 3
  start-page: 291
  year: 2011
  end-page: 317
  article-title: Sparse high‐dimensional models in economics
  publication-title: Ann. Rev. Econ.
– year: 1970
– year: 2013
– year: 1999
– volume: 54
  start-page: 171
  year: 2002
  ident: 2023021709291111800_rssb12079-cit-0026
  article-title: The SLEX model of a non-stationary random process
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1023/A:1016130108440
– volume: 92
  start-page: 739
  year: 1997
  ident: 2023021709291111800_rssb12079-cit-0003
  article-title: Testing and locating variance change-points with application to stock prices
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1997.10474026
– start-page: 281
  volume-title: The Stationary Wavelet Transform and Some Statistical Applications
  year: 1995
  ident: 2023021709291111800_rssb12079-cit-0025
– volume: 89
  start-page: 913
  year: 1994
  ident: 2023021709291111800_rssb12079-cit-0016
  article-title: Use of cumulative sums of squares for retrospective detection of changes of variance
  publication-title: J. Am. Statist. Ass.
– volume: 32
  start-page: 727
  year: 1987
  ident: 2023021709291111800_rssb12079-cit-0019
  article-title: On minimax estimation of a discontinuous signal
  publication-title: Theor. Probab. Appl.
  doi: 10.1137/1132110
– volume: 97
  start-page: 435
  year: 2010
  ident: 2023021709291111800_rssb12079-cit-0029
  article-title: Estimating linear dependence between non-stationary time series using the locally stationary wavelet model
  publication-title: Biometrika
  doi: 10.1093/biomet/asq007
– volume: 23
  start-page: 2343
  year: 2010
  ident: 2023021709291111800_rssb12079-cit-0031
  article-title: Fast detection of multiple change-points shared by many signals using group LARS
  publication-title: Adv. Neur. Inform. Process. Syst.
– volume: 22
  start-page: 207
  year: 2012
  ident: 2023021709291111800_rssb12079-cit-0005
  article-title: Multiscale and multilevel technique for consistent segmentation of nonstationary time series
  publication-title: Statist. Sin.
  doi: 10.5705/ss.2009.280
– volume: 96
  start-page: 543
  year: 2001
  ident: 2023021709291111800_rssb12079-cit-0027
  article-title: Automatic statistical analysis of bivariate nonstationary time series
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214501753168244
– volume-title: Distributions in Statistics: Continuous Univariate Distributions
  year: 1970
  ident: 2023021709291111800_rssb12079-cit-0018
– volume: 21
  start-page: 33
  year: 2000
  ident: 2023021709291111800_rssb12079-cit-0020
  article-title: Least-squares estimation of an unknown number of shifts in a time series
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/1467-9892.00172
– volume: 86
  start-page: 378
  year: 2004
  ident: 2023021709291111800_rssb12079-cit-0022
  article-title: Nonstationarities in financial time series, the long-range dependence, and the IGARCH effects
  publication-title: Rev. Econ. Statist.
  doi: 10.1162/003465304323023886
– volume-title: Nonparametric Statistics for Stochastic Processes: Estimation and Prediction
  year: 1998
  ident: 2023021709291111800_rssb12079-cit-0002
  doi: 10.1007/978-1-4612-1718-3
– volume: 75
  start-page: 879
  year: 2013
  ident: 2023021709291111800_rssb12079-cit-0023
  article-title: A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/rssb.12015
– volume: 68
  start-page: 49
  year: 2006
  ident: 2023021709291111800_rssb12079-cit-0033
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 33
  start-page: 631
  year: 2012
  ident: 2023021709291111800_rssb12079-cit-0015
  article-title: Change-point detection in panel data
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2012.00796.x
– volume: 37
  start-page: 4046–4087
  year: 2009
  ident: 2023021709291111800_rssb12079-cit-0001
  article-title: Break detection in the covariance structure of multivariate time series models
  publication-title: Ann. Statist.
  doi: 10.1214/09-AOS707
– volume: 28
  start-page: 250
  year: 2013
  ident: 2023021709291111800_rssb12079-cit-0014
  article-title: Multivariate methods for monitoring structural change
  publication-title: J. Multiv. Time Ser.
– volume: 68
  start-page: 611
  year: 2006
  ident: 2023021709291111800_rssb12079-cit-0012
  article-title: Haar–Fisz estimation of evolutionary wavelet spectra
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2006.00558.x
– volume: 29
  start-page: 834
  year: 2008
  ident: 2023021709291111800_rssb12079-cit-0007
  article-title: Break detection for a class of nonlinear time series models
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2008.00585.x
– volume: 55
  start-page: 737
  year: 2003
  ident: 2023021709291111800_rssb12079-cit-0013
  article-title: Forecasting non-stationary time series by wavelet process modelling
  publication-title: Ann. Inst. Statist. Math.
  doi: 10.1007/BF02523391
– volume-title: A test for second order stationarity of a multivariate time series
  year: 2013
  ident: 2023021709291111800_rssb12079-cit-0017
– volume: 62
  start-page: 271
  year: 2000
  ident: 2023021709291111800_rssb12079-cit-0024
  article-title: Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00231
– volume: 32
  start-page: 503
  year: 2005
  ident: 2023021709291111800_rssb12079-cit-0010
  article-title: Modelling and forecasting financial log-returns as locally stationary wavelet processes
  publication-title: J. App. Statist.
– volume: 100
  start-page: 519
  year: 2005
  ident: 2023021709291111800_rssb12079-cit-0028
  article-title: SLEX analysis of multivariate nonstationary time series. J
  publication-title: Am. Statist. Ass.
  doi: 10.1198/016214504000001448
– volume: 21
  start-page: 671
  year: 2011
  ident: 2023021709291111800_rssb12079-cit-0004
  article-title: Multiscale interpretation of taut string estimation and its connection to Unbalanced Haar wavelets
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-010-9200-5
– volume: 46
  start-page: 287
  year: 2006
  ident: 2023021709291111800_rssb12079-cit-0021
  article-title: Detection of multiple change-points in multivariate time series
  publication-title: Lith. Math. J.
  doi: 10.1007/s10986-006-0028-9
– volume-title: Statistical Modeling by Wavelets
  year: 1999
  ident: 2023021709291111800_rssb12079-cit-0032
  doi: 10.1002/9780470317020
– volume: 32
  start-page: 68
  year: 2011
  ident: 2023021709291111800_rssb12079-cit-0008
  article-title: A test for second-order stationarity of a time series based on the discrete Fourier transform
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2010.00685.x
– volume: 3
  start-page: 291
  year: 2011
  ident: 2023021709291111800_rssb12079-cit-0009
  article-title: Sparse high-dimensional models in economics
  publication-title: Ann. Rev. Econ.
  doi: 10.1146/annurev-economics-061109-080451
– volume-title: Consistency results in multiple change-point problems
  year: 1992
  ident: 2023021709291111800_rssb12079-cit-0030
– volume: 101
  start-page: 223
  year: 2006
  ident: 2023021709291111800_rssb12079-cit-0006
  article-title: Structural break estimation for non-stationary time series
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214505000000745
– year: 2014
  ident: 2023021709291111800_rssb12079-cit-0011
  article-title: Wild Binary Segmentation for multiple change-point detection
  publication-title: Ann. Statist.
  doi: 10.1214/14-AOS1245
SSID ssj0000673
Score 2.589405
Snippet Time series segmentation, which is also known as multiple‐change‐point detection, is a well‐established problem. However, few solutions have been designed...
Time series segmentation, which is also known as multiple-change-point detection, is a well-established problem. However, few solutions have been designed...
Summary Time series segmentation, which is also known as multiple‐change‐point detection, is a well‐established problem. However, few solutions have been...
Summary Time series segmentation, which is also known as multiple-change-point detection, is a well-established problem. However, few solutions have been...
Time series segmentation, which is also known as multiple‐ ;change-point detection, is a well-established problem. However, few solutions have been designed...
SourceID proquest
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 475
SubjectTerms Algorithms
Averages
Binary segmentation
Changes
Cumulative sum statistic
Dimensionality
Economic crises
Hierarchical scales
High dimensional time series
International
Locally stationary wavelet model
Multiple-change-point detection
Multivariate analysis
Null hypothesis
Segmentation
Simulations
Standard and Poors 500 Index
Standard deviation
Statistical analysis
Statistics
Studies
Threshing
Thresholding
Time
Time series
time series analysis
Time series models
wavelet
Title Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation
URI https://api.istex.fr/ark:/67375/WNG-BZQNSVCF-7/fulltext.pdf
https://www.jstor.org/stable/24774746
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12079
https://www.proquest.com/docview/1650097692
https://www.proquest.com/docview/1667352625
https://www.proquest.com/docview/1803074059
Volume 77
WOSCitedRecordID wos000349206900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD60Wx_6Uq-lU6tEFEFhZO6ZgC-2uvqgi3ZdLb6EJJNZFu1smdkWH_0J_kZ_iedkLm5BCuJbIGeYzLnlS-ZcAB4lJjEqsomfmEz7ieWZr9Ig9gubGZMbW3AbuGYTfDLJT07E-w143ufCtPUhhgs3sgznr8nAlW7WjLxuGv0sjAIuNmErQsVNR7D18ng8e7vuieM270r4uHNGXXlSiuT58_SlDWmzVEuEqcTh732E4iXsuY5g3RY0vv5_i78BOx30ZC9aXbkJG7a6BduENttizbdh_q4LL_z142ebEYyDs-WiWrHCrlzQVsUQ5TIqcswKagzQFvVg1KKekTbbhl0sFEM_VTeLEvEt0y7jFyfnp12eU3UHZuNXH4_e-F0nBt_wCJlnODJTcRtzk-co1MIisgmFUrqkJJCsQCBCcs14WGgrUqu0NoglAyt0yEsR78KoWlZ2D1iRCUXXGIg9VMLLUGWitGGam9jkaSEyD5704pCmK1NO3TK-yf64QryTjncePBxoz9riHH-l2kOpSjVHryln04hq6tEPxVDkHjx2oh6eVvVXinTjqfw8eS0Pv3yYTD8djSX3YNfpwkAYJYibeYLLPeiVQ3bW38gQYW-AOE9EHjwYptFu6WeMquzynGjwPWmEx88raHJywQip8RueOnW64jPl8XR66Eb7_0J8F7aRI2kbVncAo1V9bu_BNXOBulff7yzqN3IwJgQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7YVrAv3kujVUcUQSGS-2Qe2-pacRu027XFl2EymSyLmi3JtvjYn9Df2F_iOZNs3IIUxLeBOSGTc5tvJucC8DLSkVaBidxIJ7kbGZ64KvZCtzCJ1qk2BTeebTbBsyw9Phafu9gcyoVp60P0F25kGdZfk4HThfSSlddNk7_1A4-LFViLUI9QwdfeHQzGw2VXHLaJV8LFrTPo6pNSKM-fp6_sSCulmiFOJRb_WoQoXgGfyxDW7kGDO_-5-rtwuwOfbLvVlntww1T3YZ3wZluu-QFM9rsAw8vzizYnGAcns2k1Z4WZ27CtiiHOZVTmmBXUGqAt68GoST0jfTYNO5sqhp6qbqYlIlyW25xfnJz87DKdqocwHrw_3N1zu14MruYBck9z5KbiJuQ6TVGshUFs4wul8pLSQJICoQhJNuF-kRsRG5XnGtGkZ0Tu81KEG7BazSqzCaxIhKKLDEQfKuKlrxJRGj9OdajTuBCJA68X8pC6K1RO_TJ-yMWBhXgnLe8ceNHTnrTlOf5KtYlilWqCflOORwFV1aNfir5IHXhlZd0_rervFOvGY3mUfZA7375ko6-7A8kd2LDK0BMGESJnHuFytxbaITv7b6SPwNdDpCcCB57302i59DtGVWZ2SjT4njjAA-g1NCk5YQTV-A1vrD5d85nyYDTasaNH_0L8DG7tHe4P5fBj9ukxrCN34jbIbgtW5_WpeQI39RnqYf20M6_f92sp9A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7YrUhfvJdGq44ogkIk98k82taoWEPtulp8GSaTybKo2SXZFh_9Cf5Gf4nnTLJxC1IQ3wbmhEzObb6ZnAvA40hHWgUmciOdFG5keOKq2Avd0iRap9qU3Hi22QTP8_TkRBz1sTmUC9PVhxgu3MgyrL8mAzeLslqz8qZti-d-4HGxAZsRdZEZwebBcTY5XHfFYZd4JVzcOoO-PimF8vx5-tyOtFGpOeJUYvH3VYjiOfC5DmHtHpRd-8_VX4erPfhkLzptuQGXTH0TtghvduWab8H0XR9g-OvHzy4nGAeL-axestIsbdhWzRDnMipzzEpqDdCV9WDUpJ6RPpuWnc0UQ0_VtLMKES4rbM4vTk6_9ZlO9W2YZC8_7L92-14MruYBck9z5KbiJuQ6TVGspUFs4wuliorSQJISoQhJNuF-WRgRG1UUGtGkZ0Th80qE2zCq57XZAVYmQtFFBqIPFfHKV4mojB-nOtRpXIrEgacreUjdFyqnfhlf5erAQryTlncOPBpoF115jr9S7aBYpZqi35STcUBV9eiXoi9SB55YWQ9Pq-YLxbrxWH7KX8m9z-_z8cf9THIHtq0yDIRBhMiZR7jc3ZV2yN7-W-kj8PUQ6YnAgYfDNFou_Y5RtZmfEg2-Jw7wAHoBTUpOGEE1fsMzq08XfKY8Ho_37OjOvxA_gCtHB5k8fJO_vQtbyJy4i7HbhdGyOTX34LI-QzVs7vfW9RtG0Clv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple%E2%80%90change%E2%80%90point+detection+for+high+dimensional+time+series+via+sparsified+binary+segmentation&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Cho%2C+Haeran&rft.au=Fryzlewicz%2C+Piotr&rft.date=2015-03-01&rft.issn=1369-7412&rft.volume=77&rft.issue=2+p.475-507&rft.spage=475&rft.epage=507&rft_id=info:doi/10.1111%2Frssb.12079&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon