Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique
A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682–1688, has been refo...
Saved in:
| Published in: | Journal of biomechanics Vol. 49; no. 2; pp. 141 - 148 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
25.01.2016
Elsevier Limited |
| Subjects: | |
| ISSN: | 0021-9290, 1873-2380, 1873-2380 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682–1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation “from scratch” in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par. |
|---|---|
| AbstractList | A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par. A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682–1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation “from scratch” in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par. Abstract A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008) , J. Biomech. 41, 1682–1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation “from scratch” in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis . However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par. A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008) , J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles super(3) operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par. A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published byWinby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles' operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles exceptgracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available athttps://simtk.org/home/opt_muscle_par. |
| Author | Modenese, Luca Ceseracciu, Elena Lloyd, David G. Reggiani, Monica |
| Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0003-1402-5359 surname: Modenese fullname: Modenese, Luca email: l.modenese@sheffield.ac.uk organization: Centre for Musculoskeletal Research, School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Southport, Australia – sequence: 2 givenname: Elena orcidid: 0000-0002-1124-0427 surname: Ceseracciu fullname: Ceseracciu, Elena organization: Department of Management and Engineering, University of Padua, Vicenza, Italy – sequence: 3 givenname: Monica surname: Reggiani fullname: Reggiani, Monica organization: Department of Management and Engineering, University of Padua, Vicenza, Italy – sequence: 4 givenname: David G. surname: Lloyd fullname: Lloyd, David G. organization: Centre for Musculoskeletal Research, School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Southport, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26776930$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks2L1TAUxYOMOG9G_4Wh4MZNaz7apAURZRg_YMCFug5pcqvptElNUmEE_3dT3zyEt3BmVSi_c87NPfcMnTjvAKELgiuCCX85VmNv_Qz6e0UxaSpCKoz5I7QjrWAlZS0-QTuMKSk72uFTdBbjiDEWteieoFPKheAdwzv0-yomO6tkvSv8UMxr1OvkEziTfywqqBkShFgMPhRRqwlMoZwp4tqPoFMRF9B2sPogjDcwQVJTMXsDUyzWaN23rCj8kmPsr31QymM7-2OFp-jxoKYIz-6-5-jru6svlx_K60_vP16-vS61oCyVNVGcCE5bRVVPtWJAWta33DSdUbURClrBa80GimnGBqO47k3DuR4U5-3AztGLve8SfI6NSc42apgm5cCvURLRMVo3HW4fgHKBeZvNM_r8CB39Glx-SKbyQIzTrs7UxR219jMYuYS873ArDx1k4NUe0MHHGGCQ2qa_i0pB2UkSLLfK5SgPlcutckmIzJVnOT-SHxLuFb7ZC3NR8NNCkFFbcBqMDblbaby93-L1kYWerLP5Tm7gFuK_dchIJZaft4Pc7pE0m5qz_xs8ZII_Jqf16w |
| CitedBy_id | crossref_primary_10_1016_j_jbiomech_2017_04_003 crossref_primary_10_1371_journal_pone_0328528 crossref_primary_10_1016_j_jbiomech_2018_11_042 crossref_primary_10_1016_j_cmpb_2024_108480 crossref_primary_10_3390_app10207255 crossref_primary_10_1007_s00167_018_5006_3 crossref_primary_10_1016_j_jbiomech_2018_08_023 crossref_primary_10_1016_j_conctc_2022_100926 crossref_primary_10_1016_j_cmpb_2017_09_012 crossref_primary_10_1016_j_jbiomech_2022_111220 crossref_primary_10_1109_TBME_2021_3102009 crossref_primary_10_1371_journal_pone_0206859 crossref_primary_10_1016_j_jbiomech_2021_110498 crossref_primary_10_1007_s10237_024_01825_7 crossref_primary_10_1007_s10439_025_03713_2 crossref_primary_10_3390_jfmk9020068 crossref_primary_10_1016_j_jbiomech_2023_111503 crossref_primary_10_1016_j_knee_2022_09_001 crossref_primary_10_1109_TBME_2023_3324485 crossref_primary_10_1249_MSS_0000000000002943 crossref_primary_10_1007_s10439_024_03455_7 crossref_primary_10_1016_j_jbiomech_2018_03_039 crossref_primary_10_1002_jor_25934 crossref_primary_10_1002_jor_25814 crossref_primary_10_1109_TNSRE_2017_2683488 crossref_primary_10_1007_s11044_022_09852_x crossref_primary_10_1016_j_jbiomech_2024_112387 crossref_primary_10_1109_TIM_2021_3072113 crossref_primary_10_1016_j_rineng_2025_104660 crossref_primary_10_1371_journal_pone_0176016 crossref_primary_10_3390_s21196597 crossref_primary_10_3390_app14198678 crossref_primary_10_1016_j_jbiomech_2023_111758 crossref_primary_10_1249_MSS_0000000000003624 crossref_primary_10_1016_j_gaitpost_2016_06_014 crossref_primary_10_1016_j_jbiomech_2020_110186 crossref_primary_10_1016_j_jbiomech_2024_112094 crossref_primary_10_1371_journal_pone_0292867 crossref_primary_10_1038_s41598_024_65183_1 crossref_primary_10_1249_MSS_0000000000003091 crossref_primary_10_1016_j_gaitpost_2018_11_009 crossref_primary_10_1177_0954411917701167 crossref_primary_10_1016_j_jbiomech_2025_112530 crossref_primary_10_1016_j_jbiomech_2025_112890 crossref_primary_10_3389_fbioe_2024_1436004 crossref_primary_10_1371_journal_pone_0327172 crossref_primary_10_1152_japplphysiol_00662_2021 crossref_primary_10_1519_JSC_0000000000004949 crossref_primary_10_1016_j_jbiomech_2024_111968 crossref_primary_10_1109_TNSRE_2025_3544551 crossref_primary_10_1109_TNSRE_2025_3529976 crossref_primary_10_1152_japplphysiol_00473_2021 crossref_primary_10_1007_s11044_024_09997_x crossref_primary_10_1016_j_clinbiomech_2019_12_011 crossref_primary_10_1109_TNSRE_2023_3319959 crossref_primary_10_1080_10255842_2019_1651296 crossref_primary_10_1016_j_jelekin_2023_102808 crossref_primary_10_1109_TBME_2022_3141067 crossref_primary_10_1080_10255842_2018_1558216 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_1007_s40435_022_01040_1 crossref_primary_10_1113_EP090713 crossref_primary_10_1038_s41598_024_53857_9 crossref_primary_10_1007_s10439_020_02490_4 crossref_primary_10_1002_wsbm_1368 crossref_primary_10_1109_TNSRE_2023_3296280 crossref_primary_10_1016_j_joca_2020_04_008 crossref_primary_10_1038_s41598_023_45408_5 crossref_primary_10_1080_10255842_2023_2293652 crossref_primary_10_1109_TNSRE_2025_3596261 crossref_primary_10_1109_ACCESS_2021_3133078 crossref_primary_10_3389_fbioe_2022_1002731 crossref_primary_10_1016_j_jbiomech_2022_111141 crossref_primary_10_1016_j_jbiomech_2022_111383 crossref_primary_10_1016_j_jbiomech_2025_112633 crossref_primary_10_1093_iob_obab006 crossref_primary_10_1109_TNSRE_2024_3403092 crossref_primary_10_1080_14763141_2022_2133006 crossref_primary_10_3390_bioengineering10030369 crossref_primary_10_1186_s12984_025_01691_z crossref_primary_10_1016_j_gaitpost_2022_07_145 crossref_primary_10_1016_j_gaitpost_2022_07_148 crossref_primary_10_1016_j_jbiomech_2016_09_025 crossref_primary_10_1249_MSS_0000000000002589 crossref_primary_10_1109_TBME_2021_3114717 crossref_primary_10_1111_sms_14570 crossref_primary_10_3390_app11041450 crossref_primary_10_1098_rsos_230393 crossref_primary_10_1249_MSS_0000000000002971 crossref_primary_10_1177_0309324716669250 crossref_primary_10_1016_j_medengphy_2018_09_004 crossref_primary_10_1109_TBME_2024_3352556 crossref_primary_10_1016_j_gaitpost_2022_07_132 crossref_primary_10_1016_j_jbiomech_2023_111798 crossref_primary_10_1007_s10237_022_01626_w crossref_primary_10_1017_wtc_2024_14 crossref_primary_10_3389_fbioe_2024_1352794 crossref_primary_10_1016_j_jbiomech_2022_111019 crossref_primary_10_1371_journal_pone_0257171 crossref_primary_10_1109_TBME_2016_2630009 crossref_primary_10_1016_j_cmpb_2019_105098 crossref_primary_10_1371_journal_pone_0291458 crossref_primary_10_3389_fnbot_2019_00054 crossref_primary_10_1016_j_gaitpost_2020_04_025 crossref_primary_10_3390_life12081119 crossref_primary_10_1016_j_jmbbm_2025_106908 crossref_primary_10_1371_journal_pcbi_1008843 crossref_primary_10_1016_j_jbiomech_2022_111200 crossref_primary_10_1016_j_bspc_2025_107518 crossref_primary_10_1016_j_gaitpost_2022_03_020 crossref_primary_10_1371_journal_pone_0223531 crossref_primary_10_1016_j_jbiomech_2016_03_052 crossref_primary_10_1249_MSS_0000000000003733 crossref_primary_10_1007_s10237_025_01942_x crossref_primary_10_1002_jor_26043 crossref_primary_10_1016_j_jbiomech_2020_109724 crossref_primary_10_1007_s10439_023_03436_2 crossref_primary_10_1016_j_joca_2024_02_891 crossref_primary_10_1111_joa_13261 crossref_primary_10_1038_s41598_024_61305_x crossref_primary_10_1371_journal_pone_0269331 crossref_primary_10_1371_journal_pone_0262936 crossref_primary_10_1016_j_jbiomech_2024_112169 crossref_primary_10_1016_j_jbiomech_2025_112586 crossref_primary_10_1007_s11044_025_10096_8 crossref_primary_10_1249_MSS_0000000000003320 crossref_primary_10_1249_MSS_0000000000001021 crossref_primary_10_1109_TBME_2019_2909171 crossref_primary_10_1177_03635465211038332 |
| Cites_doi | 10.1002/cnm.2639 10.1016/S0021-9290(03)00010-1 10.1002/jmri.20805 10.1016/j.jbiomech.2011.06.019 10.1007/s11044-011-9289-0 10.1016/j.jbiomech.2011.06.008 10.1016/j.jbiomech.2013.12.002 10.1016/S0021-9290(08)70204-5 10.2170/physiolsci.RP009908 10.1109/86.242425 10.1007/s10439-014-1153-y 10.1109/TBME.2007.901024 10.1115/1.1531112 10.1007/s11999-008-0594-8 10.1007/BF00422120 10.1097/00005768-200006000-00014 10.1016/j.jbiomech.2009.06.043 10.1016/S0021-9290(99)00122-0 10.1016/j.jbiomech.2008.03.008 10.1109/10.102791 10.1115/1.4029258 10.1002/jor.22364 10.1016/j.jbiomech.2012.07.018 10.1123/jab.20.2.195 10.1016/j.humov.2007.01.008 10.1002/jor.1100080310 10.1016/0021-9290(75)90090-1 10.1016/j.jbiomech.2012.11.045 10.1242/jeb.031096 10.1242/jeb.204.9.1529 10.1016/j.jbiomech.2005.06.005 10.1371/journal.pone.0112625 10.1016/j.clinbiomech.2006.10.003 10.1007/s10439-009-9852-5 10.1016/j.simpat.2006.09.001 10.1114/1.1540105 10.1615/CritRevPhysRehabilMed.v17.i4.10 10.1016/j.jbiomech.2013.09.005 10.1016/j.jbiomech.2010.06.025 10.1152/jappl.2000.88.3.811 10.1115/1.4023390 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2016 |
| Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.jbiomech.2015.11.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 148 |
| ExternalDocumentID | 4002540111 26776930 10_1016_j_jbiomech_2015_11_006 S0021929015006363 1_s2_0_S0021929015006363 |
| Genre | Research Support, Non-U.S. Gov't Controlled Clinical Trial Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX AFFHD AGQPQ AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c723t-41a617628a2ab2ca3e183b86d59da4d7ae8764c3f202762fda6cbd566cfa668f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 145 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371552000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Sun Nov 09 13:26:28 EST 2025 Sun Nov 09 14:17:14 EST 2025 Sat Nov 29 14:45:38 EST 2025 Thu Apr 03 07:11:14 EDT 2025 Sat Nov 29 02:32:57 EST 2025 Tue Nov 18 21:22:40 EST 2025 Fri Feb 23 02:28:48 EST 2024 Sun Feb 23 10:20:42 EST 2025 Tue Oct 14 19:30:08 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Hip joint Subject specific Tendon slack length Muscle–tendon parameters Optimal fiber length Scaling Parameter optimization Muscle models |
| Language | English |
| License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c723t-41a617628a2ab2ca3e183b86d59da4d7ae8764c3f202762fda6cbd566cfa668f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0002-1124-0427 0000-0003-1402-5359 |
| OpenAccessLink | http://hdl.handle.net/10072/101916 |
| PMID | 26776930 |
| PQID | 1776436294 |
| PQPubID | 1226346 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1793245908 proquest_miscellaneous_1767068566 proquest_journals_1776436294 pubmed_primary_26776930 crossref_citationtrail_10_1016_j_jbiomech_2015_11_006 crossref_primary_10_1016_j_jbiomech_2015_11_006 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_11_006 elsevier_clinicalkeyesjournals_1_s2_0_S0021929015006363 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_11_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-25 |
| PublicationDateYYYYMMDD | 2016-01-25 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Scovil, Ronsky (bib36) 2006; 39 Barber, Barrett, Lichtwark (bib3) 2011; 44 Lee, Piazza (bib22) 2009; 212 Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot (bib25) 2015; 137 Klein Horsman, Koopman, van der Helm, Prose, Veeger (bib20) 2007; 22 Klein Breteler, Spoor, Van der Helm (bib19) 1999; 32 Rubenson, Pires, Loi, Pinniger, Shannon (bib34) 2012; 215 Gerus, Sartori, Besier, Fregly, Delp, Banks, Pandy, D׳Lima, Lloyd (bib12) 2013; 46 Lloyd, Besier (bib23) 2003; 36 Zajac (bib47) 1989; 17 Redl, Gfoehler, Pandy (bib33) 2007; 26 Van Campen, Pipeleers, De Groote, Jonkers, De Schutter (bib40) 2014; 30 Arnold, Ward, Lieber, Delp (bib2) 2010; 38 Thelen (bib37) 2003; 125 Modenese, Phillips, Bull (bib28) 2011; 44 Schutte, Rodgers, Zajac, Glaser (bib35) 1993; 1 Blemker, Asakawa, Gold, Delp (bib5) 2007; 25 van Arkel, Modenese, Phillips, Jeffers (bib39) 2013; 31 Jensen, Davy (bib17) 1975; 8 Williams, Goldspink (bib45) 1978; 127 Hainisch, Gfoehler, Zubayer-Ul-Karim, Pandy (bib13) 2012; 28 Moiseev, Sholukha, Snoeck, Salvia, Rooze, Jan, S. (bib31) 2008; 41 Garner, Pandy (bib11) 2003; 31 Modenese, Phillips, Bull (bib30) 2015; 43 Fregly (bib10) 2009; 2 Kadaba, Ramakrishnan, Wootten (bib18) 1990; 8 Ojeda, Mayo (bib32) 2013 Manal, Buchanan (bib24) 2004; 20 Millard, Uchida, Seth, Delp (bib27) 2013; 135 Hamner, Seth, Delp (bib14) 2010; 43 Hatze (bib16) 1981; 46 Menegaldo, Oliveira (bib26) 2009; 42 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib8) 1990; 37 Modenese, Gopalakrishnan, Phillips (bib29) 2013; 46 Handsfield, Meyer, Hart, Abel, Blemker (bib15) 2014; 47 Van Sint Jan (bib41) 2005; 17 Barber, Barrett, Lichtwark (bib4) 2012; 45 Viceconti, Clapworthy, Jan, S. (bib42) 2008; 58 Ward, S.R., Smallwood, L., Lieber, R.L., 2005. Scaling of human lower extremity muscle architecture to skeletal dimensions. In: Proceedings of ISB XXth Congress - ASB 29th Annual Meeting. July 31–August 5, Cleveland, Ohio. Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib9) 2007; 54 Abe, Kumagai, Brechue (bib1) 2000; 32 Kumagai, Abe, Brechue, Ryushi, Takano, Mizuno (bib21) 2000; 88 Valente, Pitto, Testi, Seth, Delp, Stagni, Viceconti, Taddei (bib38) 2014; 9 Ward, Eng, Smallwood, Lieber (bib43) 2009; 467 Burkholder, Lieber (bib6) 2001; 204 Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib7) 2006; 14 Winby, Lloyd, Kirk (bib46) 2008; 41 10.1016/j.jbiomech.2015.11.006_bib44 Blemker (10.1016/j.jbiomech.2015.11.006_bib5) 2007; 25 Van Sint Jan (10.1016/j.jbiomech.2015.11.006_bib41) 2005; 17 Manal (10.1016/j.jbiomech.2015.11.006_bib24) 2004; 20 Modenese (10.1016/j.jbiomech.2015.11.006_bib28) 2011; 44 Valente (10.1016/j.jbiomech.2015.11.006_bib38) 2014; 9 Damsgaard (10.1016/j.jbiomech.2015.11.006_bib7) 2006; 14 Fregly (10.1016/j.jbiomech.2015.11.006_bib10) 2009; 2 Hatze (10.1016/j.jbiomech.2015.11.006_bib16) 1981; 46 Ojeda (10.1016/j.jbiomech.2015.11.006_bib32) 2013 Modenese (10.1016/j.jbiomech.2015.11.006_bib29) 2013; 46 Van Campen (10.1016/j.jbiomech.2015.11.006_bib40) 2014; 30 Winby (10.1016/j.jbiomech.2015.11.006_bib46) 2008; 41 Barber (10.1016/j.jbiomech.2015.11.006_bib4) 2012; 45 Delp (10.1016/j.jbiomech.2015.11.006_bib9) 2007; 54 Williams (10.1016/j.jbiomech.2015.11.006_bib45) 1978; 127 Burkholder (10.1016/j.jbiomech.2015.11.006_bib6) 2001; 204 Kumagai (10.1016/j.jbiomech.2015.11.006_bib21) 2000; 88 Marra (10.1016/j.jbiomech.2015.11.006_bib25) 2015; 137 Gerus (10.1016/j.jbiomech.2015.11.006_bib12) 2013; 46 Menegaldo (10.1016/j.jbiomech.2015.11.006_bib26) 2009; 42 Garner (10.1016/j.jbiomech.2015.11.006_bib11) 2003; 31 Viceconti (10.1016/j.jbiomech.2015.11.006_bib42) 2008; 58 Arnold (10.1016/j.jbiomech.2015.11.006_bib2) 2010; 38 Jensen (10.1016/j.jbiomech.2015.11.006_bib17) 1975; 8 Redl (10.1016/j.jbiomech.2015.11.006_bib33) 2007; 26 Schutte (10.1016/j.jbiomech.2015.11.006_bib35) 1993; 1 Ward (10.1016/j.jbiomech.2015.11.006_bib43) 2009; 467 Zajac (10.1016/j.jbiomech.2015.11.006_bib47) 1989; 17 Delp (10.1016/j.jbiomech.2015.11.006_bib8) 1990; 37 Lee (10.1016/j.jbiomech.2015.11.006_bib22) 2009; 212 Barber (10.1016/j.jbiomech.2015.11.006_bib3) 2011; 44 Handsfield (10.1016/j.jbiomech.2015.11.006_bib15) 2014; 47 Millard (10.1016/j.jbiomech.2015.11.006_bib27) 2013; 135 Thelen (10.1016/j.jbiomech.2015.11.006_bib37) 2003; 125 Klein Horsman (10.1016/j.jbiomech.2015.11.006_bib20) 2007; 22 van Arkel (10.1016/j.jbiomech.2015.11.006_bib39) 2013; 31 Kadaba (10.1016/j.jbiomech.2015.11.006_bib18) 1990; 8 Moiseev (10.1016/j.jbiomech.2015.11.006_bib31) 2008; 41 Scovil (10.1016/j.jbiomech.2015.11.006_bib36) 2006; 39 Abe (10.1016/j.jbiomech.2015.11.006_bib1) 2000; 32 Klein Breteler (10.1016/j.jbiomech.2015.11.006_bib19) 1999; 32 Lloyd (10.1016/j.jbiomech.2015.11.006_bib23) 2003; 36 Hamner (10.1016/j.jbiomech.2015.11.006_bib14) 2010; 43 Modenese (10.1016/j.jbiomech.2015.11.006_bib30) 2015; 43 Hainisch (10.1016/j.jbiomech.2015.11.006_bib13) 2012; 28 Rubenson (10.1016/j.jbiomech.2015.11.006_bib34) 2012; 215 |
| References_xml | – volume: 212 start-page: 3700 year: 2009 end-page: 3707 ident: bib22 article-title: Built for speed: musculoskeletal structure and sprinting ability publication-title: J. Exp. Biol. – volume: 8 start-page: 383 year: 1990 end-page: 392 ident: bib18 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. – volume: 39 start-page: 2055 year: 2006 end-page: 2063 ident: bib36 article-title: Sensitivity of a Hill-based muscle model to perturbations in model parameters publication-title: J. Biomech. – volume: 58 start-page: 441 year: 2008 end-page: 446 ident: bib42 article-title: The virtual physiological human - a European initiative for in silico human modelling publication-title: J. Physiol. Sci. – volume: 20 start-page: 195 year: 2004 end-page: 203 ident: bib24 article-title: Subject-specific estimates of tendon slack length: a numerical method publication-title: J. Appl. Biomech. – volume: 46 start-page: 1193 year: 2013 end-page: 1200 ident: bib29 article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector publication-title: Journal of Biomechanics – volume: 127 start-page: 459 year: 1978 ident: bib45 article-title: Changes in sarcomere length and physiological properties in immobilized muscle publication-title: J. Anat. – volume: 9 start-page: e112625 year: 2014 ident: bib38 article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? publication-title: Plos One – volume: 26 start-page: 306 year: 2007 end-page: 319 ident: bib33 article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties publication-title: Hum. Mov. Sci. – volume: 204 start-page: 1529 year: 2001 end-page: 1536 ident: bib6 article-title: Sarcomere length operating range of vertebrate muscles during movement publication-title: J. Exp. Biol. – volume: 137 start-page: 020904 year: 2015 ident: bib25 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. – start-page: 479 year: 2013 end-page: 485 ident: bib32 article-title: A new approach to estimate a subject-specific set of muscle parameters publication-title: New Trends in Mechanism and Machine Science – volume: 43 start-page: 2709 year: 2010 end-page: 2716 ident: bib14 article-title: Muscle contributions to propulsion and support during running publication-title: J. Biomech. – volume: 43 start-page: 1052 year: 2015 end-page: 1054 ident: bib30 article-title: Letter to the editor: in response to "consistency among musculoskeletal models: caveat utilitor” publication-title: Ann. Biomed. Eng. – volume: 22 start-page: 239 year: 2007 end-page: 247 ident: bib20 article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity publication-title: Clin. Biomech. – volume: 44 start-page: 2185 year: 2011 end-page: 2193 ident: bib28 article-title: An open source lower limb model: hip joint validation publication-title: J. Biomech. – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: bib9 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 103 year: 1975 end-page: 110 ident: bib17 article-title: An investigation of muscle lines of action about the hip: a centroid line approach vs the straight line approach publication-title: J. Biomech. – volume: 215 start-page: 3539 year: 2012 end-page: 3551 ident: bib34 article-title: On the ascent: the soleus operating length is conserved to the ascending limb of the force–length curve across gait mechanics in humans publication-title: J. Exp. Biol. – volume: 44 start-page: 2496 year: 2011 end-page: 2500 ident: bib3 article-title: Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy publication-title: J. Biomech. – volume: 14 start-page: 1100 year: 2006 end-page: 1111 ident: bib7 article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System publication-title: Simul. Model. Pract. Theory – volume: 45 start-page: 2526 year: 2012 end-page: 2530 ident: bib4 article-title: Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy publication-title: J. Biomech. – volume: 31 start-page: 207 year: 2003 end-page: 220 ident: bib11 article-title: Estimation of musculotendon properties in the human upper limb publication-title: Ann. Biomed. Eng. – volume: 36 start-page: 765 year: 2003 end-page: 776 ident: bib23 article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo publication-title: J. Biomech. – volume: 46 start-page: 2778 year: 2013 end-page: 2786 ident: bib12 article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces publication-title: J. Biomech. – volume: 17 start-page: 249 year: 2005 end-page: 274 ident: bib41 article-title: Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems publication-title: Crit. Rev. Phys. Rehabil. Med. – volume: 32 start-page: 1125 year: 2000 end-page: 1129 ident: bib1 article-title: Fascicle length of leg muscles is greater in sprinters than distance runners publication-title: Med. Sci. Sports Exerc. – volume: 17 start-page: 359 year: 1989 end-page: 411 ident: bib47 article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – reference: Ward, S.R., Smallwood, L., Lieber, R.L., 2005. Scaling of human lower extremity muscle architecture to skeletal dimensions. In: Proceedings of ISB XXth Congress - ASB 29th Annual Meeting. July 31–August 5, Cleveland, Ohio. – volume: 32 start-page: 1191 year: 1999 ident: bib19 article-title: Measuring muscle and joint geometry parameters of a shoulder for modeling purposes publication-title: J. Biomech. – volume: 88 start-page: 811 year: 2000 end-page: 816 ident: bib21 article-title: Sprint performance is related to muscle fascicle length in male 100-m sprinters publication-title: J. Appl. Physiol. – volume: 47 start-page: 631 year: 2014 end-page: 638 ident: bib15 article-title: Relationships of 35 lower limb muscles to height and body mass quantified using MRI publication-title: J. Biomech. – volume: 467 start-page: 1074 year: 2009 end-page: 1082 ident: bib43 article-title: Are current measurements of lower extremity muscle architecture accurate? publication-title: Clin. Orthop. Relat. Res. – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib8 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 28 start-page: 143 year: 2012 end-page: 156 ident: bib13 article-title: Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data publication-title: Multibody Syst. Dyn. – volume: 2 start-page: 145 year: 2009 ident: bib10 article-title: Design of optimal treatments for neuromusculoskeletal disorders using patient-specific multibody dynamic models publication-title: Int. J. Comput. Vis. Biomech. – volume: 42 start-page: 2597 year: 2009 end-page: 2601 ident: bib26 article-title: Effect of muscle model parameter scaling for isometric plantar flexion torque prediction publication-title: J. Biomech. – volume: 46 start-page: 325 year: 1981 end-page: 338 ident: bib16 article-title: Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 38 start-page: 269 year: 2010 end-page: 279 ident: bib2 article-title: A model of the lower limb for analysis of human movement publication-title: Ann. Biomed. Eng. – volume: 25 start-page: 441 year: 2007 end-page: 451 ident: bib5 article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities publication-title: J. Magn. Reson. Imaging – volume: 1 start-page: 109 year: 1993 end-page: 125 ident: bib35 article-title: Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model publication-title: IEEE Trans. Rehabil. Eng. – volume: 135 year: 2013 ident: bib27 article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics publication-title: J. Biomech. Eng. – volume: 125 start-page: 70 year: 2003 end-page: 77 ident: bib37 article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults publication-title: J. Biomech. Eng. – volume: 30 start-page: 969 year: 2014 end-page: 987 ident: bib40 article-title: A new method for estimating subject-specific muscle–tendon parameters of the knee joint actuators: a simulation study publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 31 start-page: 1172 year: 2013 end-page: 1179 ident: bib39 article-title: Hip abduction can prevent posterior edge loading of hip replacements publication-title: J. Orthop. Res. – volume: 41 start-page: 1682 year: 2008 end-page: 1688 ident: bib46 article-title: Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters publication-title: J. Biomech. – volume: 41 start-page: S204 year: 2008 ident: bib31 article-title: Registration of soft tissue morphology with skeletal morphology and kinematics publication-title: J. Biomech. – volume: 30 start-page: 969 year: 2014 ident: 10.1016/j.jbiomech.2015.11.006_bib40 article-title: A new method for estimating subject-specific muscle–tendon parameters of the knee joint actuators: a simulation study publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2639 – volume: 36 start-page: 765 year: 2003 ident: 10.1016/j.jbiomech.2015.11.006_bib23 article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00010-1 – volume: 25 start-page: 441 year: 2007 ident: 10.1016/j.jbiomech.2015.11.006_bib5 article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20805 – volume: 44 start-page: 2185 year: 2011 ident: 10.1016/j.jbiomech.2015.11.006_bib28 article-title: An open source lower limb model: hip joint validation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.06.019 – ident: 10.1016/j.jbiomech.2015.11.006_bib44 – volume: 28 start-page: 143 year: 2012 ident: 10.1016/j.jbiomech.2015.11.006_bib13 article-title: Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-011-9289-0 – volume: 44 start-page: 2496 year: 2011 ident: 10.1016/j.jbiomech.2015.11.006_bib3 article-title: Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.06.008 – volume: 47 start-page: 631 year: 2014 ident: 10.1016/j.jbiomech.2015.11.006_bib15 article-title: Relationships of 35 lower limb muscles to height and body mass quantified using MRI publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.12.002 – volume: 41 start-page: S204 issue: Supplement 1 year: 2008 ident: 10.1016/j.jbiomech.2015.11.006_bib31 article-title: Registration of soft tissue morphology with skeletal morphology and kinematics publication-title: J. Biomech. doi: 10.1016/S0021-9290(08)70204-5 – volume: 58 start-page: 441 year: 2008 ident: 10.1016/j.jbiomech.2015.11.006_bib42 article-title: The virtual physiological human - a European initiative for in silico human modelling publication-title: J. Physiol. Sci. doi: 10.2170/physiolsci.RP009908 – start-page: 479 year: 2013 ident: 10.1016/j.jbiomech.2015.11.006_bib32 article-title: A new approach to estimate a subject-specific set of muscle parameters – volume: 1 start-page: 109 year: 1993 ident: 10.1016/j.jbiomech.2015.11.006_bib35 article-title: Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model publication-title: IEEE Trans. Rehabil. Eng. doi: 10.1109/86.242425 – volume: 43 start-page: 1052 year: 2015 ident: 10.1016/j.jbiomech.2015.11.006_bib30 article-title: Letter to the editor: in response to "consistency among musculoskeletal models: caveat utilitor” publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-1153-y – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2015.11.006_bib9 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 125 start-page: 70 year: 2003 ident: 10.1016/j.jbiomech.2015.11.006_bib37 article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults publication-title: J. Biomech. Eng. doi: 10.1115/1.1531112 – volume: 467 start-page: 1074 year: 2009 ident: 10.1016/j.jbiomech.2015.11.006_bib43 article-title: Are current measurements of lower extremity muscle architecture accurate? publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-008-0594-8 – volume: 46 start-page: 325 year: 1981 ident: 10.1016/j.jbiomech.2015.11.006_bib16 article-title: Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups publication-title: Eur. J. Appl. Physiol. Occup. Physiol. doi: 10.1007/BF00422120 – volume: 32 start-page: 1125 year: 2000 ident: 10.1016/j.jbiomech.2015.11.006_bib1 article-title: Fascicle length of leg muscles is greater in sprinters than distance runners publication-title: Med. Sci. Sports Exerc. doi: 10.1097/00005768-200006000-00014 – volume: 42 start-page: 2597 year: 2009 ident: 10.1016/j.jbiomech.2015.11.006_bib26 article-title: Effect of muscle model parameter scaling for isometric plantar flexion torque prediction publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.06.043 – volume: 32 start-page: 1191 year: 1999 ident: 10.1016/j.jbiomech.2015.11.006_bib19 article-title: Measuring muscle and joint geometry parameters of a shoulder for modeling purposes publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00122-0 – volume: 41 start-page: 1682 year: 2008 ident: 10.1016/j.jbiomech.2015.11.006_bib46 article-title: Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.03.008 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.jbiomech.2015.11.006_bib8 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 137 start-page: 020904 year: 2015 ident: 10.1016/j.jbiomech.2015.11.006_bib25 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. doi: 10.1115/1.4029258 – volume: 31 start-page: 1172 year: 2013 ident: 10.1016/j.jbiomech.2015.11.006_bib39 article-title: Hip abduction can prevent posterior edge loading of hip replacements publication-title: J. Orthop. Res. doi: 10.1002/jor.22364 – volume: 45 start-page: 2526 year: 2012 ident: 10.1016/j.jbiomech.2015.11.006_bib4 article-title: Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.07.018 – volume: 20 start-page: 195 year: 2004 ident: 10.1016/j.jbiomech.2015.11.006_bib24 article-title: Subject-specific estimates of tendon slack length: a numerical method publication-title: J. Appl. Biomech. doi: 10.1123/jab.20.2.195 – volume: 26 start-page: 306 year: 2007 ident: 10.1016/j.jbiomech.2015.11.006_bib33 article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2007.01.008 – volume: 8 start-page: 383 year: 1990 ident: 10.1016/j.jbiomech.2015.11.006_bib18 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080310 – volume: 8 start-page: 103 year: 1975 ident: 10.1016/j.jbiomech.2015.11.006_bib17 article-title: An investigation of muscle lines of action about the hip: a centroid line approach vs the straight line approach publication-title: J. Biomech. doi: 10.1016/0021-9290(75)90090-1 – volume: 46 start-page: 1193 year: 2013 ident: 10.1016/j.jbiomech.2015.11.006_bib29 article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2012.11.045 – volume: 212 start-page: 3700 year: 2009 ident: 10.1016/j.jbiomech.2015.11.006_bib22 article-title: Built for speed: musculoskeletal structure and sprinting ability publication-title: J. Exp. Biol. doi: 10.1242/jeb.031096 – volume: 127 start-page: 459 year: 1978 ident: 10.1016/j.jbiomech.2015.11.006_bib45 article-title: Changes in sarcomere length and physiological properties in immobilized muscle publication-title: J. Anat. – volume: 204 start-page: 1529 year: 2001 ident: 10.1016/j.jbiomech.2015.11.006_bib6 article-title: Sarcomere length operating range of vertebrate muscles during movement publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.9.1529 – volume: 39 start-page: 2055 year: 2006 ident: 10.1016/j.jbiomech.2015.11.006_bib36 article-title: Sensitivity of a Hill-based muscle model to perturbations in model parameters publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.06.005 – volume: 9 start-page: e112625 year: 2014 ident: 10.1016/j.jbiomech.2015.11.006_bib38 article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? publication-title: Plos One doi: 10.1371/journal.pone.0112625 – volume: 22 start-page: 239 year: 2007 ident: 10.1016/j.jbiomech.2015.11.006_bib20 article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2006.10.003 – volume: 38 start-page: 269 year: 2010 ident: 10.1016/j.jbiomech.2015.11.006_bib2 article-title: A model of the lower limb for analysis of human movement publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9852-5 – volume: 14 start-page: 1100 year: 2006 ident: 10.1016/j.jbiomech.2015.11.006_bib7 article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2006.09.001 – volume: 2 start-page: 145 year: 2009 ident: 10.1016/j.jbiomech.2015.11.006_bib10 article-title: Design of optimal treatments for neuromusculoskeletal disorders using patient-specific multibody dynamic models publication-title: Int. J. Comput. Vis. Biomech. – volume: 31 start-page: 207 year: 2003 ident: 10.1016/j.jbiomech.2015.11.006_bib11 article-title: Estimation of musculotendon properties in the human upper limb publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1540105 – volume: 17 start-page: 249 year: 2005 ident: 10.1016/j.jbiomech.2015.11.006_bib41 article-title: Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems publication-title: Crit. Rev. Phys. Rehabil. Med. doi: 10.1615/CritRevPhysRehabilMed.v17.i4.10 – volume: 46 start-page: 2778 year: 2013 ident: 10.1016/j.jbiomech.2015.11.006_bib12 article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.09.005 – volume: 215 start-page: 3539 year: 2012 ident: 10.1016/j.jbiomech.2015.11.006_bib34 article-title: On the ascent: the soleus operating length is conserved to the ascending limb of the force–length curve across gait mechanics in humans publication-title: J. Exp. Biol. – volume: 43 start-page: 2709 year: 2010 ident: 10.1016/j.jbiomech.2015.11.006_bib14 article-title: Muscle contributions to propulsion and support during running publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.06.025 – volume: 17 start-page: 359 year: 1989 ident: 10.1016/j.jbiomech.2015.11.006_bib47 article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control publication-title: Crit. Rev. Biomed. Eng. – volume: 88 start-page: 811 year: 2000 ident: 10.1016/j.jbiomech.2015.11.006_bib21 article-title: Sprint performance is related to muscle fascicle length in male 100-m sprinters publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2000.88.3.811 – volume: 135 year: 2013 ident: 10.1016/j.jbiomech.2015.11.006_bib27 article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics publication-title: J. Biomech. Eng. doi: 10.1115/1.4023390 |
| SSID | ssj0007479 |
| Score | 2.55463 |
| Snippet | A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack... Abstract A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 141 |
| SubjectTerms | Adjustment Algorithms Conflicts of interest Fibers Hip joint Hip Joint - physiology Humans Lower Extremity - physiology Mathematical models Methods Models, Biological Muscle models Muscle, Skeletal - physiology Muscles Muscle–tendon parameters Optimal fiber length Optimization Parameter optimization Physical Medicine and Rehabilitation Scaling Simulation Subject specific Surgical implants Tendon slack length Tendons Tendons - physiology |
| Title | Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015006363 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015006363 https://dx.doi.org/10.1016/j.jbiomech.2015.11.006 https://www.ncbi.nlm.nih.gov/pubmed/26776930 https://www.proquest.com/docview/1776436294 https://www.proquest.com/docview/1767068566 https://www.proquest.com/docview/1793245908 |
| Volume | 49 |
| WOSCitedRecordID | wos000371552000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251012 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYhtA48NExKIzKSIhbtsRxbOeEBurEgZUKAerNcmJnotBkLC0SB_533nOcsAMMBJdKbfMUK-_l935-fh-EPK1kwU1ZmUimykTcgS4KxrDYvQSTVllR-pjuh9dyNlOLRT4PAbc2pFX2mOiB2jYlxsiPEinBeQqW8-fnXyKcGoWnq2GExhbZwS4JzKfuzQckBqocUjySCGhAfKlCeHm49PXt_kAiyQ6xkydOPfq1c_od-fRO6OT2_y7_DrkV6Cc97uzlLrnm6hHZO65h6736Rp9RnxDqI-0jcvNSr8IRuXEaTuH3yPcp4EJX8kibiq42mMzaYDAdfsBe4ivMsWkp8GHagg04S01tabspMOhDsbgTE5R6wfYTuD7YA1A_laelmIp_BhK0AThbhTpROjSbvUfen0zfvXwVhTEOUSlZuo54YoAmCaYMMwUrTeoARgolbJZbw600DhCZl2mFcRjBKmtEWVigmWBCQqgq3SfbdVO7B4RyLm0ugWHGyoAjtcrllheOp5wXuS3UmGS9_nQZepzjqI3Puk9mW-pe7xr1DhsgDXofk6NB7rzr8vFHCdmbh-5rWAF1NTiif5N0bQCPVie6ZTrWeI6eoNkCZwciKdIxyQfJwI863vNXdz3o7VL_vNFglGPyZPgb8AUPjUztmg1eI2QsFKjjqmtgF8CzPAYF3O_ej-ExMiH9uM2HVy_gEdmF1frgFssOyPb6YuMek-vl1_XH9mJCtuRC-k81ITsvprP5W_h2yt5M_Av_A3sJXLA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngceGx5LBQwEnBLu3EcOzkgVEGrVt0uHArqzTixg1jYpDS7oB74S_xGZpwHPUBBSD1wTTKbrD2Pb8bzAHhcqEyYvDCBihITCId7kXFOxe45snQSZ7mP6b4dq8kkOThIXy_B964WhtIqO53oFbWtcoqRr4dKofGUPBXPDz8HNDWKTle7ERoNW-y646_ostXPdl7i_j7hfGtz_8V20E4VCHLFo3kgQoNWW_LEcJPx3EQOuTpLpI1Ta4RVxqGCEHlUUFhA8sIamWcWUQ_-IymTIsLfPQfnBXlClCrIX_WaH6F5m1ISBgg7RicqkqdrU19P7w9AwniNOofSlKVfG8PfgV1v9Lau_W_LdR2utvCabTTycAOWXDmAlY3SzKvZMXvKfMKrP0kYwJUTvRgHcHGvzTJYgW-bqPeakk5WFWy2oGTdig4L8AL1Sp9RDlHNEO-zGnncWWZKy-pFRkEtRsWrlIDVEdYf0bSjj8P81KGaUanBe6RgFarrWVsHy_pmujfhzZms0C1YLqvS3QEmhLKpQgQ9SgwCBZu41IrMiUiILLVZMoS44xedtz3caZTIJ90l6011x2ea-AwdPI18NoT1nu6w6WLyRwrVsaPuanTRqmg0tP9G6epWOdY61DXXI015AiGJCfokCJRlNIS0p2zxX4Pr_uqtq50c6J8v6oVgCI_626g_6VDMlK5a0DNSjWSC23HaM-jliDgd4QbcbuSxX0YulR8nevf0D3gIl7b398Z6vDPZvQeX8ct9II_Hq7A8P1q4-3Ah_zL_UB898CqFwbuzFsoftFa2EA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFXlwCPlESiwSMDNTbzeeO0DQoUmomqJIgSot-3au64IxC51AuqBP8avY2b9oAcoCKkHroknjr3z-Gb3mxmAx5lMhE4z7ckg0p6wuBYJ51TsnqJKR8MkdXu67_flZBIdHMTTFfje1MIQrbLxic5RmyKlPfK-LyUGz5DHop_VtIjpzvj58WePJkjRSWszTqNSkT17-hXTt_LZ7g6u9RPOx6O3L1959YQBL5U8WHjC1xjBQx5prhOe6sCihidRaIax0cJIbdFZiDTIaIsg5JnRYZoYRED4dGEYZQH-7iVYlQgyRAdWX4wm0zdtHECgXhNMfA9ByOBMffJsa-aq691xiD_coj6iNHPp16Hxd9DXhcDxtf_55V2HqzXwZtuVpdyAFZt3YWM714tifsqeMkeFdWcMXbhypktjF9Ze1_yDDfg2Qo9YFXuyImPzJdF4CzpGwA-oi_qc2EUlw0yAlaj91jCdG1YuE9ruYlTWStSsRrD8iEEfsx_m5hGVjIoQjlCCFejI53WFLGvb7N6Edxfyhm5BJy9yeweYENLEErH1INIIIUxkYyMSKwIhktgkUQ-Gje6otO7uTkNGPqmGxjdTjc4p0jlM_RTqXA_6rdxx1d_kjxKyUU3VVO9ivFEYgv9N0pa12yyVr0quBooYBD6ZDGYrCKHDoAdxK1kjwwrx_dVdNxubUD9v1BpEDx61X6NnpeMyndtiSdeEchBGuBznXYP5jxjGA1yA25Vttq-Rh9INGr17_h94CGtoi2p_d7J3D9ZdpwfHFd2EzuJkae_D5fTL4kN58qD2LwwOL9oqfwD-ocAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+musculotendon+parameters+for+scaled+and+subject+specific+musculoskeletal+models+using+an+optimization+technique&rft.jtitle=Journal+of+biomechanics&rft.au=Modenese%2C+Luca&rft.au=Ceseracciu%2C+Elena&rft.au=Reggiani%2C+Monica&rft.au=Lloyd%2C+David+G&rft.date=2016-01-25&rft.issn=0021-9290&rft.volume=49&rft.issue=2&rft.spage=141&rft.epage=148&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.11.006&rft.externalDBID=ECK1-s2.0-S0021929015006363&rft.externalDocID=1_s2_0_S0021929015006363 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00024%2Fcov150h.gif |