Dopamine signals for reward value and risk: basic and recent data
Background Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. Methods The descri...
Saved in:
| Published in: | Behavioral and brain functions Vol. 6; no. 1; p. 24 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
23.04.2010
Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1744-9081, 1744-9081 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli.
Methods
The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks.
Results
Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward.
Conclusions
Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior. |
|---|---|
| AbstractList | Background
Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli.
Methods
The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks.
Results
Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward.
Conclusions
Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior. Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli.BACKGROUNDPrevious lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli.The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks.METHODSThe described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks.Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward.RESULTSDopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward.Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior.CONCLUSIONSNeurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior. Abstract Background Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. Methods The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks. Results Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward. Conclusions Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior. Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks. Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward. Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior. Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks. Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward. Neurophysiological studies reveal phasic dopamine signals that transmit information related predominantly but not exclusively to reward. Although not being entirely homogeneous, the dopamine signal is more restricted and stereotyped than neuronal activity in most other brain structures involved in goal directed behavior. |
| Author | Schultz, Wolfram |
| AuthorAffiliation | 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK |
| AuthorAffiliation_xml | – name: 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK |
| Author_xml | – sequence: 1 givenname: Wolfram surname: Schultz fullname: Schultz, Wolfram email: ws234@cam.ac.uk organization: Department of Physiology, Development and Neuroscience, University of Cambridge |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20416052$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkklvFDEQhS0URBa4ckQtLpw68dZeOCBFYYsUKRc4W267PHjoaQ92TxD_HjedhCRSlJPt8nufXqnqEO2NaQSEXhN8TIgSJ0Ry3mqsSCtayp-hg9vC3p37PjosZY0xU5zSF2ifYk4E7ugBOv2YtnYTR2hKXI12KE1Iucnw22bfXNlhB40dfZNj-fm-6W2JbnmDg3FqvJ3sS_Q8VB-8uj6P0PfPn76dfW0vLr-cn51etE5SMrVEOtdJ74J2WPEARPmO616GHhPsFLHSa0VBeMcDpyzQnrEaH2stOip1x47Q-cL1ya7NNseNzX9MstH8K6S8MjZP0Q1gQmehF8xqLjBnMuggCXDFgZHgaXCV9WFhbXf9BvzcS7bDPej9nzH-MKt0ZaiSQitVAe-uATn92kGZzCYWB8NgR0i7YmpyQTER5GklY1gTrWVVvn2gXKddnmdiNKYME6ZwFb25m_w28s1Eq4AvApdTKRmCcXGyU0xzI3EwBJt5ccy8G2beDSMM5dV2_MB2Q37UcLIYShWOK8j_0z7i-AsBldBw |
| CitedBy_id | crossref_primary_10_1111_bcp_12163 crossref_primary_10_1016_j_bbr_2015_04_015 crossref_primary_10_1016_j_neubiorev_2012_11_007 crossref_primary_10_1016_j_pbb_2018_05_008 crossref_primary_10_1016_j_neuroscience_2014_09_075 crossref_primary_10_1016_j_nbd_2025_106968 crossref_primary_10_3389_fnbeh_2016_00080 crossref_primary_10_1016_j_expneurol_2021_113710 crossref_primary_10_3389_fnins_2019_00660 crossref_primary_10_1093_jcr_ucx090 crossref_primary_10_1159_000365992 crossref_primary_10_1038_s41386_020_0678_z crossref_primary_10_1093_cercor_bhw005 crossref_primary_10_1073_pnas_1010654108 crossref_primary_10_3389_fpsyg_2024_1493434 crossref_primary_10_1016_j_brainres_2018_02_007 crossref_primary_10_1007_s11098_016_0643_1 crossref_primary_10_1038_s41467_024_46094_1 crossref_primary_10_1073_pnas_1214605109 crossref_primary_10_1038_npp_2014_86 crossref_primary_10_1007_s00213_011_2445_7 crossref_primary_10_1162_jocn_a_00078 crossref_primary_10_1038_tp_2012_110 crossref_primary_10_1371_journal_pone_0127542 crossref_primary_10_1007_s42399_025_02078_w crossref_primary_10_1016_j_biopsycho_2019_03_016 crossref_primary_10_1016_j_physbeh_2010_12_011 crossref_primary_10_3389_fnbeh_2023_1289407 crossref_primary_10_3389_fpsyg_2016_00816 crossref_primary_10_1007_s00213_018_4875_y crossref_primary_10_1093_scan_nsu158 crossref_primary_10_1111_adb_13064 crossref_primary_10_1111_j_1365_2125_2012_04474_x crossref_primary_10_1016_j_neures_2019_10_003 crossref_primary_10_3389_fnhum_2014_00740 crossref_primary_10_1016_j_clinph_2015_11_002 crossref_primary_10_1016_j_neuroscience_2011_07_078 crossref_primary_10_1002_brb3_1389 crossref_primary_10_1123_jsep_2022_0082 crossref_primary_10_1016_j_psyneuen_2015_06_018 crossref_primary_10_1111_nyas_12095 crossref_primary_10_3389_fpsyg_2025_1438313 crossref_primary_10_1371_journal_pbio_3000793 crossref_primary_10_1038_s41386_022_01356_8 crossref_primary_10_1007_s11238_021_09830_3 crossref_primary_10_1093_ijnp_pyv043 crossref_primary_10_1007_s12035_019_1641_z crossref_primary_10_1038_npp_2013_8 crossref_primary_10_1093_scan_nst054 crossref_primary_10_1016_j_tins_2010_07_001 crossref_primary_10_1109_JPROC_2014_2307022 crossref_primary_10_1016_j_neunet_2015_03_002 crossref_primary_10_1016_j_brainresbull_2018_08_007 crossref_primary_10_1016_j_neuron_2010_11_022 crossref_primary_10_1176_appi_ajp_2013_12070978 crossref_primary_10_1146_annurev_devpsych_120321_011300 crossref_primary_10_1016_j_neubiorev_2013_08_007 crossref_primary_10_1038_tp_2012_134 crossref_primary_10_1016_j_exger_2013_03_006 crossref_primary_10_1016_j_jad_2021_08_022 crossref_primary_10_1016_j_neuropharm_2011_01_028 crossref_primary_10_1016_j_neuroscience_2014_08_008 crossref_primary_10_1016_j_nlm_2011_05_002 crossref_primary_10_1038_nn_2723 crossref_primary_10_1371_journal_pone_0169044 crossref_primary_10_1007_s00101_012_2036_y crossref_primary_10_3389_fpsyg_2018_01502 crossref_primary_10_1517_13543784_2011_594039 crossref_primary_10_3758_s13415_018_0601_9 crossref_primary_10_1111_adb_12073 crossref_primary_10_1177_0269881116686882 crossref_primary_10_1016_j_neubiorev_2015_05_005 crossref_primary_10_1093_scan_nsx089 crossref_primary_10_3389_fnmol_2021_657064 crossref_primary_10_1111_jnc_12287 crossref_primary_10_1523_JNEUROSCI_2277_12_2012 crossref_primary_10_1016_j_pneurobio_2012_01_004 crossref_primary_10_1017_S0033291717003476 crossref_primary_10_3389_fnbeh_2017_00140 crossref_primary_10_1017_S146114571200106X crossref_primary_10_1016_j_bcp_2013_07_019 crossref_primary_10_1016_j_biopsych_2024_10_016 crossref_primary_10_1002_brb3_1289 crossref_primary_10_1016_j_neucom_2023_126377 crossref_primary_10_3389_fpsyg_2016_00170 crossref_primary_10_1038_srep41314 crossref_primary_10_1146_annurev_neuro_061010_113734 crossref_primary_10_1086_675876 crossref_primary_10_1016_j_nlm_2012_02_003 crossref_primary_10_3390_brainsci11070829 crossref_primary_10_1016_j_neuron_2012_04_038 crossref_primary_10_1093_scan_nsz019 crossref_primary_10_1016_j_beproc_2011_02_008 crossref_primary_10_1038_s41467_017_00072_y crossref_primary_10_3390_sym12091490 crossref_primary_10_3390_brainsci12050582 crossref_primary_10_1016_j_nlm_2018_07_002 crossref_primary_10_3389_fcell_2020_588476 crossref_primary_10_1016_j_ecoenv_2023_115744 crossref_primary_10_1016_j_neuron_2011_02_009 crossref_primary_10_1523_JNEUROSCI_6249_09_2010 crossref_primary_10_3945_ajcn_112_043307 crossref_primary_10_1523_JNEUROSCI_2326_15_2016 crossref_primary_10_1007_s13295_015_0020_0 crossref_primary_10_1016_j_conb_2014_01_003 crossref_primary_10_1371_journal_pcbi_1006243 crossref_primary_10_1007_s10567_015_0196_4 crossref_primary_10_1016_j_conb_2013_01_005 crossref_primary_10_1016_j_conb_2013_01_008 crossref_primary_10_1017_thg_2012_73 crossref_primary_10_7717_peerj_1081 crossref_primary_10_1186_s13634_024_01165_9 crossref_primary_10_1371_journal_pone_0063824 crossref_primary_10_7554_eLife_31220 crossref_primary_10_1016_j_neubiorev_2010_12_017 crossref_primary_10_1523_JNEUROSCI_2277_15_2015 crossref_primary_10_1007_s12640_016_9674_9 crossref_primary_10_1016_j_pneurobio_2011_08_010 crossref_primary_10_1002_syn_22074 crossref_primary_10_1002_hbm_23685 crossref_primary_10_3389_fnsys_2022_826475 crossref_primary_10_1002_hbm_22474 crossref_primary_10_1016_j_physbeh_2017_11_024 crossref_primary_10_1098_rsob_160229 crossref_primary_10_1016_j_brainres_2012_09_036 crossref_primary_10_1523_JNEUROSCI_5721_11_2013 crossref_primary_10_1080_13554794_2013_873063 crossref_primary_10_1016_j_pbb_2017_06_014 crossref_primary_10_1016_j_alcohol_2011_01_003 crossref_primary_10_1038_pr_2015_82 crossref_primary_10_1521_soco_2012_30_6_689 crossref_primary_10_1016_j_neuroscience_2017_02_052 crossref_primary_10_1016_j_nlm_2014_05_009 crossref_primary_10_1016_j_nbd_2012_06_001 crossref_primary_10_1002_hbm_22107 crossref_primary_10_1038_npp_2011_62 crossref_primary_10_1016_j_neuron_2013_06_023 crossref_primary_10_1016_j_neuroscience_2013_03_005 crossref_primary_10_1097_FBP_0000000000000213 crossref_primary_10_1139_cjpp_2021_0318 crossref_primary_10_1016_j_cobeha_2024_101462 crossref_primary_10_1017_S0029665112000614 crossref_primary_10_3758_s13415_021_00962_1 crossref_primary_10_1007_s00359_015_1023_6 crossref_primary_10_1017_S0033291724000655 crossref_primary_10_1016_j_cub_2015_01_071 crossref_primary_10_1016_j_schres_2017_08_043 crossref_primary_10_1111_ejn_16426 crossref_primary_10_1016_j_neuron_2011_03_025 crossref_primary_10_1016_j_neuroimage_2020_116549 crossref_primary_10_1007_s40279_013_0025_1 crossref_primary_10_1016_j_physbeh_2020_113152 crossref_primary_10_1017_S0140525X13003099 crossref_primary_10_1371_journal_pone_0102469 crossref_primary_10_1016_j_bbr_2016_05_006 crossref_primary_10_1371_journal_pone_0208891 crossref_primary_10_1016_j_neubiorev_2016_08_015 crossref_primary_10_1146_annurev_neuro_070815_014106 crossref_primary_10_1016_j_lmot_2016_06_001 crossref_primary_10_1016_j_tics_2013_02_007 crossref_primary_10_1007_s11517_011_0769_4 crossref_primary_10_3389_fpsyt_2018_00368 crossref_primary_10_3389_fnana_2024_1421034 crossref_primary_10_1016_j_biopsych_2013_09_005 crossref_primary_10_3389_fnins_2016_00336 crossref_primary_10_1177_0269881117725915 crossref_primary_10_1038_s41398_018_0328_y crossref_primary_10_1016_j_neuroimage_2011_01_068 crossref_primary_10_1242_jeb_100511 crossref_primary_10_1371_journal_pone_0028075 crossref_primary_10_1177_0269881119855972 crossref_primary_10_3389_fncir_2017_00045 crossref_primary_10_7554_eLife_38090 crossref_primary_10_1371_journal_pone_0249290 crossref_primary_10_1016_S1957_2557_13_70487_5 crossref_primary_10_1016_j_neubiorev_2013_03_025 crossref_primary_10_1016_j_beproc_2012_03_015 crossref_primary_10_1016_j_jml_2017_05_003 crossref_primary_10_1016_j_neuron_2012_11_022 crossref_primary_10_1016_j_bpsc_2017_11_001 crossref_primary_10_1111_add_15869 crossref_primary_10_1212_WNL_0000000000002137 crossref_primary_10_1016_j_biopsych_2021_09_027 crossref_primary_10_25136_2409_8701_2025_5_75715 crossref_primary_10_1016_j_sbspro_2015_06_259 crossref_primary_10_1155_2019_6760121 crossref_primary_10_1176_appi_focus_130306 crossref_primary_10_1242_jeb_247483 crossref_primary_10_1016_j_neubiorev_2012_05_010 crossref_primary_10_1098_rsos_160382 crossref_primary_10_1017_S0033291718001459 crossref_primary_10_1007_s11571_019_09564_7 crossref_primary_10_1093_scan_nsaa129 crossref_primary_10_1016_j_bandc_2015_10_001 crossref_primary_10_1016_j_scitotenv_2022_161005 crossref_primary_10_1111_desc_12412 crossref_primary_10_1111_mbe_12275 crossref_primary_10_1146_annurev_neuro_072116_031033 crossref_primary_10_1016_j_animal_2024_101081 crossref_primary_10_1016_j_neubiorev_2013_07_019 crossref_primary_10_1111_adb_12132 crossref_primary_10_1176_appi_ajp_2013_12070917 crossref_primary_10_1007_s10818_020_09299_0 crossref_primary_10_3389_fnhum_2016_00649 crossref_primary_10_1016_j_bcp_2011_07_075 crossref_primary_10_1016_j_ejphar_2014_11_045 crossref_primary_10_1016_j_bbr_2014_12_003 crossref_primary_10_1038_s41598_018_23950_x crossref_primary_10_1007_s00213_014_3824_7 crossref_primary_10_1534_genetics_112_142042 crossref_primary_10_1111_desc_12646 crossref_primary_10_1016_j_neuroimage_2013_05_061 crossref_primary_10_7554_eLife_51260 crossref_primary_10_1016_j_jneumeth_2012_09_011 crossref_primary_10_1111_ejn_16214 crossref_primary_10_1111_j_1460_9568_2012_08030_x crossref_primary_10_1016_j_neubiorev_2011_03_002 crossref_primary_10_1038_s42003_024_06540_8 crossref_primary_10_3389_fnmol_2017_00335 crossref_primary_10_3389_fnhum_2014_00472 crossref_primary_10_1002_bdr2_1182 crossref_primary_10_1017_S1461145713001211 crossref_primary_10_3389_fncir_2017_00072 crossref_primary_10_7554_eLife_105094 crossref_primary_10_1007_s00439_011_1128_0 crossref_primary_10_1016_j_pneurobio_2016_03_004 crossref_primary_10_1371_journal_pone_0055588 crossref_primary_10_1016_j_neuron_2012_10_021 crossref_primary_10_1016_j_nlm_2015_11_002 crossref_primary_10_1016_j_psfr_2012_03_002 crossref_primary_10_1038_npp_2012_129 crossref_primary_10_7554_eLife_85064 crossref_primary_10_3389_fnhum_2017_00168 crossref_primary_10_1016_j_neubiorev_2014_08_016 crossref_primary_10_1007_s12640_013_9402_7 crossref_primary_10_3389_fpsyt_2022_1060949 crossref_primary_10_1016_j_tics_2010_11_001 crossref_primary_10_3389_fnhum_2023_1190108 crossref_primary_10_1016_j_biopsych_2017_01_015 crossref_primary_10_1016_j_prevetmed_2016_07_012 crossref_primary_10_1038_npp_2012_41 crossref_primary_10_1371_journal_pbio_1002034 crossref_primary_10_1016_j_psychres_2017_10_031 crossref_primary_10_1016_j_bbr_2022_114088 crossref_primary_10_1093_chemse_bjr043 crossref_primary_10_1080_23311983_2017_1364125 crossref_primary_10_1016_j_neuroscience_2014_10_037 crossref_primary_10_1162_neco_a_01025 crossref_primary_10_1016_j_cub_2022_01_025 crossref_primary_10_1007_s12017_018_8504_z crossref_primary_10_1371_journal_pone_0238774 crossref_primary_10_3758_s13415_013_0182_6 crossref_primary_10_1002_jnr_23477 crossref_primary_10_1111_ejn_14730 crossref_primary_10_1016_j_jphysparis_2012_06_004 crossref_primary_10_1016_j_neubiorev_2015_11_015 crossref_primary_10_1073_pnas_1119348109 crossref_primary_10_3390_bs6030017 crossref_primary_10_2147_JMDH_S481425 crossref_primary_10_4303_jdar_236003 crossref_primary_10_1016_j_cub_2014_05_078 crossref_primary_10_1016_j_visres_2011_11_001 crossref_primary_10_1038_npp_2011_222 crossref_primary_10_3109_15622975_2010_539269 crossref_primary_10_1371_journal_pone_0101585 crossref_primary_10_1007_s00213_015_3905_2 crossref_primary_10_1162_jocn_a_00905 crossref_primary_10_1186_1744_9081_10_1 crossref_primary_10_1162_NECO_a_00387 crossref_primary_10_1073_pnas_1522315113 crossref_primary_10_3389_fnsys_2022_926388 crossref_primary_10_1016_j_neuropsychologia_2012_08_002 crossref_primary_10_1111_j_1467_7687_2010_01035_x crossref_primary_10_1007_s40263_021_00854_5 crossref_primary_10_1016_j_conb_2012_11_009 crossref_primary_10_1038_s41598_023_50529_y crossref_primary_10_1002_mpr_1615 crossref_primary_10_1016_j_biopsych_2023_01_006 crossref_primary_10_3390_ijerph19169955 crossref_primary_10_1016_j_metabol_2017_09_007 crossref_primary_10_3390_nu14153240 crossref_primary_10_7554_eLife_48983 crossref_primary_10_1038_srep17461 crossref_primary_10_1016_j_yhbeh_2011_08_001 crossref_primary_10_3758_s13423_015_0999_9 crossref_primary_10_1089_neu_2022_0224 crossref_primary_10_1016_j_ceca_2011_06_007 crossref_primary_10_1007_s10162_013_0405_0 crossref_primary_10_3389_frsus_2024_1442311 crossref_primary_10_1007_s10648_015_9307_5 crossref_primary_10_1016_j_neuron_2013_08_020 crossref_primary_10_1111_j_1365_2826_2011_02212_x crossref_primary_10_1007_s00213_011_2523_x crossref_primary_10_1016_j_chc_2012_01_004 crossref_primary_10_1097_YPG_0000000000000095 crossref_primary_10_2196_47979 crossref_primary_10_1016_j_neunet_2020_03_005 crossref_primary_10_1016_j_nlm_2011_02_014 crossref_primary_10_1016_j_biopsycho_2017_04_014 crossref_primary_10_1093_schbul_sbz089 crossref_primary_10_1038_npp_2015_14 crossref_primary_10_3389_fnbeh_2014_00382 crossref_primary_10_1016_j_dcn_2018_12_006 crossref_primary_10_1016_j_drugalcdep_2023_110890 crossref_primary_10_1002_acn3_52249 crossref_primary_10_1152_jn_00757_2013 crossref_primary_10_1177_2167702614535913 crossref_primary_10_1016_j_neubiorev_2016_09_002 crossref_primary_10_1016_j_neuron_2012_02_015 crossref_primary_10_1113_JP274475 crossref_primary_10_1016_j_neuroimage_2012_12_078 crossref_primary_10_1016_j_neunet_2012_09_015 crossref_primary_10_1016_j_tics_2014_05_008 crossref_primary_10_3389_fnbeh_2015_00336 crossref_primary_10_7554_eLife_54051 crossref_primary_10_3389_fpsyg_2020_00634 crossref_primary_10_1002_hipo_22176 crossref_primary_10_1242_jeb_216499 crossref_primary_10_1186_s12990_015_0049_7 crossref_primary_10_3389_fcell_2021_713762 crossref_primary_10_1038_nn_2862 crossref_primary_10_7554_eLife_105094_3 crossref_primary_10_1086_711293 crossref_primary_10_1111_obr_13392 crossref_primary_10_1016_j_conb_2012_11_012 crossref_primary_10_1016_j_biopsych_2025_05_027 crossref_primary_10_1016_j_ijpsycho_2019_11_007 crossref_primary_10_1016_j_biopsycho_2012_04_004 crossref_primary_10_1016_j_neurobiolaging_2020_08_011 crossref_primary_10_3389_fpsyt_2020_00654 crossref_primary_10_1007_s10071_012_0499_5 crossref_primary_10_1146_annurev_neuro_062012_170249 crossref_primary_10_1016_j_neubiorev_2019_12_024 crossref_primary_10_1038_npp_2011_248 crossref_primary_10_1088_1741_2560_8_6_065010 crossref_primary_10_1002_wmts_38 crossref_primary_10_1016_j_neubiorev_2018_09_013 crossref_primary_10_1016_j_yfrne_2012_04_002 crossref_primary_10_1016_j_arr_2023_101868 crossref_primary_10_1111_ejn_13795 crossref_primary_10_31083_j_jin2206147 crossref_primary_10_1016_j_tics_2018_03_007 crossref_primary_10_1111_jne_12236 crossref_primary_10_1027_2151_2604_a000260 crossref_primary_10_1016_j_ijpsycho_2019_12_010 crossref_primary_10_1177_0269881119862527 crossref_primary_10_1111_j_1467_789X_2012_01031_x crossref_primary_10_1016_j_nicl_2020_102330 crossref_primary_10_3390_e23060783 crossref_primary_10_1016_j_tins_2011_01_004 crossref_primary_10_1053_j_semnuclmed_2016_09_003 crossref_primary_10_3390_ijerph19116910 crossref_primary_10_1016_j_nlm_2015_04_005 crossref_primary_10_1016_j_cmpb_2012_02_004 crossref_primary_10_1038_nature11713 crossref_primary_10_1080_13506285_2018_1543222 crossref_primary_10_1002_pmic_201100669 crossref_primary_10_1016_j_bbr_2012_06_031 crossref_primary_10_1073_pnas_1200179109 crossref_primary_10_1111_ejn_14416 crossref_primary_10_3389_fpsyg_2016_00640 crossref_primary_10_1016_j_cortex_2024_09_011 crossref_primary_10_1016_j_neuroimage_2011_10_081 crossref_primary_10_1016_j_tics_2014_01_003 crossref_primary_10_1111_nyas_12871 crossref_primary_10_3389_fncom_2017_00054 crossref_primary_10_1038_mp_2017_16 crossref_primary_10_1016_j_tins_2013_11_003 crossref_primary_10_1111_j_1369_1600_2012_00440_x crossref_primary_10_1016_j_tics_2013_04_001 crossref_primary_10_1016_j_cobeha_2017_03_002 crossref_primary_10_1146_annurev_pharmtox_010611_134625 crossref_primary_10_1007_s11245_013_9223_6 crossref_primary_10_7554_eLife_17328 crossref_primary_10_1016_j_neuropharm_2024_110200 crossref_primary_10_1038_s41593_023_01557_4 |
| ContentType | Journal Article |
| Copyright | Schultz; licensee BioMed Central Ltd. 2010 2010 Schultz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Schultz; licensee BioMed Central Ltd. 2010 Schultz; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Schultz; licensee BioMed Central Ltd. 2010 – notice: 2010 Schultz; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Schultz; licensee BioMed Central Ltd. 2010 Schultz; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7TK 7X7 7XB 88E 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ K9. M0S M1P M2M PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM DOA |
| DOI | 10.1186/1744-9081-6-24 |
| DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Animal Behavior Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology Psychology |
| EISSN | 1744-9081 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_f5aeb63a9460437f9f71e484e31fd2fc PMC2876988 2504062851 20416052 10_1186_1744_9081_6_24 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0001354 – fundername: Wellcome Trust grantid: 095495 |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABIVO ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EBD EBLON EBS EJD ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR INH INR IPNFZ IPY ISR ITC KQ8 M1P M2M M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PSYQQ PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM PMFND 3V. 7QG 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c721t-17cc57dcf9c084fe18d549b7fb010c81a7d982e6dc4f423f2b337440996527953 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 484 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000278359900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1744-9081 |
| IngestDate | Tue Oct 14 19:08:23 EDT 2025 Tue Nov 04 01:41:20 EST 2025 Fri Sep 05 10:19:35 EDT 2025 Sun Nov 09 11:19:47 EST 2025 Sat Nov 29 14:58:37 EST 2025 Sat May 31 02:08:35 EDT 2025 Tue Nov 18 22:34:35 EST 2025 Sat Nov 29 03:26:06 EST 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Conditioned Stimulus Dopamine Reward Magnitude Aversive Stimulus Dopamine Neuron |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c721t-17cc57dcf9c084fe18d549b7fb010c81a7d982e6dc4f423f2b337440996527953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://doaj.org/article/f5aeb63a9460437f9f71e484e31fd2fc |
| PMID | 20416052 |
| PQID | 902301380 |
| PQPubID | 55045 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f5aeb63a9460437f9f71e484e31fd2fc pubmedcentral_primary_oai_pubmedcentral_nih_gov_2876988 proquest_miscellaneous_744620161 proquest_miscellaneous_733091997 proquest_journals_902301380 pubmed_primary_20416052 crossref_citationtrail_10_1186_1744_9081_6_24 crossref_primary_10_1186_1744_9081_6_24 springer_journals_10_1186_1744_9081_6_24 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-04-23 |
| PublicationDateYYYYMMDD | 2010-04-23 |
| PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-23 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Behavioral and brain functions |
| PublicationTitleAbbrev | Behav Brain Funct |
| PublicationTitleAlternate | Behav Brain Funct |
| PublicationYear | 2010 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| SSID | ssj0038422 |
| Score | 2.442931 |
| SecondaryResourceType | review_article |
| Snippet | Background
Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of... Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain.... Abstract Background: Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward... Abstract Background Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 24 |
| SubjectTerms | Animals Attention deficit hyperactivity disorder Behavior Behavior, Animal - physiology Behavioral Therapy Biomedical and Life Sciences Biomedicine Conditioning, Psychological - physiology Decision theory Dopamine Dopamine - physiology Expected utility Expected values Haplorhini Neurology Neurons - physiology Neurosciences Probability Probability distribution Psychiatry Review Reward Risk-Taking Standard deviation Studies |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BFqFe-NhCCQXkAwIuVhPb8QcXtIVWHGBVIUC9WYljw0o02-5ukfrvGSfeoIXSC5eVNvEhzozH78VPbwCeNzL4KteeCqyP-CMkrV0ZqNd1LcsqaNO1A_r6QU2n-uTEHCdtzjLJKtc1sSvUzdzFb-T7JoLlguv8zdk5jU2j4uFq6qBxE7aiUZkYwdbB4fT407oUcy0YS06NhZb7iL4FNbgJUkmZ2NiJOsP-q1Dm32LJP05Mu43o6O5_TuEe3EkIlEz6lLkPN3w7hp1Ji-z79JK8IJ0mtPvYPobbH9PR-xi2h1J5uQOTd8i1T_E6ifoPzGCC2JcsfJTgkugf7knVNiTq1l8T3Chnrv_v4_RIVKU-gC9Hh5_fvqepGQN1SBJXtFDOlapxwbhci-AL3SC1rFWokdE5XVSqMZp52TgREKIFVnMezQeRT5VMmZI_hFE7b_0jIFzkVVkxZoqAdM5hUohGhMao3EtVszwDug6MdcmpPDbM-GE7xqKljYG0MZBWWiYyeDmMP-s9Ov458iDGeRgVvbW7C_PFN5uWqg1l5WvJKyNkNH4KJqjCCy08L0LDgstgbx1emxb80g6xzYAMd3GlxuOXqvXzi6VVnCM4M0ZdMwTJOYsgPIPdPuuGR2U5Que8ZBmojXzcmMvmnXb2vfMLR1IsjdYZvFpn7u_nvvo9Pb52inuw3WsoBGX8CYxWiwv_FG65n6vZcvEsrcFfxtk4sQ priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VglAvBbZQQgH5gICLRWI7fnBbHhUHqBCPqjcrcWy6UputdrdI_fcdOw-0tCC4RIo9UfyY8cwXTz4DPGtk8FWuPRW4PuJFSFq7MlCv61qWVdAmHQd0-FEdHOijI_N5A_LhX5iU7T5sSaaVOpm1lq8wdBbUoAejkjJxA26iq9PRFL98PRzWXq4FYz0149Vn1lxPYui_Lqy8mh352xZp8jz7d_6_zXdhu48yybRTi3uw4dsJ7ExbRNinF-Q5SXmf6YP6BG5_6rfXJ7A1LocXOzB9h3j6FMtJzPFALSUY35KFj2m2JHKEe1K1DYm56a8JOsOZ6-597BGJmaf34fv--29vP9D-wAXqEAiuaKGcK1XjgnG5FsEXukH4WKtQI2pzuqhUYzTzsnEiYBgWWM15JBhEzFQyZUr-ADbbeesfAuEir8qKMVMEhGwOJ140IjRG5V6qmuUZ0GEurOvZyOOhGCc2oRItbRw7G8fOSstEBi9G-bOOh-OPkm_i1I5SkT87FcwXP2xvjjaUla8lr4yQkdwpmKAKL7TwvAgNCy6DvUExbG_US3wF4rWCa2w8GWvRGuMWS9X6-fnSKs4xADNG_UUEATiLgXYGu52ijU1lOYbHeckyUGsquNaX9Zp2dpw4wRH4SqN1Bi8HRfzV7uvH6dG_i-7BVpc0ISjjj2FztTj3T-CW-7maLRdPkwVeAqtZKyk priority: 102 providerName: Springer Nature |
| Title | Dopamine signals for reward value and risk: basic and recent data |
| URI | https://link.springer.com/article/10.1186/1744-9081-6-24 https://www.ncbi.nlm.nih.gov/pubmed/20416052 https://www.proquest.com/docview/902301380 https://www.proquest.com/docview/733091997 https://www.proquest.com/docview/744620161 https://pubmed.ncbi.nlm.nih.gov/PMC2876988 https://doaj.org/article/f5aeb63a9460437f9f71e484e31fd2fc |
| Volume | 6 |
| WOSCitedRecordID | wos000278359900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: RBZ dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: M~E dateStart: 20050101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: M2M dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1744-9081 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038422 issn: 1744-9081 databaseCode: RSV dateStart: 20051201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagXBFseoXTlAwIuVhPb8YPb9iWQ2NWqQLWcosSxxUo0RbtbpP57xk42sLTAhYul2JYy8Yzt74tHnwFe1NK7MtWOClwfsRCSVjb31OmqknnptYnXAZ29V5OJns3M9JervkJOWCsP3A7cvs9LV0leGiGDDI83XmVOaOF45mvmbVh9EfWsyVS7BnMt4vkBwm1BDe56nVxjpuV-X0clZWJjO4qq_TdBzesZk78dm8bd6OQB3O9gJBm15j-EW64ZwM6oQQp9fkVekpjYGf-YD-DeuDs_H8B2v95d7cDoCAnzOdaTkMSBYUgQwJKFC3m0JIiAO1I2NQnJ528I7nZz2z67YB4JqaWP4NPJ8cfDt7S7UYFaZHormilrc1Vbb2yqhXeZrpEfVspXSMuszkpVG82crK3wiLM8qzgPCoJIinKmTM4fw1Zz0binQLhIy7xkzGQeOZlFz4pa-Nqo1ElVsTQBuh7YwnZy4-HWi69FpB1aFsERRXBEIQsmEnjV9__WCm38sedB8FPfKwhkxwoMm6ILm-JfYZPA7trLRTdrl_gKJGQZ12g86VtxuoUzlLJxF5fLQnGOCMsY9ZcuyLBZQNIJPGmjpjeVpYh_05wloDbiaeNbNlua-Zco-o3MVhqtE3i9jryfdt88Ts_-xzjtwnabLyEo489ha7W4dHtw135fzZeLIdxWMxVLPYQ7B8eT6ekwTkQsx2yMddN34-lnfDr9cPYDtyQzng |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qCoJeWKYsoSw-sF2sJo7jBQmhgVK16kzFoaDeXMexYSSaDDNT0Pwo_iN2NjRQeuuBS6TYPsTO957fF395D-BpwZzVsbCYev_oL5Th3GQOW5HnLNNOyLoc0KcRPzwUx8fywxr87P6FCbLKzifWjrqoTPhGvi1DsJykIn4z_YZD0ahwuNpV0GhQcWCXPzxjm7_e3_Gv9xkhu--P3u3htqgANp7sLHDCjcl4YZw0saDOJqLwFCnnLvfMxIhE80IKYllhqPOhhiN5moYkep4XZITLUCTCe_wrvoWHShFjMu4cfyooIW1eyESwbR_rUyz9losZJnRl36vLA5wX0_4tzfzjfLbe9nZv_mcLdgtutPE1GjYGcRvWbDmAzWGpF9XpEj1HteK1PkoYwLVxKywYwEa_ESw3YbhTTfWpb0dB3eLtE_nIHs1sEBijkB3dIl0WKKjyXyEfBkxMc2_DcqKgub0DHy9lkndhvaxKex9QSmOdaUJk4jxZNR7ytKCukDy2jOckjgB3QFCmzcMeyoF8VTUfE0wF4KgAHMUUoRG86MdPmwwk_xz5NuCqHxUyh9cN1eyzah2Rcpm2OUu1pCyktXLS8cRSQW2auII4E8FWByfVurO56rEUAep7vR8Kh0u6tNXZXPE09aGnlPyCIZQyEihGBPcalPePSmJPDOKMRMBX8L8yl9WecvKlzobuKT-TQkTwsrOU3899_jo9uHCKT-D63tF4pEb7hwdbsNGoRSgm6UNYX8zO7CO4ar4vJvPZ49r6EZxctvX8AkIdkoM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VgqpeeGwphPLwAQEXq4nt-IG4LJQViLKqBFS9WYljw0o0W-1ukfrvGeeFlhaExCVS4okytmfs-eLxZ4CnlQy-SLWnAsdHvAhJS5cH6nVZyrwI2jTHAR0fqulUn5yYow141e-FabLd-yXJdk9DZGmqV_tnVWhdXMt9DKMFNTibUUmZuAbXRTwwKGL1T8f9OMy1YKyjabz8zto01LD1XxViXs6U_G25tJmFJrf-T__bcLOLPsm4NZc7sOHrEeyMa0TepxfkGWnyQZsf7SPY-tgtu49gexgmL3ZgfIA4-xSfk5j7gdZLMO4lCx_Tb0nkDvekqCsSc9ZfEpwkZ66997F2JGak3oUvk7ef37yj3UEM1CFAXNFMOZerygXjUi2Cz3SFsLJUoUQ053RWqMpo5mXlRMDwLLCS80g8iFgqZ8rkfBc263nt7wPhIi3ygjGTBYRyDg1CVCJURqVeqpKlCdC-X6zrWMrjYRnfbYNWtLSx7WxsOystEwk8H-TPWn6OP0q-jt08SEVe7ebBfPHVdm5qQ174UvLCCBlJn4IJKvNCC8-zULHgEtjrjcR2zr7ETyCOy7hG5clQil4al16K2s_Pl1ZxjoGZMeovIgjMWQzAE7jXGt2gKksxbE5zloBaM8e1uqyX1LNvDVc4AmJptE7gRW-Uv_S-up0e_LvoE9g6OpjYw_fTD3uw3eZVCMr4Q9hcLc79I7jhfqxmy8XjxjF_AhlkNvE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopamine+signals+for+reward+value+and+risk%3A+basic+and+recent+data&rft.jtitle=Behavioral+and+brain+functions&rft.au=Schultz+Wolfram&rft.date=2010-04-23&rft.pub=BMC&rft.issn=1744-9081&rft.eissn=1744-9081&rft.volume=6&rft.issue=1&rft.spage=24&rft_id=info:doi/10.1186%2F1744-9081-6-24&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f5aeb63a9460437f9f71e484e31fd2fc |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-9081&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-9081&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-9081&client=summon |