Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique

A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682–1688, has been refo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics Vol. 49; no. 2; pp. 141 - 148
Main Authors: Modenese, Luca, Ceseracciu, Elena, Reggiani, Monica, Lloyd, David G.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 25.01.2016
Elsevier Limited
Subjects:
ISSN:0021-9290, 1873-2380, 1873-2380
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682–1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation “from scratch” in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.
AbstractList A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.
A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008), J. Biomech. 41, 1682–1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation “from scratch” in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.
Abstract A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008) , J. Biomech. 41, 1682–1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation “from scratch” in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles׳ operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis . However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.
A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published by Winby et al. (2008) , J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles super(3) operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles except gracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available at https://simtk.org/home/opt_muscle_par.
A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack length. In this study, the method for scaling musculotendon parameters published byWinby et al. (2008), J. Biomech. 41, 1682-1688, has been reformulated, generalized and applied to two cases of practical interest: 1) the adjustment of muscle parameters in the entire lower limb following linear scaling of a generic model and 2) their estimation "from scratch" in a subject specific model of the hip joint created from medical images. In the first case, the procedure maintained the muscles' operating range between models with mean errors below 2.3% of the reference model normalized fiber length value. In the second case, a subject specific model of the hip joint was created using segmented bone geometries and muscle volumes publicly available for a cadaveric specimen from the Living Human Digital Library (LHDL). Estimated optimal fiber lengths were found to be consistent with those of a previously published dataset for all 27 considered muscle bundles exceptgracilis. However, computed tendon slack lengths differed from tendon lengths measured in the LHDL cadaver, suggesting that tendon slack length should be determined via optimization in subject-specific applications. Overall, the presented methodology could adjust the parameters of a scaled model and enabled the estimation of muscle parameters in newly created subject specific models. All data used in the analyses are of public domain and a tool implementing the algorithm is available athttps://simtk.org/home/opt_muscle_par.
Author Modenese, Luca
Ceseracciu, Elena
Lloyd, David G.
Reggiani, Monica
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0003-1402-5359
  surname: Modenese
  fullname: Modenese, Luca
  email: l.modenese@sheffield.ac.uk
  organization: Centre for Musculoskeletal Research, School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Southport, Australia
– sequence: 2
  givenname: Elena
  orcidid: 0000-0002-1124-0427
  surname: Ceseracciu
  fullname: Ceseracciu, Elena
  organization: Department of Management and Engineering, University of Padua, Vicenza, Italy
– sequence: 3
  givenname: Monica
  surname: Reggiani
  fullname: Reggiani, Monica
  organization: Department of Management and Engineering, University of Padua, Vicenza, Italy
– sequence: 4
  givenname: David G.
  surname: Lloyd
  fullname: Lloyd, David G.
  organization: Centre for Musculoskeletal Research, School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Southport, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26776930$$D View this record in MEDLINE/PubMed
BookMark eNqNks2L1TAUxYOMOG9G_4Wh4MZNaz7apAURZRg_YMCFug5pcqvptElNUmEE_3dT3zyEt3BmVSi_c87NPfcMnTjvAKELgiuCCX85VmNv_Qz6e0UxaSpCKoz5I7QjrWAlZS0-QTuMKSk72uFTdBbjiDEWteieoFPKheAdwzv0-yomO6tkvSv8UMxr1OvkEziTfywqqBkShFgMPhRRqwlMoZwp4tqPoFMRF9B2sPogjDcwQVJTMXsDUyzWaN23rCj8kmPsr31QymM7-2OFp-jxoKYIz-6-5-jru6svlx_K60_vP16-vS61oCyVNVGcCE5bRVVPtWJAWta33DSdUbURClrBa80GimnGBqO47k3DuR4U5-3AztGLve8SfI6NSc42apgm5cCvURLRMVo3HW4fgHKBeZvNM_r8CB39Glx-SKbyQIzTrs7UxR219jMYuYS873ArDx1k4NUe0MHHGGCQ2qa_i0pB2UkSLLfK5SgPlcutckmIzJVnOT-SHxLuFb7ZC3NR8NNCkFFbcBqMDblbaby93-L1kYWerLP5Tm7gFuK_dchIJZaft4Pc7pE0m5qz_xs8ZII_Jqf16w
CitedBy_id crossref_primary_10_1016_j_jbiomech_2017_04_003
crossref_primary_10_1371_journal_pone_0328528
crossref_primary_10_1016_j_jbiomech_2018_11_042
crossref_primary_10_1016_j_cmpb_2024_108480
crossref_primary_10_3390_app10207255
crossref_primary_10_1007_s00167_018_5006_3
crossref_primary_10_1016_j_jbiomech_2018_08_023
crossref_primary_10_1016_j_conctc_2022_100926
crossref_primary_10_1016_j_cmpb_2017_09_012
crossref_primary_10_1016_j_jbiomech_2022_111220
crossref_primary_10_1109_TBME_2021_3102009
crossref_primary_10_1371_journal_pone_0206859
crossref_primary_10_1016_j_jbiomech_2021_110498
crossref_primary_10_1007_s10237_024_01825_7
crossref_primary_10_1007_s10439_025_03713_2
crossref_primary_10_3390_jfmk9020068
crossref_primary_10_1016_j_jbiomech_2023_111503
crossref_primary_10_1016_j_knee_2022_09_001
crossref_primary_10_1109_TBME_2023_3324485
crossref_primary_10_1249_MSS_0000000000002943
crossref_primary_10_1007_s10439_024_03455_7
crossref_primary_10_1016_j_jbiomech_2018_03_039
crossref_primary_10_1002_jor_25934
crossref_primary_10_1002_jor_25814
crossref_primary_10_1109_TNSRE_2017_2683488
crossref_primary_10_1007_s11044_022_09852_x
crossref_primary_10_1016_j_jbiomech_2024_112387
crossref_primary_10_1109_TIM_2021_3072113
crossref_primary_10_1016_j_rineng_2025_104660
crossref_primary_10_1371_journal_pone_0176016
crossref_primary_10_3390_s21196597
crossref_primary_10_3390_app14198678
crossref_primary_10_1016_j_jbiomech_2023_111758
crossref_primary_10_1249_MSS_0000000000003624
crossref_primary_10_1016_j_gaitpost_2016_06_014
crossref_primary_10_1016_j_jbiomech_2020_110186
crossref_primary_10_1016_j_jbiomech_2024_112094
crossref_primary_10_1371_journal_pone_0292867
crossref_primary_10_1038_s41598_024_65183_1
crossref_primary_10_1249_MSS_0000000000003091
crossref_primary_10_1016_j_gaitpost_2018_11_009
crossref_primary_10_1177_0954411917701167
crossref_primary_10_1016_j_jbiomech_2025_112530
crossref_primary_10_1016_j_jbiomech_2025_112890
crossref_primary_10_3389_fbioe_2024_1436004
crossref_primary_10_1371_journal_pone_0327172
crossref_primary_10_1152_japplphysiol_00662_2021
crossref_primary_10_1519_JSC_0000000000004949
crossref_primary_10_1016_j_jbiomech_2024_111968
crossref_primary_10_1109_TNSRE_2025_3544551
crossref_primary_10_1109_TNSRE_2025_3529976
crossref_primary_10_1152_japplphysiol_00473_2021
crossref_primary_10_1007_s11044_024_09997_x
crossref_primary_10_1016_j_clinbiomech_2019_12_011
crossref_primary_10_1109_TNSRE_2023_3319959
crossref_primary_10_1080_10255842_2019_1651296
crossref_primary_10_1016_j_jelekin_2023_102808
crossref_primary_10_1109_TBME_2022_3141067
crossref_primary_10_1080_10255842_2018_1558216
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_1007_s40435_022_01040_1
crossref_primary_10_1113_EP090713
crossref_primary_10_1038_s41598_024_53857_9
crossref_primary_10_1007_s10439_020_02490_4
crossref_primary_10_1002_wsbm_1368
crossref_primary_10_1109_TNSRE_2023_3296280
crossref_primary_10_1016_j_joca_2020_04_008
crossref_primary_10_1038_s41598_023_45408_5
crossref_primary_10_1080_10255842_2023_2293652
crossref_primary_10_1109_TNSRE_2025_3596261
crossref_primary_10_1109_ACCESS_2021_3133078
crossref_primary_10_3389_fbioe_2022_1002731
crossref_primary_10_1016_j_jbiomech_2022_111141
crossref_primary_10_1016_j_jbiomech_2022_111383
crossref_primary_10_1016_j_jbiomech_2025_112633
crossref_primary_10_1093_iob_obab006
crossref_primary_10_1109_TNSRE_2024_3403092
crossref_primary_10_1080_14763141_2022_2133006
crossref_primary_10_3390_bioengineering10030369
crossref_primary_10_1186_s12984_025_01691_z
crossref_primary_10_1016_j_gaitpost_2022_07_145
crossref_primary_10_1016_j_gaitpost_2022_07_148
crossref_primary_10_1016_j_jbiomech_2016_09_025
crossref_primary_10_1249_MSS_0000000000002589
crossref_primary_10_1109_TBME_2021_3114717
crossref_primary_10_1111_sms_14570
crossref_primary_10_3390_app11041450
crossref_primary_10_1098_rsos_230393
crossref_primary_10_1249_MSS_0000000000002971
crossref_primary_10_1177_0309324716669250
crossref_primary_10_1016_j_medengphy_2018_09_004
crossref_primary_10_1109_TBME_2024_3352556
crossref_primary_10_1016_j_gaitpost_2022_07_132
crossref_primary_10_1016_j_jbiomech_2023_111798
crossref_primary_10_1007_s10237_022_01626_w
crossref_primary_10_1017_wtc_2024_14
crossref_primary_10_3389_fbioe_2024_1352794
crossref_primary_10_1016_j_jbiomech_2022_111019
crossref_primary_10_1371_journal_pone_0257171
crossref_primary_10_1109_TBME_2016_2630009
crossref_primary_10_1016_j_cmpb_2019_105098
crossref_primary_10_1371_journal_pone_0291458
crossref_primary_10_3389_fnbot_2019_00054
crossref_primary_10_1016_j_gaitpost_2020_04_025
crossref_primary_10_3390_life12081119
crossref_primary_10_1016_j_jmbbm_2025_106908
crossref_primary_10_1371_journal_pcbi_1008843
crossref_primary_10_1016_j_jbiomech_2022_111200
crossref_primary_10_1016_j_bspc_2025_107518
crossref_primary_10_1016_j_gaitpost_2022_03_020
crossref_primary_10_1371_journal_pone_0223531
crossref_primary_10_1016_j_jbiomech_2016_03_052
crossref_primary_10_1249_MSS_0000000000003733
crossref_primary_10_1007_s10237_025_01942_x
crossref_primary_10_1002_jor_26043
crossref_primary_10_1016_j_jbiomech_2020_109724
crossref_primary_10_1007_s10439_023_03436_2
crossref_primary_10_1016_j_joca_2024_02_891
crossref_primary_10_1111_joa_13261
crossref_primary_10_1038_s41598_024_61305_x
crossref_primary_10_1371_journal_pone_0269331
crossref_primary_10_1371_journal_pone_0262936
crossref_primary_10_1016_j_jbiomech_2024_112169
crossref_primary_10_1016_j_jbiomech_2025_112586
crossref_primary_10_1007_s11044_025_10096_8
crossref_primary_10_1249_MSS_0000000000003320
crossref_primary_10_1249_MSS_0000000000001021
crossref_primary_10_1109_TBME_2019_2909171
crossref_primary_10_1177_03635465211038332
Cites_doi 10.1002/cnm.2639
10.1016/S0021-9290(03)00010-1
10.1002/jmri.20805
10.1016/j.jbiomech.2011.06.019
10.1007/s11044-011-9289-0
10.1016/j.jbiomech.2011.06.008
10.1016/j.jbiomech.2013.12.002
10.1016/S0021-9290(08)70204-5
10.2170/physiolsci.RP009908
10.1109/86.242425
10.1007/s10439-014-1153-y
10.1109/TBME.2007.901024
10.1115/1.1531112
10.1007/s11999-008-0594-8
10.1007/BF00422120
10.1097/00005768-200006000-00014
10.1016/j.jbiomech.2009.06.043
10.1016/S0021-9290(99)00122-0
10.1016/j.jbiomech.2008.03.008
10.1109/10.102791
10.1115/1.4029258
10.1002/jor.22364
10.1016/j.jbiomech.2012.07.018
10.1123/jab.20.2.195
10.1016/j.humov.2007.01.008
10.1002/jor.1100080310
10.1016/0021-9290(75)90090-1
10.1016/j.jbiomech.2012.11.045
10.1242/jeb.031096
10.1242/jeb.204.9.1529
10.1016/j.jbiomech.2005.06.005
10.1371/journal.pone.0112625
10.1016/j.clinbiomech.2006.10.003
10.1007/s10439-009-9852-5
10.1016/j.simpat.2006.09.001
10.1114/1.1540105
10.1615/CritRevPhysRehabilMed.v17.i4.10
10.1016/j.jbiomech.2013.09.005
10.1016/j.jbiomech.2010.06.025
10.1152/jappl.2000.88.3.811
10.1115/1.4023390
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2016
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2015.11.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Technology Research Database
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 148
ExternalDocumentID 4002540111
26776930
10_1016_j_jbiomech_2015_11_006
S0021929015006363
1_s2_0_S0021929015006363
Genre Research Support, Non-U.S. Gov't
Controlled Clinical Trial
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
AGQPQ
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c723t-41a617628a2ab2ca3e183b86d59da4d7ae8764c3f202762fda6cbd566cfa668f3
IEDL.DBID M7P
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371552000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
1873-2380
IngestDate Sun Nov 09 13:26:28 EST 2025
Sun Nov 09 14:17:14 EST 2025
Sat Nov 29 14:45:38 EST 2025
Thu Apr 03 07:11:14 EDT 2025
Sat Nov 29 02:32:57 EST 2025
Tue Nov 18 21:22:40 EST 2025
Fri Feb 23 02:28:48 EST 2024
Sun Feb 23 10:20:42 EST 2025
Tue Oct 14 19:30:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hip joint
Subject specific
Tendon slack length
Muscle–tendon parameters
Optimal fiber length
Scaling
Parameter optimization
Muscle models
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c723t-41a617628a2ab2ca3e183b86d59da4d7ae8764c3f202762fda6cbd566cfa668f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-1124-0427
0000-0003-1402-5359
OpenAccessLink http://hdl.handle.net/10072/101916
PMID 26776930
PQID 1776436294
PQPubID 1226346
PageCount 8
ParticipantIDs proquest_miscellaneous_1793245908
proquest_miscellaneous_1767068566
proquest_journals_1776436294
pubmed_primary_26776930
crossref_citationtrail_10_1016_j_jbiomech_2015_11_006
crossref_primary_10_1016_j_jbiomech_2015_11_006
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_11_006
elsevier_clinicalkeyesjournals_1_s2_0_S0021929015006363
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_11_006
PublicationCentury 2000
PublicationDate 2016-01-25
PublicationDateYYYYMMDD 2016-01-25
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Scovil, Ronsky (bib36) 2006; 39
Barber, Barrett, Lichtwark (bib3) 2011; 44
Lee, Piazza (bib22) 2009; 212
Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot (bib25) 2015; 137
Klein Horsman, Koopman, van der Helm, Prose, Veeger (bib20) 2007; 22
Klein Breteler, Spoor, Van der Helm (bib19) 1999; 32
Rubenson, Pires, Loi, Pinniger, Shannon (bib34) 2012; 215
Gerus, Sartori, Besier, Fregly, Delp, Banks, Pandy, D׳Lima, Lloyd (bib12) 2013; 46
Lloyd, Besier (bib23) 2003; 36
Zajac (bib47) 1989; 17
Redl, Gfoehler, Pandy (bib33) 2007; 26
Van Campen, Pipeleers, De Groote, Jonkers, De Schutter (bib40) 2014; 30
Arnold, Ward, Lieber, Delp (bib2) 2010; 38
Thelen (bib37) 2003; 125
Modenese, Phillips, Bull (bib28) 2011; 44
Schutte, Rodgers, Zajac, Glaser (bib35) 1993; 1
Blemker, Asakawa, Gold, Delp (bib5) 2007; 25
van Arkel, Modenese, Phillips, Jeffers (bib39) 2013; 31
Jensen, Davy (bib17) 1975; 8
Williams, Goldspink (bib45) 1978; 127
Hainisch, Gfoehler, Zubayer-Ul-Karim, Pandy (bib13) 2012; 28
Moiseev, Sholukha, Snoeck, Salvia, Rooze, Jan, S. (bib31) 2008; 41
Garner, Pandy (bib11) 2003; 31
Modenese, Phillips, Bull (bib30) 2015; 43
Fregly (bib10) 2009; 2
Kadaba, Ramakrishnan, Wootten (bib18) 1990; 8
Ojeda, Mayo (bib32) 2013
Manal, Buchanan (bib24) 2004; 20
Millard, Uchida, Seth, Delp (bib27) 2013; 135
Hamner, Seth, Delp (bib14) 2010; 43
Hatze (bib16) 1981; 46
Menegaldo, Oliveira (bib26) 2009; 42
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib8) 1990; 37
Modenese, Gopalakrishnan, Phillips (bib29) 2013; 46
Handsfield, Meyer, Hart, Abel, Blemker (bib15) 2014; 47
Van Sint Jan (bib41) 2005; 17
Barber, Barrett, Lichtwark (bib4) 2012; 45
Viceconti, Clapworthy, Jan, S. (bib42) 2008; 58
Ward, S.R., Smallwood, L., Lieber, R.L., 2005. Scaling of human lower extremity muscle architecture to skeletal dimensions. In: Proceedings of ISB XXth Congress - ASB 29th Annual Meeting. July 31–August 5, Cleveland, Ohio.
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib9) 2007; 54
Abe, Kumagai, Brechue (bib1) 2000; 32
Kumagai, Abe, Brechue, Ryushi, Takano, Mizuno (bib21) 2000; 88
Valente, Pitto, Testi, Seth, Delp, Stagni, Viceconti, Taddei (bib38) 2014; 9
Ward, Eng, Smallwood, Lieber (bib43) 2009; 467
Burkholder, Lieber (bib6) 2001; 204
Damsgaard, Rasmussen, Christensen, Surma, de Zee (bib7) 2006; 14
Winby, Lloyd, Kirk (bib46) 2008; 41
10.1016/j.jbiomech.2015.11.006_bib44
Blemker (10.1016/j.jbiomech.2015.11.006_bib5) 2007; 25
Van Sint Jan (10.1016/j.jbiomech.2015.11.006_bib41) 2005; 17
Manal (10.1016/j.jbiomech.2015.11.006_bib24) 2004; 20
Modenese (10.1016/j.jbiomech.2015.11.006_bib28) 2011; 44
Valente (10.1016/j.jbiomech.2015.11.006_bib38) 2014; 9
Damsgaard (10.1016/j.jbiomech.2015.11.006_bib7) 2006; 14
Fregly (10.1016/j.jbiomech.2015.11.006_bib10) 2009; 2
Hatze (10.1016/j.jbiomech.2015.11.006_bib16) 1981; 46
Ojeda (10.1016/j.jbiomech.2015.11.006_bib32) 2013
Modenese (10.1016/j.jbiomech.2015.11.006_bib29) 2013; 46
Van Campen (10.1016/j.jbiomech.2015.11.006_bib40) 2014; 30
Winby (10.1016/j.jbiomech.2015.11.006_bib46) 2008; 41
Barber (10.1016/j.jbiomech.2015.11.006_bib4) 2012; 45
Delp (10.1016/j.jbiomech.2015.11.006_bib9) 2007; 54
Williams (10.1016/j.jbiomech.2015.11.006_bib45) 1978; 127
Burkholder (10.1016/j.jbiomech.2015.11.006_bib6) 2001; 204
Kumagai (10.1016/j.jbiomech.2015.11.006_bib21) 2000; 88
Marra (10.1016/j.jbiomech.2015.11.006_bib25) 2015; 137
Gerus (10.1016/j.jbiomech.2015.11.006_bib12) 2013; 46
Menegaldo (10.1016/j.jbiomech.2015.11.006_bib26) 2009; 42
Garner (10.1016/j.jbiomech.2015.11.006_bib11) 2003; 31
Viceconti (10.1016/j.jbiomech.2015.11.006_bib42) 2008; 58
Arnold (10.1016/j.jbiomech.2015.11.006_bib2) 2010; 38
Jensen (10.1016/j.jbiomech.2015.11.006_bib17) 1975; 8
Redl (10.1016/j.jbiomech.2015.11.006_bib33) 2007; 26
Schutte (10.1016/j.jbiomech.2015.11.006_bib35) 1993; 1
Ward (10.1016/j.jbiomech.2015.11.006_bib43) 2009; 467
Zajac (10.1016/j.jbiomech.2015.11.006_bib47) 1989; 17
Delp (10.1016/j.jbiomech.2015.11.006_bib8) 1990; 37
Lee (10.1016/j.jbiomech.2015.11.006_bib22) 2009; 212
Barber (10.1016/j.jbiomech.2015.11.006_bib3) 2011; 44
Handsfield (10.1016/j.jbiomech.2015.11.006_bib15) 2014; 47
Millard (10.1016/j.jbiomech.2015.11.006_bib27) 2013; 135
Thelen (10.1016/j.jbiomech.2015.11.006_bib37) 2003; 125
Klein Horsman (10.1016/j.jbiomech.2015.11.006_bib20) 2007; 22
van Arkel (10.1016/j.jbiomech.2015.11.006_bib39) 2013; 31
Kadaba (10.1016/j.jbiomech.2015.11.006_bib18) 1990; 8
Moiseev (10.1016/j.jbiomech.2015.11.006_bib31) 2008; 41
Scovil (10.1016/j.jbiomech.2015.11.006_bib36) 2006; 39
Abe (10.1016/j.jbiomech.2015.11.006_bib1) 2000; 32
Klein Breteler (10.1016/j.jbiomech.2015.11.006_bib19) 1999; 32
Lloyd (10.1016/j.jbiomech.2015.11.006_bib23) 2003; 36
Hamner (10.1016/j.jbiomech.2015.11.006_bib14) 2010; 43
Modenese (10.1016/j.jbiomech.2015.11.006_bib30) 2015; 43
Hainisch (10.1016/j.jbiomech.2015.11.006_bib13) 2012; 28
Rubenson (10.1016/j.jbiomech.2015.11.006_bib34) 2012; 215
References_xml – volume: 212
  start-page: 3700
  year: 2009
  end-page: 3707
  ident: bib22
  article-title: Built for speed: musculoskeletal structure and sprinting ability
  publication-title: J. Exp. Biol.
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: bib18
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
– volume: 39
  start-page: 2055
  year: 2006
  end-page: 2063
  ident: bib36
  article-title: Sensitivity of a Hill-based muscle model to perturbations in model parameters
  publication-title: J. Biomech.
– volume: 58
  start-page: 441
  year: 2008
  end-page: 446
  ident: bib42
  article-title: The virtual physiological human - a European initiative for in silico human modelling
  publication-title: J. Physiol. Sci.
– volume: 20
  start-page: 195
  year: 2004
  end-page: 203
  ident: bib24
  article-title: Subject-specific estimates of tendon slack length: a numerical method
  publication-title: J. Appl. Biomech.
– volume: 46
  start-page: 1193
  year: 2013
  end-page: 1200
  ident: bib29
  article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector
  publication-title: Journal of Biomechanics
– volume: 127
  start-page: 459
  year: 1978
  ident: bib45
  article-title: Changes in sarcomere length and physiological properties in immobilized muscle
  publication-title: J. Anat.
– volume: 9
  start-page: e112625
  year: 2014
  ident: bib38
  article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
  publication-title: Plos One
– volume: 26
  start-page: 306
  year: 2007
  end-page: 319
  ident: bib33
  article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties
  publication-title: Hum. Mov. Sci.
– volume: 204
  start-page: 1529
  year: 2001
  end-page: 1536
  ident: bib6
  article-title: Sarcomere length operating range of vertebrate muscles during movement
  publication-title: J. Exp. Biol.
– volume: 137
  start-page: 020904
  year: 2015
  ident: bib25
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J. Biomech. Eng.
– start-page: 479
  year: 2013
  end-page: 485
  ident: bib32
  article-title: A new approach to estimate a subject-specific set of muscle parameters
  publication-title: New Trends in Mechanism and Machine Science
– volume: 43
  start-page: 2709
  year: 2010
  end-page: 2716
  ident: bib14
  article-title: Muscle contributions to propulsion and support during running
  publication-title: J. Biomech.
– volume: 43
  start-page: 1052
  year: 2015
  end-page: 1054
  ident: bib30
  article-title: Letter to the editor: in response to "consistency among musculoskeletal models: caveat utilitor”
  publication-title: Ann. Biomed. Eng.
– volume: 22
  start-page: 239
  year: 2007
  end-page: 247
  ident: bib20
  article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity
  publication-title: Clin. Biomech.
– volume: 44
  start-page: 2185
  year: 2011
  end-page: 2193
  ident: bib28
  article-title: An open source lower limb model: hip joint validation
  publication-title: J. Biomech.
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: bib9
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 103
  year: 1975
  end-page: 110
  ident: bib17
  article-title: An investigation of muscle lines of action about the hip: a centroid line approach vs the straight line approach
  publication-title: J. Biomech.
– volume: 215
  start-page: 3539
  year: 2012
  end-page: 3551
  ident: bib34
  article-title: On the ascent: the soleus operating length is conserved to the ascending limb of the force–length curve across gait mechanics in humans
  publication-title: J. Exp. Biol.
– volume: 44
  start-page: 2496
  year: 2011
  end-page: 2500
  ident: bib3
  article-title: Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy
  publication-title: J. Biomech.
– volume: 14
  start-page: 1100
  year: 2006
  end-page: 1111
  ident: bib7
  article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System
  publication-title: Simul. Model. Pract. Theory
– volume: 45
  start-page: 2526
  year: 2012
  end-page: 2530
  ident: bib4
  article-title: Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy
  publication-title: J. Biomech.
– volume: 31
  start-page: 207
  year: 2003
  end-page: 220
  ident: bib11
  article-title: Estimation of musculotendon properties in the human upper limb
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 765
  year: 2003
  end-page: 776
  ident: bib23
  article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo
  publication-title: J. Biomech.
– volume: 46
  start-page: 2778
  year: 2013
  end-page: 2786
  ident: bib12
  article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces
  publication-title: J. Biomech.
– volume: 17
  start-page: 249
  year: 2005
  end-page: 274
  ident: bib41
  article-title: Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems
  publication-title: Crit. Rev. Phys. Rehabil. Med.
– volume: 32
  start-page: 1125
  year: 2000
  end-page: 1129
  ident: bib1
  article-title: Fascicle length of leg muscles is greater in sprinters than distance runners
  publication-title: Med. Sci. Sports Exerc.
– volume: 17
  start-page: 359
  year: 1989
  end-page: 411
  ident: bib47
  article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control
  publication-title: Crit. Rev. Biomed. Eng.
– reference: Ward, S.R., Smallwood, L., Lieber, R.L., 2005. Scaling of human lower extremity muscle architecture to skeletal dimensions. In: Proceedings of ISB XXth Congress - ASB 29th Annual Meeting. July 31–August 5, Cleveland, Ohio.
– volume: 32
  start-page: 1191
  year: 1999
  ident: bib19
  article-title: Measuring muscle and joint geometry parameters of a shoulder for modeling purposes
  publication-title: J. Biomech.
– volume: 88
  start-page: 811
  year: 2000
  end-page: 816
  ident: bib21
  article-title: Sprint performance is related to muscle fascicle length in male 100-m sprinters
  publication-title: J. Appl. Physiol.
– volume: 47
  start-page: 631
  year: 2014
  end-page: 638
  ident: bib15
  article-title: Relationships of 35 lower limb muscles to height and body mass quantified using MRI
  publication-title: J. Biomech.
– volume: 467
  start-page: 1074
  year: 2009
  end-page: 1082
  ident: bib43
  article-title: Are current measurements of lower extremity muscle architecture accurate?
  publication-title: Clin. Orthop. Relat. Res.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib8
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 28
  start-page: 143
  year: 2012
  end-page: 156
  ident: bib13
  article-title: Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data
  publication-title: Multibody Syst. Dyn.
– volume: 2
  start-page: 145
  year: 2009
  ident: bib10
  article-title: Design of optimal treatments for neuromusculoskeletal disorders using patient-specific multibody dynamic models
  publication-title: Int. J. Comput. Vis. Biomech.
– volume: 42
  start-page: 2597
  year: 2009
  end-page: 2601
  ident: bib26
  article-title: Effect of muscle model parameter scaling for isometric plantar flexion torque prediction
  publication-title: J. Biomech.
– volume: 46
  start-page: 325
  year: 1981
  end-page: 338
  ident: bib16
  article-title: Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 38
  start-page: 269
  year: 2010
  end-page: 279
  ident: bib2
  article-title: A model of the lower limb for analysis of human movement
  publication-title: Ann. Biomed. Eng.
– volume: 25
  start-page: 441
  year: 2007
  end-page: 451
  ident: bib5
  article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities
  publication-title: J. Magn. Reson. Imaging
– volume: 1
  start-page: 109
  year: 1993
  end-page: 125
  ident: bib35
  article-title: Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 135
  year: 2013
  ident: bib27
  article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics
  publication-title: J. Biomech. Eng.
– volume: 125
  start-page: 70
  year: 2003
  end-page: 77
  ident: bib37
  article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults
  publication-title: J. Biomech. Eng.
– volume: 30
  start-page: 969
  year: 2014
  end-page: 987
  ident: bib40
  article-title: A new method for estimating subject-specific muscle–tendon parameters of the knee joint actuators: a simulation study
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 31
  start-page: 1172
  year: 2013
  end-page: 1179
  ident: bib39
  article-title: Hip abduction can prevent posterior edge loading of hip replacements
  publication-title: J. Orthop. Res.
– volume: 41
  start-page: 1682
  year: 2008
  end-page: 1688
  ident: bib46
  article-title: Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters
  publication-title: J. Biomech.
– volume: 41
  start-page: S204
  year: 2008
  ident: bib31
  article-title: Registration of soft tissue morphology with skeletal morphology and kinematics
  publication-title: J. Biomech.
– volume: 30
  start-page: 969
  year: 2014
  ident: 10.1016/j.jbiomech.2015.11.006_bib40
  article-title: A new method for estimating subject-specific muscle–tendon parameters of the knee joint actuators: a simulation study
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2639
– volume: 36
  start-page: 765
  year: 2003
  ident: 10.1016/j.jbiomech.2015.11.006_bib23
  article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00010-1
– volume: 25
  start-page: 441
  year: 2007
  ident: 10.1016/j.jbiomech.2015.11.006_bib5
  article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20805
– volume: 44
  start-page: 2185
  year: 2011
  ident: 10.1016/j.jbiomech.2015.11.006_bib28
  article-title: An open source lower limb model: hip joint validation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.06.019
– ident: 10.1016/j.jbiomech.2015.11.006_bib44
– volume: 28
  start-page: 143
  year: 2012
  ident: 10.1016/j.jbiomech.2015.11.006_bib13
  article-title: Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-011-9289-0
– volume: 44
  start-page: 2496
  year: 2011
  ident: 10.1016/j.jbiomech.2015.11.006_bib3
  article-title: Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.06.008
– volume: 47
  start-page: 631
  year: 2014
  ident: 10.1016/j.jbiomech.2015.11.006_bib15
  article-title: Relationships of 35 lower limb muscles to height and body mass quantified using MRI
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.12.002
– volume: 41
  start-page: S204
  issue: Supplement 1
  year: 2008
  ident: 10.1016/j.jbiomech.2015.11.006_bib31
  article-title: Registration of soft tissue morphology with skeletal morphology and kinematics
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(08)70204-5
– volume: 58
  start-page: 441
  year: 2008
  ident: 10.1016/j.jbiomech.2015.11.006_bib42
  article-title: The virtual physiological human - a European initiative for in silico human modelling
  publication-title: J. Physiol. Sci.
  doi: 10.2170/physiolsci.RP009908
– start-page: 479
  year: 2013
  ident: 10.1016/j.jbiomech.2015.11.006_bib32
  article-title: A new approach to estimate a subject-specific set of muscle parameters
– volume: 1
  start-page: 109
  year: 1993
  ident: 10.1016/j.jbiomech.2015.11.006_bib35
  article-title: Improving the efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based on a dynamic musculoskeletal model
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.242425
– volume: 43
  start-page: 1052
  year: 2015
  ident: 10.1016/j.jbiomech.2015.11.006_bib30
  article-title: Letter to the editor: in response to "consistency among musculoskeletal models: caveat utilitor”
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1153-y
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2015.11.006_bib9
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 125
  start-page: 70
  year: 2003
  ident: 10.1016/j.jbiomech.2015.11.006_bib37
  article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1531112
– volume: 467
  start-page: 1074
  year: 2009
  ident: 10.1016/j.jbiomech.2015.11.006_bib43
  article-title: Are current measurements of lower extremity muscle architecture accurate?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-008-0594-8
– volume: 46
  start-page: 325
  year: 1981
  ident: 10.1016/j.jbiomech.2015.11.006_bib16
  article-title: Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00422120
– volume: 32
  start-page: 1125
  year: 2000
  ident: 10.1016/j.jbiomech.2015.11.006_bib1
  article-title: Fascicle length of leg muscles is greater in sprinters than distance runners
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-200006000-00014
– volume: 42
  start-page: 2597
  year: 2009
  ident: 10.1016/j.jbiomech.2015.11.006_bib26
  article-title: Effect of muscle model parameter scaling for isometric plantar flexion torque prediction
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.06.043
– volume: 32
  start-page: 1191
  year: 1999
  ident: 10.1016/j.jbiomech.2015.11.006_bib19
  article-title: Measuring muscle and joint geometry parameters of a shoulder for modeling purposes
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00122-0
– volume: 41
  start-page: 1682
  year: 2008
  ident: 10.1016/j.jbiomech.2015.11.006_bib46
  article-title: Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.03.008
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2015.11.006_bib8
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 137
  start-page: 020904
  year: 2015
  ident: 10.1016/j.jbiomech.2015.11.006_bib25
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029258
– volume: 31
  start-page: 1172
  year: 2013
  ident: 10.1016/j.jbiomech.2015.11.006_bib39
  article-title: Hip abduction can prevent posterior edge loading of hip replacements
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.22364
– volume: 45
  start-page: 2526
  year: 2012
  ident: 10.1016/j.jbiomech.2015.11.006_bib4
  article-title: Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.07.018
– volume: 20
  start-page: 195
  year: 2004
  ident: 10.1016/j.jbiomech.2015.11.006_bib24
  article-title: Subject-specific estimates of tendon slack length: a numerical method
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.20.2.195
– volume: 26
  start-page: 306
  year: 2007
  ident: 10.1016/j.jbiomech.2015.11.006_bib33
  article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2007.01.008
– volume: 8
  start-page: 383
  year: 1990
  ident: 10.1016/j.jbiomech.2015.11.006_bib18
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 8
  start-page: 103
  year: 1975
  ident: 10.1016/j.jbiomech.2015.11.006_bib17
  article-title: An investigation of muscle lines of action about the hip: a centroid line approach vs the straight line approach
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(75)90090-1
– volume: 46
  start-page: 1193
  year: 2013
  ident: 10.1016/j.jbiomech.2015.11.006_bib29
  article-title: Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2012.11.045
– volume: 212
  start-page: 3700
  year: 2009
  ident: 10.1016/j.jbiomech.2015.11.006_bib22
  article-title: Built for speed: musculoskeletal structure and sprinting ability
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.031096
– volume: 127
  start-page: 459
  year: 1978
  ident: 10.1016/j.jbiomech.2015.11.006_bib45
  article-title: Changes in sarcomere length and physiological properties in immobilized muscle
  publication-title: J. Anat.
– volume: 204
  start-page: 1529
  year: 2001
  ident: 10.1016/j.jbiomech.2015.11.006_bib6
  article-title: Sarcomere length operating range of vertebrate muscles during movement
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.9.1529
– volume: 39
  start-page: 2055
  year: 2006
  ident: 10.1016/j.jbiomech.2015.11.006_bib36
  article-title: Sensitivity of a Hill-based muscle model to perturbations in model parameters
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.06.005
– volume: 9
  start-page: e112625
  year: 2014
  ident: 10.1016/j.jbiomech.2015.11.006_bib38
  article-title: Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
  publication-title: Plos One
  doi: 10.1371/journal.pone.0112625
– volume: 22
  start-page: 239
  year: 2007
  ident: 10.1016/j.jbiomech.2015.11.006_bib20
  article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2006.10.003
– volume: 38
  start-page: 269
  year: 2010
  ident: 10.1016/j.jbiomech.2015.11.006_bib2
  article-title: A model of the lower limb for analysis of human movement
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9852-5
– volume: 14
  start-page: 1100
  year: 2006
  ident: 10.1016/j.jbiomech.2015.11.006_bib7
  article-title: Analysis of musculoskeletal systems in the AnyBody Modeling System
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2006.09.001
– volume: 2
  start-page: 145
  year: 2009
  ident: 10.1016/j.jbiomech.2015.11.006_bib10
  article-title: Design of optimal treatments for neuromusculoskeletal disorders using patient-specific multibody dynamic models
  publication-title: Int. J. Comput. Vis. Biomech.
– volume: 31
  start-page: 207
  year: 2003
  ident: 10.1016/j.jbiomech.2015.11.006_bib11
  article-title: Estimation of musculotendon properties in the human upper limb
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1540105
– volume: 17
  start-page: 249
  year: 2005
  ident: 10.1016/j.jbiomech.2015.11.006_bib41
  article-title: Introducing anatomical and physiological accuracy in computerized anthropometry for increasing the clinical usefulness of modeling systems
  publication-title: Crit. Rev. Phys. Rehabil. Med.
  doi: 10.1615/CritRevPhysRehabilMed.v17.i4.10
– volume: 46
  start-page: 2778
  year: 2013
  ident: 10.1016/j.jbiomech.2015.11.006_bib12
  article-title: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.09.005
– volume: 215
  start-page: 3539
  year: 2012
  ident: 10.1016/j.jbiomech.2015.11.006_bib34
  article-title: On the ascent: the soleus operating length is conserved to the ascending limb of the force–length curve across gait mechanics in humans
  publication-title: J. Exp. Biol.
– volume: 43
  start-page: 2709
  year: 2010
  ident: 10.1016/j.jbiomech.2015.11.006_bib14
  article-title: Muscle contributions to propulsion and support during running
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.06.025
– volume: 17
  start-page: 359
  year: 1989
  ident: 10.1016/j.jbiomech.2015.11.006_bib47
  article-title: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 88
  start-page: 811
  year: 2000
  ident: 10.1016/j.jbiomech.2015.11.006_bib21
  article-title: Sprint performance is related to muscle fascicle length in male 100-m sprinters
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2000.88.3.811
– volume: 135
  year: 2013
  ident: 10.1016/j.jbiomech.2015.11.006_bib27
  article-title: Flexing computational muscle: modeling and simulation of musculotendon dynamics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023390
SSID ssj0007479
Score 2.55463
Snippet A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon slack...
Abstract A challenging aspect of subject specific musculoskeletal modeling is the estimation of muscle parameters, especially optimal fiber length and tendon...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms Adjustment
Algorithms
Conflicts of interest
Fibers
Hip joint
Hip Joint - physiology
Humans
Lower Extremity - physiology
Mathematical models
Methods
Models, Biological
Muscle models
Muscle, Skeletal - physiology
Muscles
Muscle–tendon parameters
Optimal fiber length
Optimization
Parameter optimization
Physical Medicine and Rehabilitation
Scaling
Simulation
Subject specific
Surgical implants
Tendon slack length
Tendons
Tendons - physiology
Title Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015006363
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015006363
https://dx.doi.org/10.1016/j.jbiomech.2015.11.006
https://www.ncbi.nlm.nih.gov/pubmed/26776930
https://www.proquest.com/docview/1776436294
https://www.proquest.com/docview/1767068566
https://www.proquest.com/docview/1793245908
Volume 49
WOSCitedRecordID wos000371552000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251012
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYhtA48NExKIzKSIhbtsRxbOeEBurEgZUKAerNcmJnotBkLC0SB_533nOcsAMMBJdKbfMUK-_l935-fh-EPK1kwU1ZmUimykTcgS4KxrDYvQSTVllR-pjuh9dyNlOLRT4PAbc2pFX2mOiB2jYlxsiPEinBeQqW8-fnXyKcGoWnq2GExhbZwS4JzKfuzQckBqocUjySCGhAfKlCeHm49PXt_kAiyQ6xkydOPfq1c_od-fRO6OT2_y7_DrkV6Cc97uzlLrnm6hHZO65h6736Rp9RnxDqI-0jcvNSr8IRuXEaTuH3yPcp4EJX8kibiq42mMzaYDAdfsBe4ivMsWkp8GHagg04S01tabspMOhDsbgTE5R6wfYTuD7YA1A_laelmIp_BhK0AThbhTpROjSbvUfen0zfvXwVhTEOUSlZuo54YoAmCaYMMwUrTeoARgolbJZbw600DhCZl2mFcRjBKmtEWVigmWBCQqgq3SfbdVO7B4RyLm0ugWHGyoAjtcrllheOp5wXuS3UmGS9_nQZepzjqI3Puk9mW-pe7xr1DhsgDXofk6NB7rzr8vFHCdmbh-5rWAF1NTiif5N0bQCPVie6ZTrWeI6eoNkCZwciKdIxyQfJwI863vNXdz3o7VL_vNFglGPyZPgb8AUPjUztmg1eI2QsFKjjqmtgF8CzPAYF3O_ej-ExMiH9uM2HVy_gEdmF1frgFssOyPb6YuMek-vl1_XH9mJCtuRC-k81ITsvprP5W_h2yt5M_Av_A3sJXLA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgngceGx5LBQwEnBLu3EcOzkgVEGrVt0uHArqzTixg1jYpDS7oB74S_xGZpwHPUBBSD1wTTKbrD2Pb8bzAHhcqEyYvDCBihITCId7kXFOxe45snQSZ7mP6b4dq8kkOThIXy_B964WhtIqO53oFbWtcoqRr4dKofGUPBXPDz8HNDWKTle7ERoNW-y646_ostXPdl7i_j7hfGtz_8V20E4VCHLFo3kgQoNWW_LEcJPx3EQOuTpLpI1Ta4RVxqGCEHlUUFhA8sIamWcWUQ_-IymTIsLfPQfnBXlClCrIX_WaH6F5m1ISBgg7RicqkqdrU19P7w9AwniNOofSlKVfG8PfgV1v9Lau_W_LdR2utvCabTTycAOWXDmAlY3SzKvZMXvKfMKrP0kYwJUTvRgHcHGvzTJYgW-bqPeakk5WFWy2oGTdig4L8AL1Sp9RDlHNEO-zGnncWWZKy-pFRkEtRsWrlIDVEdYf0bSjj8P81KGaUanBe6RgFarrWVsHy_pmujfhzZms0C1YLqvS3QEmhLKpQgQ9SgwCBZu41IrMiUiILLVZMoS44xedtz3caZTIJ90l6011x2ea-AwdPI18NoT1nu6w6WLyRwrVsaPuanTRqmg0tP9G6epWOdY61DXXI015AiGJCfokCJRlNIS0p2zxX4Pr_uqtq50c6J8v6oVgCI_626g_6VDMlK5a0DNSjWSC23HaM-jliDgd4QbcbuSxX0YulR8nevf0D3gIl7b398Z6vDPZvQeX8ct9II_Hq7A8P1q4-3Ah_zL_UB898CqFwbuzFsoftFa2EA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFXlwCPlESiwSMDNTbzeeO0DQoUmomqJIgSot-3au64IxC51AuqBP8avY2b9oAcoCKkHroknjr3z-Gb3mxmAx5lMhE4z7ckg0p6wuBYJ51TsnqJKR8MkdXu67_flZBIdHMTTFfje1MIQrbLxic5RmyKlPfK-LyUGz5DHop_VtIjpzvj58WePJkjRSWszTqNSkT17-hXTt_LZ7g6u9RPOx6O3L1959YQBL5U8WHjC1xjBQx5prhOe6sCihidRaIax0cJIbdFZiDTIaIsg5JnRYZoYRED4dGEYZQH-7iVYlQgyRAdWX4wm0zdtHECgXhNMfA9ByOBMffJsa-aq691xiD_coj6iNHPp16Hxd9DXhcDxtf_55V2HqzXwZtuVpdyAFZt3YWM714tifsqeMkeFdWcMXbhypktjF9Ze1_yDDfg2Qo9YFXuyImPzJdF4CzpGwA-oi_qc2EUlw0yAlaj91jCdG1YuE9ruYlTWStSsRrD8iEEfsx_m5hGVjIoQjlCCFejI53WFLGvb7N6Edxfyhm5BJy9yeweYENLEErH1INIIIUxkYyMSKwIhktgkUQ-Gje6otO7uTkNGPqmGxjdTjc4p0jlM_RTqXA_6rdxx1d_kjxKyUU3VVO9ivFEYgv9N0pa12yyVr0quBooYBD6ZDGYrCKHDoAdxK1kjwwrx_dVdNxubUD9v1BpEDx61X6NnpeMyndtiSdeEchBGuBznXYP5jxjGA1yA25Vttq-Rh9INGr17_h94CGtoi2p_d7J3D9ZdpwfHFd2EzuJkae_D5fTL4kN58qD2LwwOL9oqfwD-ocAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+musculotendon+parameters+for+scaled+and+subject+specific+musculoskeletal+models+using+an+optimization+technique&rft.jtitle=Journal+of+biomechanics&rft.au=Modenese%2C+Luca&rft.au=Ceseracciu%2C+Elena&rft.au=Reggiani%2C+Monica&rft.au=Lloyd%2C+David+G&rft.date=2016-01-25&rft.issn=0021-9290&rft.volume=49&rft.issue=2&rft.spage=141&rft.epage=148&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.11.006&rft.externalDBID=ECK1-s2.0-S0021929015006363&rft.externalDocID=1_s2_0_S0021929015006363
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00024%2Fcov150h.gif