Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning

A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with unce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 11; číslo 7; s. e0158248
Hlavní autoři: de Souza, Erico N., Boerder, Kristina, Matwin, Stan, Worm, Boris
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 01.07.2016
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS) are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011-2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM) using vessel speed as observation variable. For longliners we have designed a Data Mining (DM) approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.
AbstractList A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS) are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011–2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM) using vessel speed as observation variable. For longliners we have designed a Data Mining (DM) approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.
A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS) are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011-2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM) using vessel speed as observation variable. For longliners we have designed a Data Mining (DM) approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of the global fishing fleets is required in order to prioritize and enforce fisheries management and conservation measures worldwide. Satellite-based Automatic Information Systems (S-AIS) are now commonly installed on most ocean-going vessels and have been proposed as a novel tool to explore the movements of fishing fleets in near real time. Here we present approaches to identify fishing activity from S-AIS data for three dominant fishing gear types: trawl, longline and purse seine. Using a large dataset containing worldwide fishing vessel tracks from 2011-2015, we developed three methods to detect and map fishing activities: for trawlers we produced a Hidden Markov Model (HMM) using vessel speed as observation variable. For longliners we have designed a Data Mining (DM) approach using an algorithm inspired from studies on animal movement. For purse seiners a multi-layered filtering strategy based on vessel speed and operation time was implemented. Validation against expert-labeled datasets showed average detection accuracies of 83% for trawler and longliner, and 97% for purse seiner. Our study represents the first comprehensive approach to detect and identify potential fishing behavior for three major gear types operating on a global scale. We hope that this work will enable new efforts to assess the spatial and temporal distribution of global fishing effort and make global fisheries activities transparent to ocean scientists, managers and the public.
Audience Academic
Author de Souza, Erico N.
Boerder, Kristina
Matwin, Stan
Worm, Boris
AuthorAffiliation 2 Biology Department, Dalhousie University, Halifax, NS, Canada
3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
1 Big Data Analytics Institute, Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
Aristotle University of Thessaloniki, GREECE
AuthorAffiliation_xml – name: Aristotle University of Thessaloniki, GREECE
– name: 1 Big Data Analytics Institute, Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
– name: 2 Biology Department, Dalhousie University, Halifax, NS, Canada
– name: 3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
Author_xml – sequence: 1
  givenname: Erico N.
  surname: de Souza
  fullname: de Souza, Erico N.
– sequence: 2
  givenname: Kristina
  surname: Boerder
  fullname: Boerder, Kristina
– sequence: 3
  givenname: Stan
  surname: Matwin
  fullname: Matwin, Stan
– sequence: 4
  givenname: Boris
  surname: Worm
  fullname: Worm, Boris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27367425$$D View this record in MEDLINE/PubMed
BookMark eNqNk2tr1EAUhoNU7EX_gWhAEP2w69xy84OwtFYXtlRc6zcZTiaT3VmSmXVmUvTfO-mmZVOKlEBmOHnOOyfvnHMcHWijZRS9xGiKaYY_bExnNTTTbQhPEU5ywvIn0REuKJmkBNGDvf1hdOzcBqGE5mn6LDokGU0zRpKj6Ne83VpzrfQqPldu3a_fwHtpdXwmvRReGR3X1rTxErxsGuVlPJsv4yvXo2fgIb5Qut-DruILEEFCxgsJtg8-j57W0Dj5YlhPoqvzzz9Ov04Wl1_mp7PFRGQk8ZNUpCXQVCQixbJkFZQVJigrcJHgQmCgNSrDW2R5kZQpphjyLCkYCESpLKCgJ9Hrne62MY4PzjiOc4QRSRnGgZjviMrAhm-tasH-5QYUvwkYu-JgvRKN5BShvBShHkqAFXUohua4IozWIksozYPWp-G0rmxlJaT2FpqR6PiLVmu-MtecFRQR3Au8GwSs-d1J53mrnAjugpamu6k7z0iR0UehmFFGEArom3vow0YM1ArCvypdm1Ci6EX5jCVpRos87bWmD1DhqWSrROi4WoX4KOH9KCEwXv7xK-ic4_Pl98ezlz_H7Ns9di2h8Wtnmq7vSzcGX-1fyt1t3LZ6ANgOENY4Z2V9h2DE-4m6tYv3E8WHiQppH--lCeWhPz44opr_J_8DIHckLg
CitedBy_id crossref_primary_10_1016_j_marpol_2019_103675
crossref_primary_10_1109_ACCESS_2019_2945056
crossref_primary_10_1111_csp2_12926
crossref_primary_10_1007_s00773_019_00694_5
crossref_primary_10_1016_j_oneear_2022_08_006
crossref_primary_10_1016_j_fishres_2023_106793
crossref_primary_10_1016_j_jenvman_2023_119735
crossref_primary_10_1109_ACCESS_2020_2980322
crossref_primary_10_1016_j_marpol_2018_02_012
crossref_primary_10_1016_j_oceaneng_2023_116630
crossref_primary_10_1155_2022_2700674
crossref_primary_10_1016_j_tre_2025_104159
crossref_primary_10_1051_alr_2017038
crossref_primary_10_1007_s00227_021_03841_y
crossref_primary_10_1109_ACCESS_2020_3022865
crossref_primary_10_3389_fmars_2021_635568
crossref_primary_10_1016_j_oneear_2024_09_009
crossref_primary_10_1007_s10707_020_00408_9
crossref_primary_10_1007_s10707_022_00463_4
crossref_primary_10_1038_s41598_018_36915_x
crossref_primary_10_58930_bp42323989
crossref_primary_10_1080_1523908X_2018_1461084
crossref_primary_10_1126_sciadv_ads1592
crossref_primary_10_1016_j_ocecoaman_2022_106280
crossref_primary_10_1139_cjfas_2016_0446
crossref_primary_10_1371_journal_pone_0313197
crossref_primary_10_3389_fmars_2019_00537
crossref_primary_10_1007_s00343_022_2005_5
crossref_primary_10_1016_j_marpol_2019_103520
crossref_primary_10_1111_1365_2664_13849
crossref_primary_10_3389_fmars_2017_00409
crossref_primary_10_1038_s41598_025_88158_2
crossref_primary_10_1007_s12601_023_00126_x
crossref_primary_10_1016_j_ecoinf_2022_101903
crossref_primary_10_1016_j_is_2025_102523
crossref_primary_10_1016_j_marpol_2017_12_013
crossref_primary_10_3389_fmars_2021_685808
crossref_primary_10_3389_fmars_2022_808282
crossref_primary_10_1086_708720
crossref_primary_10_3389_fmars_2025_1532964
crossref_primary_10_1111_exsy_12252
crossref_primary_10_3389_fmars_2023_1171641
crossref_primary_10_3389_fsufs_2023_1152226
crossref_primary_10_1371_journal_pone_0216819
crossref_primary_10_1016_j_atmosenv_2021_118382
crossref_primary_10_1016_j_ecolind_2023_110628
crossref_primary_10_1093_icesjms_fsae006
crossref_primary_10_1002_mcf2_10309
crossref_primary_10_1007_s10044_024_01263_2
crossref_primary_10_1017_S037346331800067X
crossref_primary_10_1111_faf_12669
crossref_primary_10_1016_j_fishres_2021_105896
crossref_primary_10_1109_ACCESS_2021_3077514
crossref_primary_10_1016_j_ocecoaman_2023_106690
crossref_primary_10_1007_s12562_023_01734_1
crossref_primary_10_1038_s41467_022_28916_2
crossref_primary_10_1016_j_marpol_2019_02_038
crossref_primary_10_1007_s13437_018_0151_6
crossref_primary_10_1002_ece3_4176
crossref_primary_10_1371_journal_pone_0321116
crossref_primary_10_3233_JIFS_231447
crossref_primary_10_1111_faf_12596
crossref_primary_10_3389_fmars_2020_580612
crossref_primary_10_1002_aqc_4015
crossref_primary_10_1007_s00530_020_00733_x
crossref_primary_10_1038_s44183_023_00023_9
crossref_primary_10_1080_09669582_2021_1887878
crossref_primary_10_1016_j_marpol_2018_11_006
crossref_primary_10_1038_s41558_024_02127_7
crossref_primary_10_1111_faf_12559
crossref_primary_10_3389_fmars_2022_1051879
crossref_primary_10_1177_25148486221111786
crossref_primary_10_1007_s11802_021_4518_5
crossref_primary_10_1139_cjfas_2023_0291
crossref_primary_10_1007_s11431_018_9335_1
crossref_primary_10_1016_j_fishres_2023_106614
crossref_primary_10_1126_science_aao5646
crossref_primary_10_1007_s11277_020_07200_w
crossref_primary_10_1088_2053_1583_ab3771
crossref_primary_10_1139_cjfas_2023_0123
crossref_primary_10_1007_s13437_023_00312_7
crossref_primary_10_1371_journal_pone_0282374
crossref_primary_10_1371_journal_pone_0269490
crossref_primary_10_1007_s10707_019_00365_y
crossref_primary_10_1016_j_oceaneng_2024_120136
crossref_primary_10_1016_j_ocecoaman_2022_106136
crossref_primary_10_1111_faf_12285
crossref_primary_10_1016_j_ecoinf_2021_101384
crossref_primary_10_1080_23308249_2021_1937044
crossref_primary_10_1007_s13437_021_00251_1
crossref_primary_10_1038_s41598_022_05142_w
crossref_primary_10_1111_faf_12647
crossref_primary_10_1017_S0373463318000188
crossref_primary_10_1109_ACCESS_2024_3416389
Cites_doi 10.1093/icesjms/fsq137
10.1016/j.sigpro.2005.01.012
10.1126/science.1149345
10.1139/cjfas-2013-0552
10.2307/1941448
10.1126/science.aad5686
10.1093/icesjms/fsq010
10.1016/j.ecolmodel.2010.05.007
10.2307/3801959
10.1109/SDF.2015.7347707
10.1109/OCEANSE.2009.5278254
10.1109/SPSC.2008.4686715
10.1016/j.icesjms.2004.12.002
10.1136/bmj.309.6947.102
10.1017/S0373463305003267
10.1017/S037346331100066X
10.1139/f2011-055
10.1109/BigData.2014.7004281
10.1371/journal.pone.0130746
10.1016/S0304-4149(99)00023-X
10.1371/journal.pone.0082898
10.1093/icesjms/fss166
10.1016/j.ecolmodel.2006.03.017
10.18637/jss.v050.i09
10.1016/j.biocon.2011.02.024
10.2307/3800474
10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2
10.1002/sat.957
10.1139/f2011-114
10.1139/cjfas-2013-0572
10.1016/j.ecolmodel.2010.04.005
10.1371/journal.pone.0001111
10.3390/e15062218
ContentType Journal Article
Copyright COPYRIGHT 2016 Public Library of Science
2016 de Souza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2016 de Souza et al 2016 de Souza et al
Copyright_xml – notice: COPYRIGHT 2016 Public Library of Science
– notice: 2016 de Souza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2016 de Souza et al 2016 de Souza et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0158248
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Agricultural Science Database


MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Ecology
Computer Science
DocumentTitleAlternate Identifying Fishing Activity from AIS
EISSN 1932-6203
ExternalDocumentID 1801026411
oai_doaj_org_article_3008bca3632a49fabd381d243fc75338
PMC4930218
4106196861
A456739860
27367425
10_1371_journal_pone_0158248
Genre Journal Article
GeographicLocations Poland
Canada
GeographicLocations_xml – name: Canada
– name: Poland
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c725t-6c6ba36c5c61eb4dabd1207919519c1a3f0b1a3c7895b6131a87594ac033e9a93
IEDL.DBID FPL
ISICitedReferencesCount 152
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378914900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Apr 02 01:15:44 EDT 2023
Fri Oct 03 12:40:23 EDT 2025
Tue Nov 04 01:57:38 EST 2025
Tue Oct 07 09:46:53 EDT 2025
Sun Nov 09 13:38:11 EST 2025
Tue Oct 07 07:51:51 EDT 2025
Sat Nov 29 13:14:12 EST 2025
Sat Nov 29 10:18:57 EST 2025
Wed Nov 26 10:11:25 EST 2025
Wed Nov 26 10:39:48 EST 2025
Thu May 22 21:20:37 EDT 2025
Mon Jul 21 06:03:11 EDT 2025
Tue Nov 18 22:33:49 EST 2025
Sat Nov 29 07:46:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c725t-6c6ba36c5c61eb4dabd1207919519c1a3f0b1a3c7895b6131a87594ac033e9a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: ENS KB SM BW. Performed the experiments: ENS KB. Analyzed the data: ENS KB. Wrote the paper: ENS KB SM BW.
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0158248
PMID 27367425
PQID 1801026411
PQPubID 1436336
ParticipantIDs plos_journals_1801026411
doaj_primary_oai_doaj_org_article_3008bca3632a49fabd381d243fc75338
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4930218
proquest_miscellaneous_1808729738
proquest_miscellaneous_1801434200
proquest_journals_1801026411
gale_infotracmisc_A456739860
gale_infotracacademiconefile_A456739860
gale_incontextgauss_ISR_A456739860
gale_incontextgauss_IOV_A456739860
gale_healthsolutions_A456739860
pubmed_primary_27367425
crossref_primary_10_1371_journal_pone_0158248
crossref_citationtrail_10_1371_journal_pone_0158248
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2016
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References BS Halpern (ref1) 2008; 319
ref12
C Calenge (ref26) 2006; 197
ref36
J Lee (ref9) 2010; 67
K Skaar (ref8) 2011
ref11
ref33
WV Winkle (ref30) 1975; 39
ref17
ref39
ref38
E Walker (ref13) 2010; 221
M Lavielle (ref25) 2005; 85
ref18
D Peel (ref22) 2011; 68
J Carson-Jackson (ref34) 2012; 65
DJ McCauley (ref42) 2016; 351
MJ Witt (ref32) 2007; 2
L Torgo (ref19) 2010
DG Altman (ref20) 1994; 309
MA Cervera (ref35) 2011; 29
F Natale (ref4) 2015; 10
D Alemany (ref10) 2013; 70
R Trebilco (ref2) 2011; 144
H Gerritsen (ref6) 2011; 68
C Shui-Kai (ref5) 2014; 71
O Perpiñán (ref16) 2012; 50
AR Johnson (ref29) 1992; 73
Y Vermard (ref31) 2010; 221
P Fauchald (ref27) 2003; 84
BJ Worton (ref28) 1995; 59
ref7
WR Cairns (ref41) 2005; 58
C Charles (ref23) 2014; 71
M Lavielle (ref24) 1999; 83
S Bertrand (ref15) 2005; 62
G Pallotta (ref37) 2013; 15
N Bez (ref14) 2011; 68
ER Selig (ref3) 2014; 9
ref40
Z Ghahramani (ref21) 2002
18276889 - Science. 2008 Feb 15;319(5865):948-52
26098430 - PLoS One. 2015 Jun 22;10(6):e0130746
8038641 - BMJ. 1994 Jul 9;309(6947):102
26965610 - Science. 2016 Mar 11;351(6278):1148-50
17971874 - PLoS One. 2007 Oct 31;2(10):e1111
24416151 - PLoS One. 2014 Jan 08;9(1):e82898
27657928 - PLoS One. 2016;11(9):e0163760
References_xml – volume: 68
  start-page: 245
  issue: 1
  year: 2011
  ident: ref6
  article-title: Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution
  publication-title: ICES Journal of Marine Science: Journal du Conseil
  doi: 10.1093/icesjms/fsq137
– ident: ref39
– ident: ref7
– volume: 85
  start-page: 1501
  issue: 8
  year: 2005
  ident: ref25
  article-title: Using penalized contrasts for the change-point problem
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2005.01.012
– volume: 319
  start-page: 948
  issue: 5865
  year: 2008
  ident: ref1
  article-title: A global map of human impact on marine ecosystems
  publication-title: Science
  doi: 10.1126/science.1149345
– volume: 71
  start-page: 1363
  issue: 9
  year: 2014
  ident: ref5
  article-title: Deriving high-resolution spatiotemporal fishing effort of large-scale longline fishery from vessel monitoring system (VMS) data and validated by observer data
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/cjfas-2013-0552
– year: 2011
  ident: ref8
  article-title: Accuracy of VMS data from Norwegian demersal stern trawlers for estimating trawled areas in the Barents Sea
  publication-title: ICES Journal of Marine Science: Journal du Conseil
– volume: 73
  start-page: 1968
  issue: 6
  year: 1992
  ident: ref29
  article-title: Diffusion in Fractcal Landscapes: Simulations and Experimental Studies of Tenebrionid Beetle Movements
  publication-title: Ecology
  doi: 10.2307/1941448
– volume: 351
  start-page: 1148
  issue: 6278
  year: 2016
  ident: ref42
  article-title: Ending hide and go seek in the oceans
  publication-title: Science
  doi: 10.1126/science.aad5686
– volume: 67
  start-page: 1260
  issue: 6
  year: 2010
  ident: ref9
  article-title: Developing reliable, repeatable, and accessible methods to provide high-resolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data
  publication-title: ICES Journal of Marine Science: Journal du Conseil
  doi: 10.1093/icesjms/fsq010
– volume: 221
  start-page: 2008
  issue: 17
  year: 2010
  ident: ref13
  article-title: A pioneer validation of a state-space model of vessel trajectories (VMS) with observers’ data
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2010.05.007
– volume: 59
  start-page: 794
  issue: 4
  year: 1995
  ident: ref28
  article-title: Using Monte Carlo Simulation to Evaluate Kernel-Based Home Range Estimators
  publication-title: The Journal of Wildlife Management
  doi: 10.2307/3801959
– ident: ref11
  doi: 10.1109/SDF.2015.7347707
– ident: ref33
  doi: 10.1109/OCEANSE.2009.5278254
– ident: ref36
  doi: 10.1109/SPSC.2008.4686715
– volume: 62
  start-page: 477
  issue: 3
  year: 2005
  ident: ref15
  article-title: Levy trajectories of Peruvian purse-seiners as an indicator of the spatial distribution of anchovy (Engraulis ringens)
  publication-title: ICES Journal of Marine Science: Journal du Conseil
  doi: 10.1016/j.icesjms.2004.12.002
– volume: 309
  start-page: 102
  issue: 6947
  year: 1994
  ident: ref20
  article-title: Diagnostic tests 2: Predictive values
  publication-title: BMJ
  doi: 10.1136/bmj.309.6947.102
– volume: 58
  start-page: 181
  issue: 02
  year: 2005
  ident: ref41
  article-title: AIS and long range identification & tracking
  publication-title: Journal of Navigation
  doi: 10.1017/S0373463305003267
– volume: 65
  start-page: 303
  issue: 02
  year: 2012
  ident: ref34
  article-title: Satellite AIS–Developing Technology or Existing Capability?
  publication-title: Journal of Navigation
  doi: 10.1017/S037346331100066X
– ident: ref17
– year: 2010
  ident: ref19
  article-title: Data Mining with R, learning with case studies
– volume: 68
  start-page: 1252
  issue: 7
  year: 2011
  ident: ref22
  article-title: A hidden Markov model approach for determining vessel activity from vessel monitoring system data
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/f2011-055
– ident: ref40
  doi: 10.1109/BigData.2014.7004281
– ident: ref38
– volume: 10
  start-page: e0130746
  issue: 6
  year: 2015
  ident: ref4
  article-title: Mapping Fishing Effort through AIS Data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130746
– volume: 83
  start-page: 79
  issue: 1
  year: 1999
  ident: ref24
  article-title: Detection of multiple changes in a sequence of dependent variables
  publication-title: Stochastic Processes and their Applications
  doi: 10.1016/S0304-4149(99)00023-X
– volume: 9
  start-page: e82898
  issue: 1
  year: 2014
  ident: ref3
  article-title: Global priorities for marine biodiversity conservation
  publication-title: PloS one
  doi: 10.1371/journal.pone.0082898
– volume: 70
  start-page: 123
  issue: 1
  year: 2013
  ident: ref10
  article-title: Effects of a large-scale and offshore marine protected area on the demersal fish assemblage in the Southwest Atlantic
  publication-title: ICES Journal of Marine Science: Journal du Conseil
  doi: 10.1093/icesjms/fss166
– volume: 197
  start-page: 1035
  year: 2006
  ident: ref26
  article-title: The package adehabitat for the R software: tool for the analysis of space and habitat use by animals
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2006.03.017
– volume: 50
  start-page: 1
  issue: 9
  year: 2012
  ident: ref16
  article-title: solaR: Solar Radiation and Photovoltaic Systems with R
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v050.i09
– start-page: 9
  year: 2002
  ident: ref21
  article-title: Hidden Markov Models
– volume: 144
  start-page: 1758
  issue: 5
  year: 2011
  ident: ref2
  article-title: Mapping species richness and human impact drivers to inform global pelagic conservation prioritisation
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2011.02.024
– volume: 39
  start-page: 118
  issue: 1
  year: 1975
  ident: ref30
  article-title: Comparison of Several Probabilistic Home-Range Models
  publication-title: The Journal of Wildlife Management
  doi: 10.2307/3800474
– volume: 84
  start-page: 282
  year: 2003
  ident: ref27
  article-title: Using First-Passage Time in the Analysis of Area-Restricted Search and Habitat Selection
  publication-title: Ecology
  doi: 10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2
– ident: ref18
– volume: 29
  start-page: 117
  issue: 2
  year: 2011
  ident: ref35
  article-title: Satellite-based vessel Automatic Identification System: A feasibility and performance analysis
  publication-title: International Journal of Satellite Communications and Networking
  doi: 10.1002/sat.957
– volume: 68
  start-page: 1998
  issue: 11
  year: 2011
  ident: ref14
  article-title: Fishing activity of tuna purse seiners estimated from vessel monitoring system (VMS) data
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/f2011-114
– volume: 71
  start-page: 1817
  issue: 12
  year: 2014
  ident: ref23
  article-title: Using hidden Markov models to infer vessel activities in the snow crab (Chionoecetes opilio) fixed gear fishery and their application to catch standardization
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
  doi: 10.1139/cjfas-2013-0572
– volume: 221
  start-page: 1757
  issue: 15
  year: 2010
  ident: ref31
  article-title: Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2010.04.005
– volume: 2
  start-page: e1111
  issue: 10
  year: 2007
  ident: ref32
  article-title: A step towards seascape scale conservation: using vessel monitoring systems (VMS) to map fishing activity
  publication-title: PloS one
  doi: 10.1371/journal.pone.0001111
– volume: 15
  start-page: 2218
  issue: 6
  year: 2013
  ident: ref37
  article-title: Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction
  publication-title: Entropy
  doi: 10.3390/e15062218
– ident: ref12
– reference: 8038641 - BMJ. 1994 Jul 9;309(6947):102
– reference: 24416151 - PLoS One. 2014 Jan 08;9(1):e82898
– reference: 26965610 - Science. 2016 Mar 11;351(6278):1148-50
– reference: 26098430 - PLoS One. 2015 Jun 22;10(6):e0130746
– reference: 17971874 - PLoS One. 2007 Oct 31;2(10):e1111
– reference: 18276889 - Science. 2008 Feb 15;319(5865):948-52
– reference: 27657928 - PLoS One. 2016;11(9):e0163760
SSID ssj0053866
Score 2.6064546
Snippet A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0158248
SubjectTerms Algorithms
Analysis
Animals
Aquatic sciences
Artificial intelligence
Biology and Life Sciences
Chionoecetes opilio
Coastal fisheries
Coastal waters
Computer and Information Sciences
Computer science
Conservation
Data analysis
Data mining
Data Mining - methods
Data processing
Earth Sciences
Ecology
Ecology and Environmental Sciences
Environmental protection
Filtration
Fisheries
Fisheries - statistics & numerical data
Fisheries management
Fishery management
Fishing
Fishing equipment
Fishing gear
Fishing tackle
Fishing vessels
Ground stations
Human influences
Identification systems
Information systems
International conferences
Learning algorithms
Machine Learning
Markov chains
Methods
Monte Carlo simulation
Multilayers
Oceans
Pattern Recognition, Automated - methods
Physical sciences
Protection and preservation
Research and Analysis Methods
Satellite communications
Seiners
Signal processing
Spacecraft
Spatial distribution
Temporal distribution
Trawlers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQtQdeEONrHQMMQgIesiWxa8ePhVExiY2JAtoLipyLPSZNabWk-_s5fzRq0MR44KUP8SVqf3fnO6d3vyPktQWeg0BPE8IUCTfAEzUp6sQIDVAUqoIwteSzPDkpzs7U6caoL1cTFuiBA3AHDINUBZoJlmuurK5qjDF1zpkFzLSZb_NNpVofpsIejF4sRGyUYzI7iHrZXy4as48BsMjdvJ-NQOT5-vtdebS8XLQ3pZx_Vk5uhKLZfXIv5pB0Gr77NrljmgdkO3ppS99GKul3D8nP_p0BnYWXTfTUE2o29NB0vgqroa7DhM61p-bsDJ0ezakvJKCHutP02E-QoLqp6bEvvDQ0crKePyLfZx-_ffiUxIEKCch80iUCRIVIwgREZipeI5iZAy_DNEtBpplNK_wEWahJhXE-03iaUVxDyphRWrHHZNQghDuEpja3VtoaRG25kaA55g6V1ayaZJqbekzYGt0SItu4G3pxWfq_0CSeOgJYpdNJGXUyJkl_1zKwbdwi_94prpd1XNn-AlpQGS2ovM2CxuSFU3sZGk97jy-nmFtKpgqRjskrL-H4MhpXkHOuV21bHn358Q9C868DoTdRyC4QDtCxCQJ_k-PhGkjuDSTR62GwvOOMdI1KW2aFYwcUPMvwzrXh3rz8sl92D3VFdo1ZrIIMZxz3zb_KFNLNO0PYngRf6NHHTFhIjAFjIgdeMlDPcKW5-OUpzbliLtnc_R_6fEruYlYrQk31Hhl1VyvzjGzBdXfRXj33-8RvI1dtSg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLeggMSFsfKxwgCDkIBDtjp27fiECtvEJDamFaZdUOQ4dpk0JaVJkfjveXacsKBpIHHJIX6JYr8P_-w8_x5CL61msebgaZybJGJGs0hOkjwyXGmdJDLTTdWSj-LwMDk9lUdhw60KaZVtTPSBOi-12yPfJoljP-OMkLeL75GrGuX-roYSGtfRDeKwMdizOD5pIzH4MufhuBwVZDtoZ2tRFmYLpsEkdlV_LkxHnrW_i82DxXlZXQY8_8yfvDAh7a39b1fuojsBiuJpYzvr6JophmitLfOAg9cP0a1dz2z9c4jWw70Kvw501W_uoa_dvgTeaza08JEn7Szwjql9pleB3SkWPFOe_rM2eLo_wz5ZAe-oWuEDX6UCqyLHBz650-DA-zq_j77s7X5-_yEKRRsiLeJJHXHNM0W5nmhOTMZyleUkHgtJAMpJTRS14wyuWiRykgGWIApWTJIpPabUSCXpAzQoQEEbCI9tbK2wuea5ZUZoxQCfZFbRbEIUM_kI0VZ3qQ6M5q6wxnnqf9MJWNk0I5k6jadB4yMUdU8tGkaPv8i_c2bRyTo-bn-jXM7T4N4pBSiVaeg3jRWTFjoNSCiPGbUa1oMUXvLMGVXaHG7toko6BfwqqEz4eIReeAnHyVG4pJ-5WlVVuv_p5B-EZsc9oVdByJYwHFqFgxbQJ8f11ZPc7ElCZNG95g3nAu2oVOlvw4UnW9O-vPl51-xe6hL5ClOuGhlGGcTmK2US4WqqwbA9bDytG31A21zAPDNCoueDPfX0W4qzb542nUnqAO2jqz_9MboNmJg3GdmbaFAvV-YJuql_1GfV8qmPL78AEUuE3Q
  priority: 102
  providerName: ProQuest
Title Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/27367425
https://www.proquest.com/docview/1801026411
https://www.proquest.com/docview/1801434200
https://www.proquest.com/docview/1808729738
https://pubmed.ncbi.nlm.nih.gov/PMC4930218
https://doaj.org/article/3008bca3632a49fabd381d243fc75338
http://dx.doi.org/10.1371/journal.pone.0158248
Volume 11
WOSCitedRecordID wos000378914900026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYBxIvjJWPFUYxCAl4SEli13Ye260V1dYSrTAVJBQ5jjMmTWm1tkj895wdN5Bp4-PlHuJzFJ999s_O-XcIvcoVDRUDT2NMC49qRb2oKzJPM6mUEFGqyqwlx3wyEbNZFP_aKF75g0948M7ZtLOYF7oDi5cIqdhC2yFhzKRqGMbHm5kXfJcxdz3uppq15cey9FdzcWNxMV9eBzSvxkv-tgANd_730--jew5q4l45NnbRLV000c4mjQN2Xt1EdwaWufpHE-26Z0v8xtFRv32AvlbnDnhYHljh2JJyFvhQr2wkV4HNLRU8lZbec6VxbzTFNhgBH8qVxGObhQLLIsNjG7ypseN1PXuIPg0HHw_eey4pg6d42F15TLFUEqa6igU6pZlMsyD0eRQAVItUIEnupyAVF1E3BawQSNgRRVQqnxAdyYg8Qo0C7LGHsJ-Hec7zTLEsp5orSQF_pLkkaTeQVGctRDZ9lSjHWG4SZ1wk9jcch51LacnEGDhxBm4hr6q1KBk7_qLfN8Og0jV82_YB9GTi3DchAJVSBe0moaRRDo0GpJOFlOQK9nsEXvLcDKKkvLxazRpJD_ApJ5Fgfgu9tBqGc6MwQT1ncr1cJqMPp_-gND2pKb12SvkczKGku0gBbTJcXjXN_ZomzByqVrxnhvzGKsskEIZhkNEggJobN7i--EVVbF5qAvUKPV-XOpRQmHv_qCO4yZkGZntcelZlfUDTjMM60kK85nO17qmXFOffLC06jYgBrE9ubtVTdBfwLiujrfdRY3W51s_QbfV9db68bKMtfnJq5IxbKUCKg6CNtvuDSXzStsc1bTvjgDzqd0CO_SMjeWzlFGTc_QI14tE4_vwTfxZ_wA
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLemAYILY-VjhcEMAgGHbE3s2skBobKuWrW2THSgXVBwHKdMmpLSpKD9U_yNPDtOWNA0uOzApYf4Japf3sfPzvPvIfQ8kdSTDDyNMeU7VEnqBF0_dhQTUvp-EMmya8mITyb-8XFwuIJ-VmdhdFllFRNNoI4zqffId1xfs58x6rpv598c3TVKf12tWmiUZnGgzn7Aki1_M-zD-33heYO9o919x3YVcCT3uoXDJIsEYbIrmasiGosodr0OD1zAGoF0BUk6EfxK7gfdCJKdKwDSB1TIDiEqEJp8CUL-NUo8or3I361LSiB2MGaP5xHu7lhr2J5nqdqGtOt7usvQufRnugTUuWB1fprlFwHdP-s1zyXAwdr_pro76LaF2rhX-sY6WlFpC61VbSywjWotdGPPMHeftdC6vZbjV5aO-_Vd9Lned8GDcsMOHxpS0hT3VWEq2VKsT-ngqTD0poXCveEUm2IM3BeFwGPThQOLNMZjU7yqsOW1nd1DH69EB_fRagoGsYFwJ_GShCexZHFCFZeCAv6KEkGiriuoituIVLYSSsvYrhuHnIbmMySHlVupyVBbWGgtrI2c-q55yVjyF_l32gxrWc03bi5ki1low1dIACpGEuZNPEGDBCYNSC_2KEkkrHcJPGRLG3FYHt6to2bYA3zOSeCzThs9MxKacyTVRU0zsczzcPj-0z8ITT80hF5aoSQDdUhhD5LAnDSXWUNysyEJkVM2hje0y1VaycPfjgJ3Vq508fDTelg_VBcqpipbljKUUMg9l8r4XPeMA7U9KD271j6sJhiHPNpGvOHzjdfTHElPvhpaeBoQDdgfXv7Xt9DN_aPxKBwNJweP0C3A_6ysPt9Eq8ViqR6j6_J7cZIvnpjYhtGXq44IvwCI4uBV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELem8iFeGCsfKwxmEAh4yNrErp08IFToKqptpaID7QUFx3HKpCkpTQrav8Zfx9lxwoKmwcseeOlDfInqy93vzs75dwg9TST1JANPY0z5DlWSOkHfjx3FhJS-H0Sy7FqyzycT_-gomK6hn9VZGF1WWWGiAeo4k3qPvOv6mv2MUdftJrYsYjocvV58c3QHKf2ltWqnUZrInjr9Acu3_NV4CO_6meeNdg_fvnNshwFHcq9fOEyySBAm-5K5KqKxiGLX6_HAhbwjkK4gSS-CX8n9oB9B4HMFpPcBFbJHiAqEJmIC-L_CKczWlA1OqygAOMKYPapHuNu1lrGzyFK1AyHY93THoTOh0HQMqONCa3GS5eclvX_Wbp4JhqP1_1mNt9BNm4LjQekzG2hNpW20XrW3wBbt2ujarmH0Pm2jDXstxy8sTffL2-hzvR-DR-VGHp4astIUD1VhKtxSrE_v4JkwtKeFwoPxDJsiDTwUhcAHpjsHFmmMD0xRq8KW73Z-B328FB3cRa0UjGMT4V7iJQlPYsnihCouBYW8LEoEifquoCruIFLZTSgtk7tuKHISms-THFZ0pSZDbW2htbYOcuq7FiWTyV_k32iTrGU1D7m5kC3noYW1kEAKGUmYN_EEDRKYNGSAsUdJImEdTOAh29qgw_JQb42m4QDydk4Cn_U66ImR0FwkqTbHuVjleTh-_-kfhGYfGkLPrVCSgTqksAdMYE6a46whudWQBESVjeFN7X6VVvLwt9PAnZVbnT_8uB7WD9UFjKnKVqUMJRRi0oUyPte95EBt90ovr7UPqwzGIb52EG_4f-P1NEfS46-GLp4GRCfy9y_-69voOgBBuD-e7D1AN2BZwMqi9C3UKpYr9RBdld-L43z5yMAcRl8uGxB-AfG-6WE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Fishing+Pattern+Detection+from+Satellite+AIS+Using+Data+Mining+and+Machine+Learning&rft.jtitle=PloS+one&rft.au=Souza%2C+Erico+Nde&rft.au=Boerder%2C+Kristina&rft.au=Matwin%2C+Stan&rft.au=Worm%2C+Boris&rft.date=2016-07-01&rft.eissn=1932-6203&rft.volume=11&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0158248&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon