Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates
Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction‐enzyme‐based methods remain largely unknown....
Uloženo v:
| Vydáno v: | Molecular ecology resources Ročník 16; číslo 4; s. 966 - 978 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.07.2016
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1755-098X, 1755-0998 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction‐enzyme‐based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother–offspring dyads of Hoffman's two‐toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference‐aligned and de novo‐assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo‐assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference‐aligned and de novo‐assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference‐aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo‐assembled data sets. We observed approximately 10‐ and 13‐fold declines in the number of loci sampled in the reference‐aligned and de novo‐assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade‐off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction‐enzyme‐based SNP studies. |
|---|---|
| AbstractList | Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo-assembled data sets. For example, coverage greater than or equal to 5 yielded median genotyping error rates of greater than or equal to 0.03 and greater than or equal to 0.11 in reference-aligned and de novo-assembled data sets, respectively. Genotyping error rates declined to less than or equal to 0.01 in reference-aligned data sets with a coverage greater than or equal to 30, but remained greater than or equal to 0.04 in the de novo-assembled data sets. We observed approximately 10- and 13-fold declines in the number of loci sampled in the reference-aligned and de novo-assembled data sets when coverage was increased from greater than or equal to 5 to greater than or equal to 30 at quality score greater than or equal to 30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade-off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction-enzyme-based SNP studies. Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo-assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference-aligned and de novo-assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference-aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo-assembled data sets. We observed approximately 10- and 13-fold declines in the number of loci sampled in the reference-aligned and de novo-assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade-off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction-enzyme-based SNP studies. Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism ( SNP ) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNP s derived from restriction‐enzyme‐based methods remain largely unknown. Here, we estimated genotyping error rates in SNP s genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother–offspring dyads of Hoffman's two‐toed sloth ( Choloepus hoffmanni ) across a range of coverage and sequence quality criteria, for both reference‐aligned and de novo ‐assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo ‐assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference‐aligned and de novo ‐assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference‐aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo‐ assembled data sets. We observed approximately 10‐ and 13‐fold declines in the number of loci sampled in the reference‐aligned and de novo ‐assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade‐off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction‐enzyme‐based SNP studies. |
| Author | Pauli, Jonathan N. Palsbøll, Per J. Peery, M. Zachariah Reid, Brendan N. Fountain, Emily D. |
| Author_xml | – sequence: 1 givenname: Emily D. surname: Fountain fullname: Fountain, Emily D. email: efountain@wisc.edu organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, WI, 53706, Madison, USA – sequence: 2 givenname: Jonathan N. surname: Pauli fullname: Pauli, Jonathan N. organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, WI, 53706, Madison, USA – sequence: 3 givenname: Brendan N. surname: Reid fullname: Reid, Brendan N. organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, WI, 53706, Madison, USA – sequence: 4 givenname: Per J. surname: Palsbøll fullname: Palsbøll, Per J. organization: Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, AG, 9747, Groningen, The Netherlands – sequence: 5 givenname: M. Zachariah surname: Peery fullname: Peery, M. Zachariah organization: Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, WI, 53706, Madison, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26946083$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstv1DAQxiNURB9w5oYsceklre3Esc0NVW1BWopQy0NcLK8z2XVJ7NR2gL3xp5N0H4dKiPpia_z7vpnRzGG257yDLHtJ8AkZzynhjOVYSnFCKCPySXawi-zt3uLbfnYY4y3GFZa8fJbt00qWFRbFQfbnwrraugVKS0DBLpYJGf8Tgl7Am_uY7XptEvLNLo60q1GEuwGcAXQ36NamFfIOxdGnBeQG04JPtgbU-3bV-dAvbezQApxPq35KBiH4gIJOEJ9nTxvdRnixuY-yzxfnN2fv8tnHy_dnb2e54ZTKHIwuzbxuKBelZJWomSmhZrUwks0LUsuCTt-F5gUpeUNNM-eG1bzQJRXSNMVRdrz27YMfS49JdTYaaFvtwA9REUFZSRkW-BEoFlXJOHsEyqUY68eMj-jrB-itH4Ibe54oLhihxWT4akMN8w5q1Qfb6bBS24mNAFsDJvgYAzTK2KST9S4FbVtFsJo2Q02zV9MeqPvNGHWnD3Rb638rNpl-2RZW_8PVh_OrrS5f62xM8Hun0-GHqnjBmfp6damuv5Pq5sv1TH0q_gLzeNlY |
| CitedBy_id | crossref_primary_10_1093_jhered_esw044 crossref_primary_10_1111_eva_12682 crossref_primary_10_1098_rsos_160548 crossref_primary_10_1111_1755_0998_13087 crossref_primary_10_1111_1755_0998_13383 crossref_primary_10_1111_1755_0998_12990 crossref_primary_10_1038_s41437_020_0302_3 crossref_primary_10_1111_mec_14388 crossref_primary_10_3390_agronomy11081677 crossref_primary_10_3389_fmars_2023_1113870 crossref_primary_10_1111_1755_0998_12910 crossref_primary_10_1002_ajb2_16388 crossref_primary_10_1111_1755_0998_12978 crossref_primary_10_1002_1438_390X_12192 crossref_primary_10_1111_1755_0998_12739 crossref_primary_10_1038_s41576_024_00738_6 crossref_primary_10_1186_s12862_022_02100_y crossref_primary_10_1007_s11295_019_1372_3 crossref_primary_10_1007_s10531_022_02369_x crossref_primary_10_1534_g3_118_200171 crossref_primary_10_3390_genes13030541 crossref_primary_10_3389_fevo_2022_970249 crossref_primary_10_1111_age_12557 crossref_primary_10_1016_j_sajb_2018_05_009 crossref_primary_10_1111_1755_0998_13070 crossref_primary_10_1111_eva_13202 crossref_primary_10_1111_mec_15107 crossref_primary_10_1111_pbi_12645 crossref_primary_10_1371_journal_pone_0226608 crossref_primary_10_1038_s41598_020_68140_w crossref_primary_10_1002_ece3_6483 crossref_primary_10_1111_1755_0998_13031 crossref_primary_10_1111_1755_0998_13570 crossref_primary_10_1007_s11295_018_1251_3 crossref_primary_10_1111_mec_14397 crossref_primary_10_1007_s11033_020_06030_0 crossref_primary_10_3389_fevo_2021_629252 crossref_primary_10_1111_jse_12268 crossref_primary_10_1111_1755_0998_13314 crossref_primary_10_1002_ece3_3854 crossref_primary_10_1111_1755_0998_12967 crossref_primary_10_1111_1755_0998_13859 crossref_primary_10_1186_s12864_021_07465_w crossref_primary_10_1093_jhered_esae060 crossref_primary_10_1111_2041_210X_12775 crossref_primary_10_1016_j_ympev_2023_107858 crossref_primary_10_3390_f12020222 crossref_primary_10_1016_j_margen_2018_02_002 |
| Cites_doi | 10.1111/mec.12842 10.1111/mec.12354 10.1016/j.ygeno.2007.05.011 10.1371/journal.pone.0037558 10.1139/cjfas-2013-0502 10.1111/mec.12084 10.1371/journal.pone.0019379 10.1111/mec.12636 10.1371/journal.pone.0037135 10.1093/molbev/msm239 10.1111/mec.12269 10.1073/pnas.1017351108 10.1111/j.1365-294X.2007.03089.x 10.1111/1755-0998.12291 10.1038/nrg3117 10.1016/j.anbehav.2012.06.007 10.1534/genetics.114.169052 10.1371/journal.pone.0106713 10.1126/science.1180614 10.1046/j.1365-294x.1998.00374.x 10.1007/s10336-012-0844-0 10.1186/1471-2164-14-535 10.1038/nrg2986 10.1371/journal.pgen.1000862 10.1002/gepi.10301 10.1111/mec.12023 10.1111/j.0014-3820.2004.tb01606.x 10.1093/molbev/mst136 10.1111/1755-0998.12337 10.1016/j.spl.2012.11.009 10.1371/journal.pone.0003376 10.1101/gr.113084.110 10.1111/mec.13012 10.1073/pnas.1216128109 10.1093/bioinformatics/btp336 10.1534/g3.111.000240 10.1186/1471-2164-15-351 10.1111/mec.12105 10.1111/mec.12590 10.1101/gr.078212.108 10.1186/1471-2164-15-233 10.1111/j.1365-294X.2010.04554.x 10.1002/jwmg.604 10.1016/j.ygeno.2004.05.003 10.1093/bioinformatics/btq214 10.1016/j.tree.2012.05.012 10.1093/bioinformatics/btq092 10.1111/1755-0998.12117 10.1016/j.jgg.2011.02.003 10.1534/g3.112.003897 10.1016/0092-8674(75)90184-1 10.1086/338919 10.1038/nrg3012 10.1186/gb-2009-10-3-r32 |
| ContentType | Journal Article |
| Copyright | 2016 John Wiley & Sons Ltd 2016 John Wiley & Sons Ltd. Copyright © 2016 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2016 John Wiley & Sons Ltd – notice: 2016 John Wiley & Sons Ltd. – notice: Copyright © 2016 John Wiley & Sons Ltd |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7TM 7S9 L.6 |
| DOI | 10.1111/1755-0998.12519 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef Entomology Abstracts AGRICOLA MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 1755-0998 |
| EndPage | 978 |
| ExternalDocumentID | 4094056901 26946083 10_1111_1755_0998_12519 MEN12519 ark_67375_WNG_SZ16TVSL_Q |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: NSF funderid: #1257535 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7TM 7S9 L.6 |
| ID | FETCH-LOGICAL-c7229-eca4cbdf27849568d5c4ed5d8c95b31d932cbdf3a73147f2cfb7c5d73a4289cf3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383281100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1755-098X |
| IngestDate | Fri Jul 11 18:25:39 EDT 2025 Tue Oct 07 09:36:22 EDT 2025 Thu Jul 10 17:07:31 EDT 2025 Sun Jul 13 03:54:48 EDT 2025 Thu Apr 10 11:04:50 EDT 2025 Sat Nov 29 02:35:25 EST 2025 Tue Nov 18 21:43:02 EST 2025 Wed Aug 20 07:26:24 EDT 2025 Sun Sep 21 06:18:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | ddRAD genotyping error next-generation sequencing single nucleotide polymorphism Mendelian incompatibility |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c7229-eca4cbdf27849568d5c4ed5d8c95b31d932cbdf3a73147f2cfb7c5d73a4289cf3 |
| Notes | ArticleID:MEN12519 NSF - No. #1257535 ark:/67375/WNG-SZ16TVSL-Q istex:17B5285FEB29D7DA6230452FBB4162104BD6F60D Table S1 Total number of raw and retained reads by individuals, sample quality and the sequencing library for quality score ≥10. Table S2 Total number of raw and retained reads by individuals, sample quality and the sequencing library for quality score ≥20. Table S3 Total number of raw and retained reads by individuals, sample quality and the sequencing library for quality score ≥30. Fig. S1 Figure of median genotyping error for reference-aligned full reads using all 16 dyads vs. dataset with the three low-quality dyads removed. Fig. S2 Reference-aligned full dataset changes relative to that observed at minimum coverage (≥5) and quality score (≥10). Fig. S3de novo-assembled dataset changes relative to that observed at minimum coverage (≥5) and quality score (≥10). Fig. S4 Figure of median genotyping error for de novo-assembled dataset using all 16 dyads vs. dataset with the three low-quality dyads removed. Fig. S5 rxstacks corrected dataset changes relative to that observed at minimum coverage (≥5) and quality score (≥10) for reference-aligned full and de novo-assembled datasets.Appendix S1 Detailed methods for laboratory protocols, de novo assembly parameter tests and parentage assignments. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1755-0998.12519 |
| PMID | 26946083 |
| PQID | 1797851230 |
| PQPubID | 1096410 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1825425080 proquest_miscellaneous_1808645750 proquest_miscellaneous_1798722057 proquest_journals_1797851230 pubmed_primary_26946083 crossref_citationtrail_10_1111_1755_0998_12519 crossref_primary_10_1111_1755_0998_12519 wiley_primary_10_1111_1755_0998_12519_MEN12519 istex_primary_ark_67375_WNG_SZ16TVSL_Q |
| PublicationCentury | 2000 |
| PublicationDate | July 2016 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: July 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology resources |
| PublicationTitleAlternate | Mol Ecol Resour |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Harismendy O, Ng PC, Strausberg RL et al. (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10, R32. Ruegg K, Anderson EC, Boone J, Pouls J, Smith TB (2014) A role for migration-linked genes and genomic islands in divergence of a songbird. Molecular Ecology, 23, 4757-4769. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nature Reviews. Genetics, 12, 443-451. He Z, Li X, Ling S et al. (2013) Estimating DNA polymorphism from next generation sequencing data with high error rate by dual sequencing applications. BMC Genomics, 14, 535. Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Reviews. Genetics, 13, 36-46. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Molecular Ecology, 22, 3124-3140. Santure AW, Stapley J, Ball AD et al. (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Molecular Ecology, 19, 1439-1451. SAS Institute Inc. (2013) What's New in SAS® 9.4. SAS Institute Inc., Cary, North Carolina. Lampa S, Henle K, Klenke R, Hoehn M, Gruber B (2013) How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation-a review of available methods illustrated by a case study. The Journal of Wildlife Management, 77, 1490-1511. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639-655. Pujolar JM, Jacobsen MW, Frydenberg J et al. (2013) A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Molecular Ecology Resources, 13, 706-714. Peery MZ, Pauli JN (2012) The mating system of a 'lazy' mammal, Hoffmann's two-toed sloth. Animal Behaviour, 84, 555-562. Bansal V (2010) A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bioinformatics, 26, i318-i324. Bradic M, Teotónio H, Borowsky RL (2013) The population genomics of repeated evolution in the blind cavefish Astyanax mexicanus. Molecular Biology and Evolution, 30, 2383-2400. Elshire RJ, Glaubitz JC, Sun Q et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6, e19379. Saunders IW, Brohede J, Hannan GN (2007) Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference. Genomics, 90, 291-296. Larson WA, Seeb JE, Pascal CE, Templin WD, Seeb LW (2014) Single-nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing improve genetic stock identification of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 71, 698-708. Malhis N, Jones SJM (2010) High quality SNP calling using Illumina data at shallow coverage. Bioinformatics, 26, 1029-1035. Gnerre S, MacCallum I, Przybylski D et al. (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences, USA, 108, 1513-1518. Jezkova T, Riddle BR, Card DC et al. (2015) Genetic consequences of post-glacial range expansion in two co-distributed rodents (genus Dipodomys) depend on ecology and genetic locus. Molecular Ecology, 24, 83-97. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6, 847-859. Palti Y, Gao G, Liu S et al. (2015) The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Molecular Ecology Resources, 15, 662-672. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27, 489-496. Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 38, 95-109. Davey JW, Hohenlohe PA, Etter PD, et al. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499-510. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Mastretta-Yanes A, Arrigo N, Alvarez N et al. (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular Ecology Resources, 15, 28-41. Buerkle AC, Gompert Z (2013) Population genomics based on low coverage sequencing: how low should we go? Molecular Ecology, 22, 3028-3035. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 7, e37135. Jones JC, Fan S, Franchini P, Schartl M, Meyer A (2013) The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing. Molecular Ecology, 22, 2986-3001. Baird NA, Etter PD, Atwood TS, et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. Lozier JD (2014) Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Molecular Ecology, 23, 788-801. Chen N, Van Hout CV, Gottipati S, Clark AG (2014) Using Mendelian Inheritance to improve high throughput SNP discovery. Genetics, 198, 847-857. Corrales C, Höglund J (2012) Maintenance of gene flow by female-biased dispersal of Black Grouse Tetrao tetrix in northern Sweden. Journal of Ornithology, 153, 1127-1139. Le SQ, Durbin R (2011) SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Research, 21, 952-960. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18, 1851-1858. Hohenlohe PA, Bassham S, Etter PD, et al. (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics, 6, e1000862. Schmid CW, Deininger PL (1975) Sequence organization of the human genome. Cell, 6, 345-358. Zhou X, Xia Y, Ren X et al. (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 15, 351. Davey JW, Cezard T, Fuentes-Utrilla P et al. (2013) Special features of RAD Sequencing data: implications for genotyping. Molecular Ecology, 22, 3151-3164. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099-1106. Chain PSG, Grafham DV, Fulton RS et al. (2009) Genome project standards in a new era of sequencing. Science (New York, N.Y.), 326, 236-237. Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J (2012) SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE, 7, e37558. Kai W, Nomura K, Fujiwara A et al. (2014) A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics, 15, 233. Franchini P, Fruciano C, Spreitzer ML et al. (2014) Genomic architecture of ecologically divergent body shape in a pair of sympatric Crater Lake cichlid fishes. Molecular Ecology, 23, 1828-1845. Lamichhaney S, Barrio AM, Rafati N et al. (2012) Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proceedings of the National Academy of Sciences, USA, 109, 19345-19350. Kang SJ, Gordon D, Finch SJ (2004) What SNP genotyping errors are most costly for genetic association studies? Genetic Epidemiology, 26, 132-141. Hao K, Li C, Rosenow C, Hung Wong W (2004) Estimation of genotype error rate using samples with pedigree information-an application on the GeneChip Mapping 10K array. Genomics, 84, 623-630. DaCosta JM, Sorenson MD (2014) Amplification biases and consistent recovery of loci in a double-digest RAD-seq protocol. PLoS ONE, 9, e106713. Li R, Yu C, Li Y et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966-1967. Wagner CE, Keller I, Wittwer S et al. (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology, 22, 787-798. Recknagel H, Elmer KR, Meyer A (2013) A hybrid genetic linkage map of two ecologically and morphologically divergent midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq). G3: Genes|Genomes|Genetics, 3, 65-74. Haaland ØA, Skaug HJ (2013) Estimating genotyping error rates from parent-offspring dyads. Statistics & Probability Letters, 83, 812-819. Johnson PLF, Slatkin M (2008) Accounting for bias from sequencing error in population genetic estimates. Molecular Biology and Evolution, 25, 199-206. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes, Genetics, 1, 171-182. Douglas JA, Skol AD, Boehnke M (2002) Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data. American Journal of Human Genetics, 70, 487-495. 2009; 25 2015; 15 2013; 3 2004; 84 2011; 1 2013; 22 2010; 19 2008; 18 2013; 83 2004; 26 2007; 90 2011; 13 2011; 12 2008; 3 2014; 198 2011; 38 2011; 6 2014; 23 2012; 109 2007; 16 2015; 24 2012; 153 2010; 26 2011; 108 2013; 14 2009; 10 2013; 77 2013; 13 2013; 30 2008; 25 2014; 15 2011; 21 2005; 6 2002; 70 2012; 27 2013 2014; 9 1998; 7 2012; 7 2014; 71 2010; 6 1975; 6 2009; 326 2012; 84 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 R Core Team (e_1_2_6_47_1) 2013 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 SAS Institute Inc. (e_1_2_6_51_1) 2013 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – reference: Chain PSG, Grafham DV, Fulton RS et al. (2009) Genome project standards in a new era of sequencing. Science (New York, N.Y.), 326, 236-237. – reference: Harismendy O, Ng PC, Strausberg RL et al. (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10, R32. – reference: Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099-1106. – reference: Mastretta-Yanes A, Arrigo N, Alvarez N et al. (2015) Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Molecular Ecology Resources, 15, 28-41. – reference: Wagner CE, Keller I, Wittwer S et al. (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology, 22, 787-798. – reference: DaCosta JM, Sorenson MD (2014) Amplification biases and consistent recovery of loci in a double-digest RAD-seq protocol. PLoS ONE, 9, e106713. – reference: Haaland ØA, Skaug HJ (2013) Estimating genotyping error rates from parent-offspring dyads. Statistics & Probability Letters, 83, 812-819. – reference: Douglas JA, Skol AD, Boehnke M (2002) Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear-family data. American Journal of Human Genetics, 70, 487-495. – reference: Malhis N, Jones SJM (2010) High quality SNP calling using Illumina data at shallow coverage. Bioinformatics, 26, 1029-1035. – reference: Jones JC, Fan S, Franchini P, Schartl M, Meyer A (2013) The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction site-associated DNA sequencing. Molecular Ecology, 22, 2986-3001. – reference: Davey JW, Hohenlohe PA, Etter PD, et al. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12, 499-510. – reference: Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double Digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE, 7, e37135. – reference: Li R, Yu C, Li Y et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966-1967. – reference: Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next-generation sequencing data. Nature Reviews. Genetics, 12, 443-451. – reference: Hao K, Li C, Rosenow C, Hung Wong W (2004) Estimation of genotype error rate using samples with pedigree information-an application on the GeneChip Mapping 10K array. Genomics, 84, 623-630. – reference: Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. Journal of Genetics and Genomics, 38, 95-109. – reference: Peery MZ, Pauli JN (2012) The mating system of a 'lazy' mammal, Hoffmann's two-toed sloth. Animal Behaviour, 84, 555-562. – reference: Santure AW, Stapley J, Ball AD et al. (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Molecular Ecology, 19, 1439-1451. – reference: Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes, Genetics, 1, 171-182. – reference: Davey JW, Cezard T, Fuentes-Utrilla P et al. (2013) Special features of RAD Sequencing data: implications for genotyping. Molecular Ecology, 22, 3151-3164. – reference: Saunders IW, Brohede J, Hannan GN (2007) Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference. Genomics, 90, 291-296. – reference: Jezkova T, Riddle BR, Card DC et al. (2015) Genetic consequences of post-glacial range expansion in two co-distributed rodents (genus Dipodomys) depend on ecology and genetic locus. Molecular Ecology, 24, 83-97. – reference: Recknagel H, Elmer KR, Meyer A (2013) A hybrid genetic linkage map of two ecologically and morphologically divergent midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq). G3: Genes|Genomes|Genetics, 3, 65-74. – reference: Johnson PLF, Slatkin M (2008) Accounting for bias from sequencing error in population genetic estimates. Molecular Biology and Evolution, 25, 199-206. – reference: Ruegg K, Anderson EC, Boone J, Pouls J, Smith TB (2014) A role for migration-linked genes and genomic islands in divergence of a songbird. Molecular Ecology, 23, 4757-4769. – reference: Lamichhaney S, Barrio AM, Rafati N et al. (2012) Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring. Proceedings of the National Academy of Sciences, USA, 109, 19345-19350. – reference: Pujolar JM, Jacobsen MW, Frydenberg J et al. (2013) A resource of genome-wide single-nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel. Molecular Ecology Resources, 13, 706-714. – reference: R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. – reference: Gnerre S, MacCallum I, Przybylski D et al. (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences, USA, 108, 1513-1518. – reference: Corrales C, Höglund J (2012) Maintenance of gene flow by female-biased dispersal of Black Grouse Tetrao tetrix in northern Sweden. Journal of Ornithology, 153, 1127-1139. – reference: He Z, Li X, Ling S et al. (2013) Estimating DNA polymorphism from next generation sequencing data with high error rate by dual sequencing applications. BMC Genomics, 14, 535. – reference: Zhou X, Xia Y, Ren X et al. (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 15, 351. – reference: Bradic M, Teotónio H, Borowsky RL (2013) The population genomics of repeated evolution in the blind cavefish Astyanax mexicanus. Molecular Biology and Evolution, 30, 2383-2400. – reference: Kang SJ, Gordon D, Finch SJ (2004) What SNP genotyping errors are most costly for genetic association studies? Genetic Epidemiology, 26, 132-141. – reference: Palti Y, Gao G, Liu S et al. (2015) The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Molecular Ecology Resources, 15, 662-672. – reference: Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Molecular Ecology, 22, 3124-3140. – reference: Treangen TJ, Salzberg SL (2011) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature Reviews. Genetics, 13, 36-46. – reference: Franchini P, Fruciano C, Spreitzer ML et al. (2014) Genomic architecture of ecologically divergent body shape in a pair of sympatric Crater Lake cichlid fishes. Molecular Ecology, 23, 1828-1845. – reference: Lozier JD (2014) Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Molecular Ecology, 23, 788-801. – reference: Chen N, Van Hout CV, Gottipati S, Clark AG (2014) Using Mendelian Inheritance to improve high throughput SNP discovery. Genetics, 198, 847-857. – reference: Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6, 847-859. – reference: Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27, 489-496. – reference: Bansal V (2010) A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bioinformatics, 26, i318-i324. – reference: Hohenlohe PA, Bassham S, Etter PD, et al. (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genetics, 6, e1000862. – reference: Larson WA, Seeb JE, Pascal CE, Templin WD, Seeb LW (2014) Single-nucleotide polymorphisms (SNPs) identified through genotyping-by-sequencing improve genetic stock identification of Chinook salmon (Oncorhynchus tshawytscha) from western Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 71, 698-708. – reference: Schmid CW, Deininger PL (1975) Sequence organization of the human genome. Cell, 6, 345-358. – reference: Lampa S, Henle K, Klenke R, Hoehn M, Gruber B (2013) How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation-a review of available methods illustrated by a case study. The Journal of Wildlife Management, 77, 1490-1511. – reference: Kai W, Nomura K, Fujiwara A et al. (2014) A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics, 15, 233. – reference: Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639-655. – reference: Buerkle AC, Gompert Z (2013) Population genomics based on low coverage sequencing: how low should we go? Molecular Ecology, 22, 3028-3035. – reference: Le SQ, Durbin R (2011) SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Research, 21, 952-960. – reference: Baird NA, Etter PD, Atwood TS, et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 3, e3376. – reference: Nielsen R, Korneliussen T, Albrechtsen A, Li Y, Wang J (2012) SNP calling, genotype calling, and sample allele frequency estimation from new-generation sequencing data. PLoS ONE, 7, e37558. – reference: Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18, 1851-1858. – reference: Elshire RJ, Glaubitz JC, Sun Q et al. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6, e19379. – reference: SAS Institute Inc. (2013) What's New in SAS® 9.4. SAS Institute Inc., Cary, North Carolina. – volume: 15 start-page: 351 year: 2014 article-title: Construction of a SNP‐based genetic linkage map in cultivated peanut based on large scale marker development using next‐generation double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) publication-title: BMC Genomics – volume: 25 start-page: 1966 year: 2009 end-page: 1967 article-title: SOAP2: an improved ultrafast tool for short read alignment publication-title: Bioinformatics – volume: 23 start-page: 788 year: 2014 end-page: 801 article-title: Revisiting comparisons of genetic diversity in stable and declining species: assessing genome‐wide polymorphism in North American bumble bees using RAD sequencing publication-title: Molecular Ecology – volume: 24 start-page: 83 year: 2015 end-page: 97 article-title: Genetic consequences of post‐glacial range expansion in two co‐distributed rodents (genus ) depend on ecology and genetic locus publication-title: Molecular Ecology – volume: 3 start-page: e3376 year: 2008 article-title: Rapid SNP discovery and genetic mapping using sequenced RAD markers publication-title: PLoS ONE – volume: 26 start-page: 132 year: 2004 end-page: 141 article-title: What SNP genotyping errors are most costly for genetic association studies? publication-title: Genetic Epidemiology – volume: 16 start-page: 1099 year: 2007 end-page: 1106 article-title: Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment publication-title: Molecular Ecology – volume: 22 start-page: 3151 year: 2013 end-page: 3164 article-title: Special features of RAD Sequencing data: implications for genotyping publication-title: Molecular Ecology – volume: 26 start-page: i318 year: 2010 end-page: i324 article-title: A statistical method for the detection of variants from next‐generation resequencing of DNA pools publication-title: Bioinformatics – volume: 14 start-page: 535 year: 2013 article-title: Estimating DNA polymorphism from next generation sequencing data with high error rate by dual sequencing applications publication-title: BMC Genomics – volume: 10 start-page: R32 year: 2009 article-title: Evaluation of next generation sequencing platforms for population targeted sequencing studies publication-title: Genome Biology – volume: 153 start-page: 1127 year: 2012 end-page: 1139 article-title: Maintenance of gene flow by female‐biased dispersal of Black Grouse in northern Sweden publication-title: Journal of Ornithology – volume: 21 start-page: 952 year: 2011 end-page: 960 article-title: SNP detection and genotyping from low‐coverage sequencing data on multiple diploid samples publication-title: Genome Research – volume: 71 start-page: 698 year: 2014 end-page: 708 article-title: Single‐nucleotide polymorphisms (SNPs) identified through genotyping‐by‐sequencing improve genetic stock identification of Chinook salmon ( ) from western Alaska publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 23 start-page: 4757 year: 2014 end-page: 4769 article-title: A role for migration‐linked genes and genomic islands in divergence of a songbird publication-title: Molecular Ecology – volume: 22 start-page: 3028 year: 2013 end-page: 3035 article-title: Population genomics based on low coverage sequencing: how low should we go? publication-title: Molecular Ecology – volume: 13 start-page: 36 year: 2011 end-page: 46 article-title: Repetitive DNA and next‐generation sequencing: computational challenges and solutions publication-title: Nature Reviews. Genetics – volume: 326 start-page: 236 year: 2009 end-page: 237 article-title: Genome project standards in a new era of sequencing publication-title: Science (New York, N.Y.) – volume: 15 start-page: 28 year: 2015 end-page: 41 article-title: Restriction site‐associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference publication-title: Molecular Ecology Resources – volume: 6 start-page: e1000862 year: 2010 article-title: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags publication-title: PLoS Genetics – volume: 18 start-page: 1851 year: 2008 end-page: 1858 article-title: Mapping short DNA sequencing reads and calling variants using mapping quality scores publication-title: Genome Research – volume: 27 start-page: 489 year: 2012 end-page: 496 article-title: Harnessing genomics for delineating conservation units publication-title: Trends in Ecology & Evolution – volume: 22 start-page: 787 year: 2013 end-page: 798 article-title: Genome‐wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation publication-title: Molecular Ecology – volume: 30 start-page: 2383 year: 2013 end-page: 2400 article-title: The population genomics of repeated evolution in the blind cavefish publication-title: Molecular Biology and Evolution – volume: 198 start-page: 847 year: 2014 end-page: 857 article-title: Using Mendelian Inheritance to improve high throughput SNP discovery publication-title: Genetics – volume: 90 start-page: 291 year: 2007 end-page: 296 article-title: Estimating genotyping error rates from Mendelian errors in SNP array genotypes and their impact on inference publication-title: Genomics – volume: 6 start-page: 345 year: 1975 end-page: 358 article-title: Sequence organization of the human genome publication-title: Cell – volume: 12 start-page: 499 year: 2011 end-page: 510 article-title: Genome‐wide genetic marker discovery and genotyping using next‐generation sequencing publication-title: Nature Reviews Genetics – volume: 84 start-page: 555 year: 2012 end-page: 562 article-title: The mating system of a ‘lazy’ mammal, Hoffmann's two‐toed sloth publication-title: Animal Behaviour – volume: 7 start-page: e37135 year: 2012 article-title: Double Digest RADseq: an inexpensive method for SNP discovery and genotyping in model and non‐model species publication-title: PLoS ONE – volume: 15 start-page: 662 year: 2015 end-page: 672 article-title: The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout publication-title: Molecular Ecology Resources – volume: 13 start-page: 706 year: 2013 end-page: 714 article-title: A resource of genome‐wide single‐nucleotide polymorphisms generated by RAD tag sequencing in the critically endangered European eel publication-title: Molecular Ecology Resources – volume: 83 start-page: 812 year: 2013 end-page: 819 article-title: Estimating genotyping error rates from parent–offspring dyads publication-title: Statistics & Probability Letters – volume: 3 start-page: 65 year: 2013 end-page: 74 article-title: A hybrid genetic linkage map of two ecologically and morphologically divergent midas cichlid fishes ( spp.) obtained by massively parallel DNA sequencing (ddRADSeq) publication-title: G3: Genes|Genomes|Genetics – volume: 25 start-page: 199 year: 2008 end-page: 206 article-title: Accounting for bias from sequencing error in population genetic estimates publication-title: Molecular Biology and Evolution – volume: 15 start-page: 233 year: 2014 article-title: A ddRAD‐based genetic map and its integration with the genome assembly of Japanese eel ( ) provides insights into genome evolution after the teleost‐specific genome duplication publication-title: BMC Genomics – volume: 84 start-page: 623 year: 2004 end-page: 630 article-title: Estimation of genotype error rate using samples with pedigree information—an application on the GeneChip Mapping 10K array publication-title: Genomics – volume: 12 start-page: 443 year: 2011 end-page: 451 article-title: Genotype and SNP calling from next‐generation sequencing data publication-title: Nature Reviews. Genetics – volume: 7 start-page: 639 year: 1998 end-page: 655 article-title: Statistical confidence for likelihood‐based paternity inference in natural populations publication-title: Molecular Ecology – volume: 70 start-page: 487 year: 2002 end-page: 495 article-title: Probability of detection of genotyping errors and mutations as inheritance inconsistencies in nuclear‐family data publication-title: American Journal of Human Genetics – volume: 23 start-page: 1828 year: 2014 end-page: 1845 article-title: Genomic architecture of ecologically divergent body shape in a pair of sympatric Crater Lake cichlid fishes publication-title: Molecular Ecology – volume: 7 start-page: e37558 year: 2012 article-title: SNP calling, genotype calling, and sample allele frequency estimation from new‐generation sequencing data publication-title: PLoS ONE – volume: 1 start-page: 171 year: 2011 end-page: 182 article-title: Stacks: building and genotyping loci de novo from short‐read sequences publication-title: G3: Genes Genomes, Genetics – volume: 109 start-page: 19345 year: 2012 end-page: 19350 article-title: Population‐scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring publication-title: Proceedings of the National Academy of Sciences, USA – volume: 22 start-page: 2986 year: 2013 end-page: 3001 article-title: The evolutionary history of Xiphophorus fish and their sexually selected sword: a genome‐wide approach using restriction site‐associated DNA sequencing publication-title: Molecular Ecology – volume: 26 start-page: 1029 year: 2010 end-page: 1035 article-title: High quality SNP calling using Illumina data at shallow coverage publication-title: Bioinformatics – volume: 6 start-page: e19379 year: 2011 article-title: A robust, simple genotyping‐by‐sequencing (GBS) approach for high diversity species publication-title: PLoS ONE – volume: 9 start-page: e106713 year: 2014 article-title: Amplification biases and consistent recovery of loci in a double‐digest RAD‐seq protocol publication-title: PLoS ONE – volume: 19 start-page: 1439 year: 2010 end-page: 1451 article-title: On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs publication-title: Molecular Ecology – volume: 22 start-page: 3124 year: 2013 end-page: 3140 article-title: Stacks: an analysis tool set for population genomics publication-title: Molecular Ecology – volume: 6 start-page: 847 year: 2005 end-page: 859 article-title: Genotyping errors: causes, consequences and solutions publication-title: Nature Reviews Genetics – volume: 108 start-page: 1513 year: 2011 end-page: 1518 article-title: High‐quality draft assemblies of mammalian genomes from massively parallel sequence data publication-title: Proceedings of the National Academy of Sciences, USA – volume: 77 start-page: 1490 year: 2013 end-page: 1511 article-title: How to overcome genotyping errors in non‐invasive genetic mark–recapture population size estimation—a review of available methods illustrated by a case study publication-title: The Journal of Wildlife Management – volume: 38 start-page: 95 year: 2011 end-page: 109 article-title: The impact of next‐generation sequencing on genomics publication-title: Journal of Genetics and Genomics – year: 2013 – ident: e_1_2_6_49_1 doi: 10.1111/mec.12842 – ident: e_1_2_6_7_1 doi: 10.1111/mec.12354 – ident: e_1_2_6_52_1 doi: 10.1016/j.ygeno.2007.05.011 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0037558 – ident: e_1_2_6_32_1 doi: 10.1139/cjfas-2013-0502 – ident: e_1_2_6_13_1 doi: 10.1111/mec.12084 – ident: e_1_2_6_15_1 doi: 10.1371/journal.pone.0019379 – ident: e_1_2_6_36_1 doi: 10.1111/mec.12636 – ident: e_1_2_6_44_1 doi: 10.1371/journal.pone.0037135 – ident: e_1_2_6_25_1 doi: 10.1093/molbev/msm239 – ident: e_1_2_6_26_1 doi: 10.1111/mec.12269 – ident: e_1_2_6_18_1 doi: 10.1073/pnas.1017351108 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-294X.2007.03089.x – ident: e_1_2_6_39_1 doi: 10.1111/1755-0998.12291 – ident: e_1_2_6_54_1 doi: 10.1038/nrg3117 – ident: e_1_2_6_43_1 doi: 10.1016/j.anbehav.2012.06.007 – ident: e_1_2_6_9_1 doi: 10.1534/genetics.114.169052 – ident: e_1_2_6_11_1 doi: 10.1371/journal.pone.0106713 – volume-title: What's New in SAS® 9.4 year: 2013 ident: e_1_2_6_51_1 – ident: e_1_2_6_8_1 doi: 10.1126/science.1180614 – ident: e_1_2_6_38_1 doi: 10.1046/j.1365-294x.1998.00374.x – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_6_47_1 – ident: e_1_2_6_10_1 doi: 10.1007/s10336-012-0844-0 – ident: e_1_2_6_22_1 doi: 10.1186/1471-2164-14-535 – ident: e_1_2_6_40_1 doi: 10.1038/nrg2986 – ident: e_1_2_6_23_1 doi: 10.1371/journal.pgen.1000862 – ident: e_1_2_6_29_1 doi: 10.1002/gepi.10301 – ident: e_1_2_6_55_1 doi: 10.1111/mec.12023 – ident: e_1_2_6_45_1 doi: 10.1111/j.0014-3820.2004.tb01606.x – ident: e_1_2_6_4_1 doi: 10.1093/molbev/mst136 – ident: e_1_2_6_42_1 doi: 10.1111/1755-0998.12337 – ident: e_1_2_6_19_1 doi: 10.1016/j.spl.2012.11.009 – ident: e_1_2_6_2_1 doi: 10.1371/journal.pone.0003376 – ident: e_1_2_6_33_1 doi: 10.1101/gr.113084.110 – ident: e_1_2_6_24_1 doi: 10.1111/mec.13012 – ident: e_1_2_6_30_1 doi: 10.1073/pnas.1216128109 – ident: e_1_2_6_35_1 doi: 10.1093/bioinformatics/btp336 – ident: e_1_2_6_6_1 doi: 10.1534/g3.111.000240 – ident: e_1_2_6_57_1 doi: 10.1186/1471-2164-15-351 – ident: e_1_2_6_5_1 doi: 10.1111/mec.12105 – ident: e_1_2_6_16_1 doi: 10.1111/mec.12590 – ident: e_1_2_6_34_1 doi: 10.1101/gr.078212.108 – ident: e_1_2_6_27_1 doi: 10.1186/1471-2164-15-233 – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-294X.2010.04554.x – ident: e_1_2_6_31_1 doi: 10.1002/jwmg.604 – ident: e_1_2_6_20_1 doi: 10.1016/j.ygeno.2004.05.003 – ident: e_1_2_6_3_1 doi: 10.1093/bioinformatics/btq214 – ident: e_1_2_6_17_1 doi: 10.1016/j.tree.2012.05.012 – ident: e_1_2_6_37_1 doi: 10.1093/bioinformatics/btq092 – ident: e_1_2_6_46_1 doi: 10.1111/1755-0998.12117 – ident: e_1_2_6_56_1 doi: 10.1016/j.jgg.2011.02.003 – ident: e_1_2_6_48_1 doi: 10.1534/g3.112.003897 – ident: e_1_2_6_53_1 doi: 10.1016/0092-8674(75)90184-1 – ident: e_1_2_6_14_1 doi: 10.1086/338919 – ident: e_1_2_6_12_1 doi: 10.1038/nrg3012 – ident: e_1_2_6_21_1 doi: 10.1186/gb-2009-10-3-r32 |
| SSID | ssj0060974 |
| Score | 2.393409 |
| Snippet | Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in... Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism ( SNP ) loci in nonmodel organisms. However,... Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 966 |
| SubjectTerms | Animals Choloepus Choloepus hoffmanni data collection Datasets ddRAD Diagnostic Errors DNA libraries DNA Restriction Enzymes - metabolism Economic models Enzymes Genetic markers genotyping error genotyping errors Genotyping Techniques - methods High-Throughput Nucleotide Sequencing loci Mendelian incompatibility next-generation sequencing Offspring parentage Polymorphism, Single Nucleotide Quality Sequence Analysis, DNA single nucleotide polymorphism Xenarthra - classification Xenarthra - genetics |
| Title | Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates |
| URI | https://api.istex.fr/ark:/67375/WNG-SZ16TVSL-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12519 https://www.ncbi.nlm.nih.gov/pubmed/26946083 https://www.proquest.com/docview/1797851230 https://www.proquest.com/docview/1798722057 https://www.proquest.com/docview/1808645750 https://www.proquest.com/docview/1825425080 |
| Volume | 16 |
| WOSCitedRecordID | wos000383281100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1755-0998 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060974 issn: 1755-098X databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-xFiReGN-UjclICPGSKYmd2OFtGi08jArYBhUvkeM4UkWXTEmH6Bt_OnfOhxiCISReqiq5WMn5zve75O5ngGcYsoosRuNVhRCe0DL0Em2Vh1hA8ljnMkjazSbkfK4Wi-RdV01IvTAtP8Twwo08w63X5OA6a35ycox7kYf4Ru1TjE62YByi9UYjGL_6MDs96pfj2E8cFXMnrhYdvw-V8_wyxKXQNCYtf_sd7rwMY10cmm3_hye4Dbc6EMoOWqu5A9dseRduTB2B9eYefJ8tXa8LQ3DIXPbODFV64tLz0h1rWytZVQzHmS5z1pdls7ZTc8OqktGriJVlJdEmV-tlbtl5tdqcVTi9y-aMEUXsekM9W8zWdVUzYq5o7sPpbHpy-MbrdmrwjAzDxLNGC5PlBX3FpP7DPDLC5lGuTBJlPMgRJNJpriUPhCxCU2TSRLnkGrOfxBT8AYzKqrSPgMWZViLikhehLzT3dahFpmUU4I-v42AC-_0kpaajMafdNFZpn86QWlNSa-rUOoEXwwXnLYPHn0Wfu1kf5HT9hQrfZJR-mr9Ojz8H8cnH46P0_QR2e7NIO59vcDDMyBE_cX8CT4fT6K30CUaXtrpwMkpSb7O8QkZhmikQRl81DiX2iF4VyjxszXK4aepNjhFZo6ac9f3tqdO307n78_hfL9iBm4gf47Z6eRdG6_rCPoHr5ut62dR7sCUXaq9zxx-PGTEl |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgBY0XvjcKA4yEEC-ZktiJnb1N0DJEFwnWQcWL5TiOVK1LprRD9I0_nTvnQxuCISReoig5W_H5zvc75-5MyEswWUUWg_DKgnOPaxF6ibbSAywgWKxzESTNYRMiTeVsllzMhWnqQ_QbbqgZbr1GBccN6QtaDoYv8gDgyF000sl1MuAgTCDlg7efxseTbj2O_cTVYm7J5awt8IPxPL90cck2DZDN338HPC_jWGeIxnf-xxDuktstDKX7jdzcI9dseZ_cHLkS1usH5Md47rJdKMBD6vx3ajDWExafPfesSa6kVdE_p7rMaReYTZtczTWtSoqbEQtLSyycXK3muaVn1WJ9WsEEz5enFIvErtaYtUVtXVc1xdoVy4fkeDyavjnw2rMaPCPCMPGs0dxkeYH_MTEDMY8Mt3mUS5NEGQtygIn4mmnBAi6K0BSZMFEumAb_JzEF2yIbZVXaR4TGmZY8YoIVoc8183WoeaZFFMDF13EwJLvdLCnTFjLH8zQWqnNokK0K2aocW4fkdd_grKnh8WfSV27aezpdn2Dom4jUl_SdOvoaxNPPRxP1cUh2OrlQrdYvoTPwyQFBMX9IXvSvQV_xJ4wubXXuaKTA7GZxBY0ER5MDkL6qH3TtAb9KoNlu5LL_aMxOjgFbA6ec-P1t1OpwlLqbx__a4DnZPJgeTtTkffrhCbkFaDJuYpl3yMaqPrdPyQ3zbTVf1s9arfwJpQc0LQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagBcSF96OwgJEQ4pJVEjuxww2xDSBKBOwuVFwsx3Gkim5SpV1Eb_x0ZpyHdhEsQuJSVcnESsYznm-Smc-EPIGQVeYxGK8sOfe4FqGXaCs9wAKCxboQQdJuNiGyTM7nyclemJYfYnjhhp7h1mt0cLsqyhNeDoEv8gDgyF0M0sl5Mua4lcyIjPc-poezfj2O_cRxMXfict4R_GA9zy9DnIpNY1Tz998Bz9M41gWi9Or_eIRr5EoHQ-mL1m6uk3O2ukEuTh2F9fYm-ZEuXLcLBXhIXf5ODdZ6wuLz3B1rmytpXQ7Hqa4K2hdm07ZXc0vriuLLiKWlFRIn15tFYemqXm6PapjgxfqIIknsZotdW9Q2Td1Q5K5Y3yKH6fTg5Wuv26vBMyIME88azU1elPgdEzsQi8hwW0SFNEmUs6AAmIinmRYs4KIMTZkLExWCach_ElOy22RU1ZW9S2ica8kjJlgZ-lwzX4ea51pEAfz4Og4mZLefJWU6InPcT2Op-oQG1apQrcqpdUKeDResWg6PP4s-ddM-yOnmK5a-iUh9zl6p_S9BfPBpf6Y-TMhObxeq8_o1DAY5OSAo5k_I4-E0-Ct-hNGVrY-djBTY3SzOkJGQaHIA0meNg6k94FcJMndauxxuGruTY8DWoClnfn97avVumrk_9_71gkfk0vu9VM3eZG_vk8sAJuO2lHmHjDbNsX1ALphvm8W6edg55U_g9jOo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+the+right+coverage%3A+the+impact+of+coverage+and+sequence+quality+on+single+nucleotide+polymorphism+genotyping+error+rates&rft.jtitle=Molecular+ecology+resources&rft.au=Fountain%2C+Emily+D.&rft.au=Pauli%2C+Jonathan+N.&rft.au=Reid%2C+Brendan+N.&rft.au=Palsb%C3%B8ll%2C+Per+J.&rft.date=2016-07-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=16&rft.issue=4&rft.spage=966&rft.epage=978&rft_id=info:doi/10.1111%2F1755-0998.12519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1755_0998_12519 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon |