Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment

•Digestate from a decentralized on-farm biogas plant was assessed by a battery of ecotoxicological tests including plants, earthworms and aquatic organisms.•Obtained ecotoxicological parameters were used to derive indicators for future application of LCA and ERA.•Ecotoxicological investigation was p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Waste management (Elmsford) Ročník 49; s. 378 - 389
Hlavní autori: Pivato, Alberto, Vanin, Stefano, Raga, Roberto, Lavagnolo, Maria Cristina, Barausse, Alberto, Rieple, Antonia, Laurent, Alexis, Cossu, Raffaello
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 01.03.2016
Predmet:
ISSN:0956-053X, 1879-2456, 1879-2456
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Digestate from a decentralized on-farm biogas plant was assessed by a battery of ecotoxicological tests including plants, earthworms and aquatic organisms.•Obtained ecotoxicological parameters were used to derive indicators for future application of LCA and ERA.•Ecotoxicological investigation was performed under the “matrix-based” approach. Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the “matrix-based” approach (also known as “whole effluent toxicity” for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E−3m3/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341mg-digestate/kg-soil and can be used for the dose–response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
AbstractList Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained.One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation.Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil.In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the “matrix-based” approach (also known as “whole effluent toxicity” for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri).Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri.The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E−3m³/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341mg-digestate/kg-soil and can be used for the dose–response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E-3m3/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341mg-digestate/kg-soil and can be used for the dose-response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
•Digestate from a decentralized on-farm biogas plant was assessed by a battery of ecotoxicological tests including plants, earthworms and aquatic organisms.•Obtained ecotoxicological parameters were used to derive indicators for future application of LCA and ERA.•Ecotoxicological investigation was performed under the “matrix-based” approach. Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the “matrix-based” approach (also known as “whole effluent toxicity” for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E−3m3/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341mg-digestate/kg-soil and can be used for the dose–response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E-3m(3)/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341 mg-digestate/kg-soil and can be used for the dose-response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E-3m(3)/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341 mg-digestate/kg-soil and can be used for the dose-response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E-3m(3)/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341 mg-digestate/kg-soil and can be used for the dose-response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.
Author Vanin, Stefano
Raga, Roberto
Cossu, Raffaello
Rieple, Antonia
Pivato, Alberto
Laurent, Alexis
Lavagnolo, Maria Cristina
Barausse, Alberto
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0003-3380-4999
  surname: Pivato
  fullname: Pivato, Alberto
  email: alberto.pivato@unipd.it
  organization: DII – Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
– sequence: 2
  givenname: Stefano
  surname: Vanin
  fullname: Vanin, Stefano
  organization: Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
– sequence: 3
  givenname: Roberto
  surname: Raga
  fullname: Raga, Roberto
  organization: DII – Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
– sequence: 4
  givenname: Maria Cristina
  surname: Lavagnolo
  fullname: Lavagnolo, Maria Cristina
  organization: DII – Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
– sequence: 5
  givenname: Alberto
  surname: Barausse
  fullname: Barausse, Alberto
  organization: DII – Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
– sequence: 6
  givenname: Antonia
  surname: Rieple
  fullname: Rieple, Antonia
  organization: DII – Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
– sequence: 7
  givenname: Alexis
  surname: Laurent
  fullname: Laurent, Alexis
  organization: Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark (DTU). 2800 Kgs. Lyngby, Denmark
– sequence: 8
  givenname: Raffaello
  surname: Cossu
  fullname: Cossu, Raffaello
  organization: DII – Department of Industrial Engineering, University of Padova, via Marzolo n 9, 35131 Padova, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26724231$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vFCEYxompsdvqNzCGo5dZ-TPDQA8mTeO_pIkXm3gjDLxsWGeGFRh1-3n6QWWz7cWD7QVI-D1PXnieM3QyxxkQek3JmhIq3m3Xv02ezLxmhHZrytaEqGdoRWWvGtZ24gStiOpEQzr-_RSd5bwlhLaSkhfolImetYzTFbq7yYCjxy5sIBdTAPsUJ2ywAwtzSWYMt-BwnBtv0oSHEDcm491o5oLrwUMq4YAkHGacYxjzBb6cMdhY4p9g4xg3wZoR57K4PfYxYb-UJUHFXb0oMeWDMoX8A5vZ4TF4wHZvR6j2GXKe6hQv0XNvxgyv7vdzdPPxw7erz831109fri6vG9szUpqegx2MN51kkhrCOacgiOSdbQfFh7ZX1BNBOfS98EI6we3AWy-lbKVzIPk5env03aX4c6n_oaeQLYz1tRCXrBmlQiomFH0Upb3iTJK6PAHtueRKdvwpKG1bxaWq6Jt7dBkmcHqXwmTSXj9EW4GLI2BTzDmB1zbUgEM8pBpGTYk-9Ehv9bFH-tAjTZmuPari9h_xg_8jsvdHGdSUfgVIOtsAswUXEtiiXQz_N_gLzAblMw
CitedBy_id crossref_primary_10_1016_j_wasman_2021_12_035
crossref_primary_10_1002_jpln_201700200
crossref_primary_10_1007_s12649_017_0071_2
crossref_primary_10_3390_microorganisms10010164
crossref_primary_10_3390_su14095617
crossref_primary_10_1016_j_scitotenv_2025_179171
crossref_primary_10_1016_j_biotechadv_2022_107916
crossref_primary_10_1016_j_scitotenv_2019_134240
crossref_primary_10_1016_j_fuproc_2024_108091
crossref_primary_10_1016_j_apsoil_2021_104149
crossref_primary_10_1016_j_jenvman_2022_114997
crossref_primary_10_3390_en12030396
crossref_primary_10_1016_j_chnaes_2023_05_003
crossref_primary_10_1016_j_jenvman_2020_110633
crossref_primary_10_3390_agriculture15141511
crossref_primary_10_1108_SRJ_09_2018_0241
crossref_primary_10_1016_j_envres_2023_116943
crossref_primary_10_1016_j_jhazmat_2020_123970
crossref_primary_10_3390_app131810219
crossref_primary_10_1016_j_scp_2024_101735
crossref_primary_10_1016_j_biortech_2023_128813
crossref_primary_10_1016_j_scitotenv_2017_02_051
crossref_primary_10_1007_s12649_019_00766_y
crossref_primary_10_1016_j_eti_2024_103863
crossref_primary_10_1016_j_jclepro_2018_03_211
crossref_primary_10_1080_15567036_2018_1511651
crossref_primary_10_37501_soilsa_125847
crossref_primary_10_1016_j_envres_2022_112764
crossref_primary_10_1007_s10661_021_09175_y
crossref_primary_10_1016_j_jece_2022_107453
crossref_primary_10_1016_j_wasman_2016_10_028
crossref_primary_10_1016_j_wasman_2016_12_016
crossref_primary_10_1016_j_resconrec_2018_10_034
crossref_primary_10_1016_j_rser_2021_111073
crossref_primary_10_1016_j_renene_2019_12_058
crossref_primary_10_1016_j_ecolind_2024_112077
crossref_primary_10_1016_j_wasman_2025_114845
crossref_primary_10_1016_j_renene_2019_10_048
crossref_primary_10_3390_fermentation7040241
crossref_primary_10_1007_s12649_016_9650_x
crossref_primary_10_1007_s11356_020_09282_2
crossref_primary_10_1016_j_apsoil_2023_105105
crossref_primary_10_1007_s13399_021_01463_4
crossref_primary_10_1007_s13762_024_05843_x
crossref_primary_10_1016_j_scitotenv_2019_05_314
crossref_primary_10_3390_agronomy13030744
crossref_primary_10_1016_j_scitotenv_2023_161656
crossref_primary_10_1016_j_jclepro_2018_03_045
crossref_primary_10_3390_agriculture13081557
crossref_primary_10_1007_s10163_018_00816_y
crossref_primary_10_1007_s00253_017_8578_9
crossref_primary_10_1016_j_renene_2019_04_090
crossref_primary_10_1080_21655979_2021_1996044
crossref_primary_10_1016_j_biortech_2018_08_114
crossref_primary_10_1007_s12649_021_01591_y
crossref_primary_10_1080_10934529_2021_2002628
crossref_primary_10_3390_en17205202
crossref_primary_10_1016_j_biombioe_2023_106991
crossref_primary_10_1016_j_ecoenv_2017_12_029
crossref_primary_10_1007_s12649_016_9785_9
crossref_primary_10_11118_actaun201765041183
crossref_primary_10_1007_s11356_017_8886_8
crossref_primary_10_1007_s10668_021_01264_9
crossref_primary_10_3389_fenrg_2023_1141684
crossref_primary_10_1016_j_biteb_2023_101610
crossref_primary_10_1016_j_wasman_2019_02_040
crossref_primary_10_1038_s41598_021_84206_9
crossref_primary_10_3390_su14031402
crossref_primary_10_3390_w15050960
crossref_primary_10_1007_s11783_023_1736_7
crossref_primary_10_1016_j_wasman_2017_08_046
crossref_primary_10_1016_j_scitotenv_2021_145786
crossref_primary_10_3390_en13112724
crossref_primary_10_1016_j_scienta_2024_113041
crossref_primary_10_3390_app11020750
crossref_primary_10_1016_j_wasman_2017_04_029
crossref_primary_10_1080_03650340_2018_1520980
crossref_primary_10_1016_j_jenvman_2018_10_014
crossref_primary_10_3390_agronomy13102501
crossref_primary_10_3390_en13143729
crossref_primary_10_1016_j_jscs_2021_101213
crossref_primary_10_1007_s10163_017_0619_z
crossref_primary_10_1016_j_scitotenv_2017_09_154
crossref_primary_10_3390_su17188186
crossref_primary_10_3390_agronomy10040490
crossref_primary_10_1007_s10163_020_01056_9
crossref_primary_10_1016_j_wasman_2018_10_041
Cites_doi 10.1016/j.scitotenv.2005.12.016
10.1016/j.desal.2012.07.039
10.1016/S0045-6535(00)00030-8
10.1016/j.wasman.2010.10.025
10.1007/s12010-014-1131-8
10.1007/s11367-008-0038-4
10.1016/j.biortech.2008.12.046
10.1016/j.jhazmat.2014.01.003
10.1065/lca2006.12.288
10.1016/j.wasman.2014.10.014
10.1016/S0025-326X(01)00327-7
10.1080/09593330.2013.829111
10.1016/j.envint.2006.11.006
10.1002/etc.5620190107
10.1006/eesa.2000.1927
10.1016/j.wasman.2014.01.017
10.1007/s12649-010-9051-5
10.1007/s11367-012-0489-5
10.1016/S0273-1223(98)00252-2
10.1007/s11367-011-0294-6
10.1021/es703145t
10.1186/1476-069X-11-S1-S18
10.1016/j.tca.2004.07.019
10.1016/j.scitotenv.2012.05.069
10.1016/j.chemosphere.2011.02.013
10.1016/j.envpol.2007.04.007
10.1016/j.biombioe.2012.02.018
10.1016/j.resconrec.2011.08.007
10.1016/j.chemosphere.2006.06.024
10.1016/j.chemosphere.2006.12.097
10.1021/es053190s
10.1002/etc.5620200431
10.1007/BF02978505
10.1016/j.ecss.2012.12.013
10.1016/j.scitotenv.2011.08.053
10.1065/lca2006.12.287
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7ST
7TV
8FD
C1K
F1W
FR3
H95
L.G
P64
SOI
7QQ
JG9
KR7
7S9
L.6
DOI 10.1016/j.wasman.2015.12.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Environment Abstracts
Pollution Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Ceramic Abstracts
Materials Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Pollution Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Ceramic Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-2456
EndPage 389
ExternalDocumentID 26724231
10_1016_j_wasman_2015_12_009
S0956053X15302439
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
WUQ
Y6R
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7ST
7TV
8FD
C1K
F1W
FR3
H95
L.G
P64
SOI
7QQ
JG9
KR7
7S9
L.6
ID FETCH-LOGICAL-c720t-73ecbafa58281a03331e60835c4b93b4791f0613e776f68d63cb34f88848dde83
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372676300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-053X
1879-2456
IngestDate Thu Oct 02 06:54:59 EDT 2025
Mon Sep 29 06:12:58 EDT 2025
Tue Oct 07 09:27:01 EDT 2025
Sat Sep 27 19:38:30 EDT 2025
Wed Feb 19 02:00:36 EST 2025
Sat Nov 29 02:13:28 EST 2025
Tue Nov 18 19:50:51 EST 2025
Fri Feb 23 02:24:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digestate
Life cycle assessment
Risk assessment
Ecotoxicity tests
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c720t-73ecbafa58281a03331e60835c4b93b4791f0613e776f68d63cb34f88848dde83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3380-4999
PMID 26724231
PQID 1771449389
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2116892691
proquest_miscellaneous_1793280932
proquest_miscellaneous_1773839853
proquest_miscellaneous_1771449389
pubmed_primary_26724231
crossref_citationtrail_10_1016_j_wasman_2015_12_009
crossref_primary_10_1016_j_wasman_2015_12_009
elsevier_sciencedirect_doi_10_1016_j_wasman_2015_12_009
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Waste management (Elmsford)
PublicationTitleAlternate Waste Manag
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References EC-JRC, 2011. Recommendations based on existing environmental impact assessment models and factors for life cycle assessment in European context. ILCD Handbookd International Reference Life Cycle Data System, European Union EUR24571EN, ISBN 978-92-79-17451-3.
Owamah, Dahunsi, Oranusi, Alfa (b0275) 2014; 34
EPA – United States Environmental Protection Agency, 2005. Guidance for Developing Ecological Soil Screening Levels. OSWER Directive 9285.7-55.
Norberg-King, T., 1993. A linear interpolation method for sublethal toxicity: The inhibition concentration (ICp) Approach. National Effluent Toxicity Assessment Center, Technical Report 03–93, Environmental Protection Agency, Environmental Agency, Environmental Research Laboratory-Duluth, Duluth, MN 55804.
Schuytema, Nebeker, Stutzman (b0345) 1997; 198
Pivato, Raga, Vanin, Rossi (b0310) 2013
Wheeler, Grist, Leung, Morritt, Crane (b0380) 2002; 45
Fernández-Torquemada, Sánchez-Lizaso (b0130) 2013; 119
Kupper, T., Brändli, R.C., Bucheli, T.D., Stämpfli, C., Zennegg, M., Berger, U., Edder, P., Pohl, M., Niang, F., Iozza, S., Müller, J., Schaffner, C., Schmid, P., Huber, S., Ortelli, D., Becker-van Slooten, K., Mayer, J., Bachmann, H.J., Stadelmann, F.X., Tarradellas, J., 2008. Organic pollutants in compost and digestate : occurrence, fate and impacts. CODIS 2008 (27–34). ISBN: 978-3-03736-016-3.
Pivato, Raga, Lavagnolo, Vanin, Barausse, Palmeri, Cossu (b0305) 2014
Fishwick, S., 2004. Soil Screening Values For Use in UK Ecological Risk Assessment.
Teglia, Tremier, Martel (b0355) 2010; 2
Sarakinos, Bermingham, White, Rasmussen (b0335) 2000; 19
Holm-Nielsen, Al Seadi, Oleskowicz-Popiel (b0205) 2009; 100
Rauch, J., 1998. Teil I : Grundlagen l Definition von Mehrproduktanlagen und Flexibilitätsanforderungen.
UNI EN 13137, 2002. Charakterisierung von Abfall – Bestimmung des gesamten organischen Kohlenstoffs (TOC) in Abfall, Schlämmen und Sedimenten; Deutsche Fassung.
Hauschild, Goedkoop, Guinée, Heijungs, Huijbregts, Jolliet, Margni, De Schryver, Humbert, Laurent, Sala, Pant (b0185) 2013; 18
Pandard, Devillers, Charissou, Poulsen, Jourdain, Férard, Grand, Bispo (b0285) 2006; 363
Dlgs 217/06 (Italian Legislative Decree 217/06), Gazzetta ufficiale, n.141 del 20 giugno 2006
Gómez, Cuetos, García, Morán (b0150) 2005; 426
Domene, Alcañiz, Andrés (b0065) 2008; 151
UNI EN 12457-2, 2004. Caratterizzazione dei rifiuti – Lisciviazione – Prova di conformità per la lisciviazione di rifiuti granulari e di fanghi – Parte 2: Prova a singolo stadio, con un rapporto liquido/solido di 10 l/kg, per materiali con particelle di dimensioni minori di 4.
Sarigiannis, D., Hansen, U., 2012. Considering the cumulative risk of mixtures of chemicals – a challenge for policy makers. Environmental Health.
.
EPA – United States Environmental Protection Agency, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms Fifth Edition October 2002. Environmental Protection, p. 266.
Kapanen, Itävaara (b0225) 2001; 49
Leitgib, Kálmán, Gruiz (b0245) 2007; 66
/
Hund-Rinke, K., 2008. Benefit of ecotoxicological tests for the characterization of waste. Presentation. cited in Pivato et al. 2014.
APAT (Italian Environmental Agency), 2003. Metodi microbiologici di analisi del compost.
EPA – United States Environmental Protection Agency, 1994. Method 7471A. Mercury in solid or semisolid waste (manual cold-vapor technique).
RIVM (National Institute of Public Health and the Environment of Netherlands), 2001. Guidance Document on deriving Environmental Risk Limits. RIVM Report 601501012”.
Alvarenga, Palma, Gonçalves, Fernandes, Cunha-Queda, Duarte, Vallini (b0015) 2007; 33
Tercero, Alibardi, Cossu, Bertucco (b0360) 2014; 37
Anonymous, 2001. Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities, Berlin, Germany (20.02.01.).
EPA – United States Environmental Protection Agency, 2006. Life Cycle Assessment: principles and practice. EPA/600/R-06/060.
EPA – United States Environmental Protection Agency, 2007. Method 6010C. Inductively coupled plasma-atomic emission spectrometry.
Larsen, Hauschild (b0235) 2007; 12
OECD/OCDE, 2004b. OECD Guideline 202/2004 for testing of chemicals. Test No. 202: Daphnia sp., Acute Immobilisation Test.
Pardo, Clemente, Epelde, Garbisu, Bernal (b0290) 2014; 268
Larsen, Hauschild (b0240) 2007; 12
Perrodin, Boillot, Angerville, Donguy, Evens (b0295) 2011; 409
Ortiz-Gutiérrez, Giarola, Bezzo (b0270) 2013; 34
Perrodin, Donguy, Bazin, Volatier, Durrieu, Bony, Devaux, Abdelghafour, Moretto (b0300) 2012; 431
Hertwich, Matales, Pease, McKone (b0200) 2001; 20
Fuchs, J.G., Berner, A., Mayer, J., Schleiss, K., Kupper, T., 2008. Effects of compost and digestate on environment and plant production – results of two research projects. ORBIT 2008.
OECD/OCDE, 2004a. OECD Guidelines for the Testing of Chemicals. Test No. 222: Earthworm Reproduction Test
Hauschild, M., Wenzel, H., 1998. Environmental assessment of products, vol. 2: scientific background. Kluwer, Hingham, MA, USA, p. 565.
APAT (Italian Environmental Agency) and IRSA-CNR (Italian Water Research Institute), 2003. Metodi analitici per le acque.
Gajardo, Beardmore (b0145) 2012
Huijbregts, Thissen, Guinée, Jager, Kalf, van de Meent, Ragas, Wegener Sleeswijk, Reijnders (b0210) 2000; 41
Canadian Council of Ministers of the Environment (CCME), 1997. Recommended Canadian Soil Quality Guidelines. Documents, c/o Manitoba Statutory Publications, Manitoba, Canada.
California Compost Quality Council, 2001. Compost Maturity Index.
Alburquerque, de la Fuente, Ferrer-Costa, Carrasco, Cegarra, Abadb, Bernal (b0010) 2012; 40
EPA – United States Environmental Protection Agency, 1996. Method 3050B. Acid digestion of sediments, sludges, and soils.
Henderson, Hauschild, Van De Meent, Huijbregts, Larsen, Margni, McKone, Payet, Rosenbaum, Jolliet (b0190) 2011; 16
Gotvajn, Zagorc-Koncan (b0155) 1998; 37
McKone, T., Bennett, D., Maddalena, R., 2001. CalTOX 4.0 Technical support document, vol. 1. LBNL-47254, Lawrence Berkeley. National Laboratory, Berkeley, CA.
EPA – United States Environmental Protection Agency, 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.
Hauschild (b0180) 2005; 39
[Accessed February 18, 2015].
EC, 2003. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for New notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Published by European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, IT.
Boluda, Roca-Pérez, Marimón (b0045) 2011; 84
Rehl, Müller (b0320) 2011; 56
Zhou, Chang, Fane (b0385) 2013; 308
American Biogas Council (ABC). 2015. Digestate standard, certification & Testing protocol Program. Outline for development & use at ABC’s digestate standard (draft). In Proceedings of workshop, October 19, 2015, Danvers, Massachuttes.
EPA – United States Environmental Protection Agency, 2010. Causal Analysis/Diagnosis Decision Information System (CADDIS). Office of Research and Development, Washington, DC.
Hauschild, Huijbregts, Jolliet, Macleod, Margni, Rosenbaum, van de Meent, McKone (b9000) 2008; 42
Boldrin, Neidel, Damgaard, Bhander, Møller, Christensen (b0040) 2011; 31
UNI Italian Organisation for Standarisation, 1998. UNI 10780–1998, vol. 44(0), pp. 0–9.
Fachverband Biogas e.V., European Biogas Associatio, BiPRO, 2013. Position Paper on Digestate and REACH
EurObserv’ER, 2013. The State of Renewable Energies in Europe
Rosenbaum, Bachmann, Gold, Huijbregts, Jolliet, Juraske, Koehler, Larsen, MacLeod, Margni, McKone, Payet, Schuhmacher, Van De Meent, Hauschild (b0330) 2008; 13
APAT (Italian Environmental Agency), 2004. Guida Tecnica Su Metodi Di Analisi Per Il Suolo E I Siti Contaminati.
Jolliet, Margni, Charles, Humbert, Payet, Rebitzer, Rosenbaum (b0220) 2003; 8
Tambone, Terruzzi, Scaglia, Adani (b0350) 2015; 35
Gryta, Frąc, Karolina (b0165) 2014; 174
Hernando, De Vettori, Martínez Bueno, Fernández-Alba (b0195) 2007; 68
Hauschild (10.1016/j.wasman.2015.12.009_b9000) 2008; 42
Tercero (10.1016/j.wasman.2015.12.009_b0360) 2014; 37
10.1016/j.wasman.2015.12.009_b0135
10.1016/j.wasman.2015.12.009_b0255
Alvarenga (10.1016/j.wasman.2015.12.009_b0015) 2007; 33
10.1016/j.wasman.2015.12.009_b0215
Rosenbaum (10.1016/j.wasman.2015.12.009_b0330) 2008; 13
10.1016/j.wasman.2015.12.009_b0060
10.1016/j.wasman.2015.12.009_b0140
10.1016/j.wasman.2015.12.009_b0260
10.1016/j.wasman.2015.12.009_b0340
10.1016/j.wasman.2015.12.009_b0020
10.1016/j.wasman.2015.12.009_b0100
10.1016/j.wasman.2015.12.009_b0265
Gotvajn (10.1016/j.wasman.2015.12.009_b0155) 1998; 37
Pivato (10.1016/j.wasman.2015.12.009_b0305) 2014
Pivato (10.1016/j.wasman.2015.12.009_b0310) 2013
Teglia (10.1016/j.wasman.2015.12.009_b0355) 2010; 2
Larsen (10.1016/j.wasman.2015.12.009_b0240) 2007; 12
10.1016/j.wasman.2015.12.009_b0025
Henderson (10.1016/j.wasman.2015.12.009_b0190) 2011; 16
10.1016/j.wasman.2015.12.009_b0105
Sarakinos (10.1016/j.wasman.2015.12.009_b0335) 2000; 19
Schuytema (10.1016/j.wasman.2015.12.009_b0345) 1997; 198
10.1016/j.wasman.2015.12.009_b0030
Pandard (10.1016/j.wasman.2015.12.009_b0285) 2006; 363
Domene (10.1016/j.wasman.2015.12.009_b0065) 2008; 151
Holm-Nielsen (10.1016/j.wasman.2015.12.009_b0205) 2009; 100
10.1016/j.wasman.2015.12.009_b0230
10.1016/j.wasman.2015.12.009_b0075
10.1016/j.wasman.2015.12.009_b0110
Kapanen (10.1016/j.wasman.2015.12.009_b0225) 2001; 49
Boldrin (10.1016/j.wasman.2015.12.009_b0040) 2011; 31
Jolliet (10.1016/j.wasman.2015.12.009_b0220) 2003; 8
10.1016/j.wasman.2015.12.009_b0070
Larsen (10.1016/j.wasman.2015.12.009_b0235) 2007; 12
Perrodin (10.1016/j.wasman.2015.12.009_b0300) 2012; 431
Boluda (10.1016/j.wasman.2015.12.009_b0045) 2011; 84
Hauschild (10.1016/j.wasman.2015.12.009_b0185) 2013; 18
10.1016/j.wasman.2015.12.009_b0035
10.1016/j.wasman.2015.12.009_b0115
10.1016/j.wasman.2015.12.009_b0315
10.1016/j.wasman.2015.12.009_b0085
Hauschild (10.1016/j.wasman.2015.12.009_b0180) 2005; 39
Hertwich (10.1016/j.wasman.2015.12.009_b0200) 2001; 20
10.1016/j.wasman.2015.12.009_b0120
Fernández-Torquemada (10.1016/j.wasman.2015.12.009_b0130) 2013; 119
Gryta (10.1016/j.wasman.2015.12.009_b0165) 2014; 174
Tambone (10.1016/j.wasman.2015.12.009_b0350) 2015; 35
Alburquerque (10.1016/j.wasman.2015.12.009_b0010) 2012; 40
Zhou (10.1016/j.wasman.2015.12.009_b0385) 2013; 308
10.1016/j.wasman.2015.12.009_b0080
Huijbregts (10.1016/j.wasman.2015.12.009_b0210) 2000; 41
Pardo (10.1016/j.wasman.2015.12.009_b0290) 2014; 268
10.1016/j.wasman.2015.12.009_b0365
10.1016/j.wasman.2015.12.009_b0005
10.1016/j.wasman.2015.12.009_b0125
Gajardo (10.1016/j.wasman.2015.12.009_b0145) 2012
Owamah (10.1016/j.wasman.2015.12.009_b0275) 2014; 34
10.1016/j.wasman.2015.12.009_b0325
Perrodin (10.1016/j.wasman.2015.12.009_b0295) 2011; 409
10.1016/j.wasman.2015.12.009_b0050
10.1016/j.wasman.2015.12.009_b0170
Hernando (10.1016/j.wasman.2015.12.009_b0195) 2007; 68
10.1016/j.wasman.2015.12.009_b0250
10.1016/j.wasman.2015.12.009_b0095
10.1016/j.wasman.2015.12.009_b0370
Ortiz-Gutiérrez (10.1016/j.wasman.2015.12.009_b0270) 2013; 34
Rehl (10.1016/j.wasman.2015.12.009_b0320) 2011; 56
10.1016/j.wasman.2015.12.009_b0375
10.1016/j.wasman.2015.12.009_b0055
Wheeler (10.1016/j.wasman.2015.12.009_b0380) 2002; 45
Gómez (10.1016/j.wasman.2015.12.009_b0150) 2005; 426
10.1016/j.wasman.2015.12.009_b0090
Leitgib (10.1016/j.wasman.2015.12.009_b0245) 2007; 66
References_xml – volume: 20
  start-page: 928
  year: 2001
  end-page: 939
  ident: b0200
  article-title: Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening
  publication-title: Environ. Toxicol. Chem.
– reference: Kupper, T., Brändli, R.C., Bucheli, T.D., Stämpfli, C., Zennegg, M., Berger, U., Edder, P., Pohl, M., Niang, F., Iozza, S., Müller, J., Schaffner, C., Schmid, P., Huber, S., Ortelli, D., Becker-van Slooten, K., Mayer, J., Bachmann, H.J., Stadelmann, F.X., Tarradellas, J., 2008. Organic pollutants in compost and digestate : occurrence, fate and impacts. CODIS 2008 (27–34). ISBN: 978-3-03736-016-3.
– volume: 308
  start-page: 233
  year: 2013
  end-page: 241
  ident: b0385
  article-title: An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants
  publication-title: Desalination
– volume: 66
  start-page: 428
  year: 2007
  end-page: 434
  ident: b0245
  article-title: Comparison of bioassays by testing whole soil and their water extract from contaminated sites
  publication-title: Chemosphere
– volume: 198
  start-page: 194
  year: 1997
  end-page: 198
  ident: b0345
  publication-title: Environmental Contamination and Toxicology Salinity Tolerance of
– volume: 37
  start-page: 219
  year: 1998
  end-page: 227
  ident: b0155
  article-title: Whole effluent and single substance approach: a tool for hazardous wastewater management
  publication-title: Water Science Technology
– volume: 68
  start-page: 724
  year: 2007
  end-page: 730
  ident: b0195
  article-title: Toxicity evaluation with
  publication-title: Chemosphere
– volume: 409
  start-page: 5162
  year: 2011
  end-page: 5176
  ident: b0295
  article-title: Ecological risk assessment of urban and industrial systems: A review
  publication-title: Sci. Total Environ.
– reference: ).
– volume: 56
  start-page: 92
  year: 2011
  end-page: 104
  ident: b0320
  article-title: Life cycle assessment of biogas digestate processing technologies
  publication-title: Resour. Conserv. Recycl.
– reference: APAT (Italian Environmental Agency), 2004. Guida Tecnica Su Metodi Di Analisi Per Il Suolo E I Siti Contaminati.
– volume: 41
  start-page: 541
  year: 2000
  end-page: 573
  ident: b0210
  article-title: Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA
  publication-title: Chemosphere
– reference: American Biogas Council (ABC). 2015. Digestate standard, certification & Testing protocol Program. Outline for development & use at ABC’s digestate standard (draft). In Proceedings of workshop, October 19, 2015, Danvers, Massachuttes.
– volume: 13
  start-page: 532
  year: 2008
  end-page: 546
  ident: b0330
  article-title: USEtox - The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment
  publication-title: Int. J. Life Cycle Assess.
– reference: APAT (Italian Environmental Agency) and IRSA-CNR (Italian Water Research Institute), 2003. Metodi analitici per le acque.
– volume: 16
  start-page: 701
  year: 2011
  end-page: 709
  ident: b0190
  article-title: USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties
  publication-title: Int. J. Life Cycle Assess.
– reference: UNI EN 13137, 2002. Charakterisierung von Abfall – Bestimmung des gesamten organischen Kohlenstoffs (TOC) in Abfall, Schlämmen und Sedimenten; Deutsche Fassung.
– volume: 18
  start-page: 683
  year: 2013
  end-page: 697
  ident: b0185
  article-title: Identifying best existing practice for characterization modeling in life cycle impact assessment
  publication-title: International Journal of Life-Cycle Assessement
– volume: 100
  start-page: 5478
  year: 2009
  end-page: 5484
  ident: b0205
  article-title: The future of anaerobic digestion and biogas utilization
  publication-title: Bioresour. Technol.
– start-page: 1
  year: 2012
  end-page: 8
  ident: b0145
  article-title: The brine shrimp
  publication-title: Frontiers in Physiology
– volume: 49
  start-page: 1
  year: 2001
  end-page: 16
  ident: b0225
  article-title: Ecotoxicity tests for compost applications
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 151
  start-page: 549
  year: 2008
  end-page: 558
  ident: b0065
  article-title: Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms
  publication-title: Environ. Pollut.
– volume: 12
  start-page: 79
  year: 2007
  end-page: 91
  ident: b0240
  article-title: GM-troph – a low data demand ecotoxicity effect indicator for use in LCIA
  publication-title: Int. J. Life Cycle Assess.
– reference: McKone, T., Bennett, D., Maddalena, R., 2001. CalTOX 4.0 Technical support document, vol. 1. LBNL-47254, Lawrence Berkeley. National Laboratory, Berkeley, CA.
– reference: /
– volume: 37
  start-page: 793
  year: 2014
  end-page: 798
  ident: b0360
  article-title: Anaerobic digestion of microalgal residues to enhance the energetic profit of biocrude production
  publication-title: Chem. Eng. Trans.
– reference: APAT (Italian Environmental Agency), 2003. Metodi microbiologici di analisi del compost.
– reference: UNI Italian Organisation for Standarisation, 1998. UNI 10780–1998, vol. 44(0), pp. 0–9.
– year: 2013
  ident: b0310
  article-title: Assessment of compost quality for its environmentally safe use by means of an ecotoxicological test on a soil organism
  publication-title: J. Mater. Cycles Waste Manage.
– volume: 31
  start-page: 619
  year: 2011
  end-page: 630
  ident: b0040
  article-title: Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE
  publication-title: Waste Manage.
– reference: EurObserv’ER, 2013. The State of Renewable Energies in Europe, <
– volume: 119
  start-page: 64
  year: 2013
  end-page: 70
  ident: b0130
  article-title: Effects of salinity on seed germination and early seedling growth of the Mediterranean seagrass
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 34
  start-page: 747
  year: 2014
  end-page: 752
  ident: b0275
  article-title: Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta
  publication-title: Waste Manage.
– volume: 363
  start-page: 114
  year: 2006
  end-page: 125
  ident: b0285
  article-title: Selecting a battery of bioassays for ecotoxicological characterization of wastes
  publication-title: Sci. Total Environ.
– volume: 2
  start-page: 43
  year: 2010
  end-page: 58
  ident: b0355
  article-title: Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use
  publication-title: Waste and Biomass Valorization
– reference: EPA – United States Environmental Protection Agency, 2007. Method 6010C. Inductively coupled plasma-atomic emission spectrometry.
– volume: 268
  start-page: 68
  year: 2014
  end-page: 76
  ident: b0290
  article-title: Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 81A
  year: 2005
  end-page: 88A
  ident: b0180
  article-title: Assessing environmental impacts in a life-cycle perspective
  publication-title: International Environmental Science and Technology
– reference: OECD/OCDE, 2004a. OECD Guidelines for the Testing of Chemicals. Test No. 222: Earthworm Reproduction Test (
– reference: OECD/OCDE, 2004b. OECD Guideline 202/2004 for testing of chemicals. Test No. 202: Daphnia sp., Acute Immobilisation Test.
– reference: EC, 2003. Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for New notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Published by European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, IT.
– volume: 40
  start-page: 181
  year: 2012
  end-page: 189
  ident: b0010
  article-title: Assessment of the fertiliser potential of digestates from farm and agroindustrial residues
  publication-title: Biomass Bioenergy
– reference: Fuchs, J.G., Berner, A., Mayer, J., Schleiss, K., Kupper, T., 2008. Effects of compost and digestate on environment and plant production – results of two research projects. ORBIT 2008.
– reference: EPA – United States Environmental Protection Agency, 1996. Method 3050B. Acid digestion of sediments, sludges, and soils.
– reference: EPA – United States Environmental Protection Agency, 1994. Method 7471A. Mercury in solid or semisolid waste (manual cold-vapor technique).
– volume: 174
  start-page: 1434
  year: 2014
  end-page: 1443
  ident: b0165
  article-title: The application of the biolog ecoplate approach in ecotoxicological evaluation of dairy sewage sludge
  publication-title: Appl. Biochem. Biotechnol.
– volume: 431
  start-page: 375
  year: 2012
  end-page: 384
  ident: b0300
  article-title: Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments
  publication-title: Sci. Total Environ.
– reference: [Accessed February 18, 2015].
– volume: 35
  start-page: 55
  year: 2015
  end-page: 61
  ident: b0350
  article-title: Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties
  publication-title: Waste Manage.
– reference: Rauch, J., 1998. Teil I : Grundlagen l Definition von Mehrproduktanlagen und Flexibilitätsanforderungen.
– reference: RIVM (National Institute of Public Health and the Environment of Netherlands), 2001. Guidance Document on deriving Environmental Risk Limits. RIVM Report 601501012”.
– volume: 42
  start-page: 7032
  year: 2008
  end-page: 7037
  ident: b9000
  article-title: Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 192
  year: 2002
  end-page: 202
  ident: b0380
  article-title: Species sensitivity distributions: data and model choice
  publication-title: Mar. Pollut. Bull.
– volume: 84
  start-page: 1
  year: 2011
  end-page: 8
  ident: b0045
  article-title: Soil plate bioassay: An effective method to determine ecotoxicological risks
  publication-title: Chemosphere
– reference: UNI EN 12457-2, 2004. Caratterizzazione dei rifiuti – Lisciviazione – Prova di conformità per la lisciviazione di rifiuti granulari e di fanghi – Parte 2: Prova a singolo stadio, con un rapporto liquido/solido di 10 l/kg, per materiali con particelle di dimensioni minori di 4.
– reference: EC-JRC, 2011. Recommendations based on existing environmental impact assessment models and factors for life cycle assessment in European context. ILCD Handbookd International Reference Life Cycle Data System, European Union EUR24571EN, ISBN 978-92-79-17451-3.
– reference: Norberg-King, T., 1993. A linear interpolation method for sublethal toxicity: The inhibition concentration (ICp) Approach. National Effluent Toxicity Assessment Center, Technical Report 03–93, Environmental Protection Agency, Environmental Agency, Environmental Research Laboratory-Duluth, Duluth, MN 55804.
– volume: 12
  start-page: 24
  year: 2007
  end-page: 33
  ident: b0235
  article-title: Evaluation of ecotoxicity effect indicators for use in LCIA
  publication-title: Int. J. Life Cycle Assess.
– reference: >.
– volume: 34
  start-page: 2189
  year: 2013
  end-page: 2199
  ident: b0270
  article-title: Optimal design of ethanol supply chains considering carbon trading effects and multiple technologies for side-product exploitation
  publication-title: Environ. Technol.
– reference: EPA – United States Environmental Protection Agency, 2005. Guidance for Developing Ecological Soil Screening Levels. OSWER Directive 9285.7-55.
– reference: Hund-Rinke, K., 2008. Benefit of ecotoxicological tests for the characterization of waste. Presentation. cited in Pivato et al. 2014.
– reference: EPA – United States Environmental Protection Agency, 2010. Causal Analysis/Diagnosis Decision Information System (CADDIS). Office of Research and Development, Washington, DC.
– reference: California Compost Quality Council, 2001. Compost Maturity Index.
– volume: 426
  start-page: 179
  year: 2005
  end-page: 184
  ident: b0150
  article-title: Evaluation of digestate stability from anaerobic process by thermogravimetric analysis
  publication-title: Thermochim. Acta
– reference: Canadian Council of Ministers of the Environment (CCME), 1997. Recommended Canadian Soil Quality Guidelines. Documents, c/o Manitoba Statutory Publications, Manitoba, Canada.
– reference: Anonymous, 2001. Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities, Berlin, Germany (20.02.01.).
– reference: EPA – United States Environmental Protection Agency, 2006. Life Cycle Assessment: principles and practice. EPA/600/R-06/060.
– year: 2014
  ident: b0305
  article-title: Assessment of compost dosage in farmland through ecotoxicological tests
  publication-title: J. Mater. Cycles Waste Manage.
– volume: 33
  start-page: 505
  year: 2007
  end-page: 513
  ident: b0015
  article-title: Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land
  publication-title: Environ. Int.
– volume: 19
  start-page: 63
  year: 2000
  end-page: 71
  ident: b0335
  publication-title: In Environmental Toxicology and Chemistry
– reference: Fachverband Biogas e.V., European Biogas Associatio, BiPRO, 2013. Position Paper on Digestate and REACH, <
– reference: EPA – United States Environmental Protection Agency, 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.
– volume: 8
  start-page: 324
  year: 2003
  end-page: 330
  ident: b0220
  article-title: IMPACT 2002+: a new life cycle impact assessment methodology
  publication-title: Int. J. Life Cycle Assess.
– reference: Fishwick, S., 2004. Soil Screening Values For Use in UK Ecological Risk Assessment.
– reference: Dlgs 217/06 (Italian Legislative Decree 217/06), Gazzetta ufficiale, n.141 del 20 giugno 2006, <
– reference: EPA – United States Environmental Protection Agency, 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms Fifth Edition October 2002. Environmental Protection, p. 266.
– reference: Sarigiannis, D., Hansen, U., 2012. Considering the cumulative risk of mixtures of chemicals – a challenge for policy makers. Environmental Health.
– reference: Hauschild, M., Wenzel, H., 1998. Environmental assessment of products, vol. 2: scientific background. Kluwer, Hingham, MA, USA, p. 565.
– ident: 10.1016/j.wasman.2015.12.009_b0100
– ident: 10.1016/j.wasman.2015.12.009_b0255
– volume: 363
  start-page: 114
  year: 2006
  ident: 10.1016/j.wasman.2015.12.009_b0285
  article-title: Selecting a battery of bioassays for ecotoxicological characterization of wastes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.12.016
– ident: 10.1016/j.wasman.2015.12.009_b0020
– volume: 308
  start-page: 233
  year: 2013
  ident: 10.1016/j.wasman.2015.12.009_b0385
  article-title: An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.07.039
– ident: 10.1016/j.wasman.2015.12.009_b0095
– volume: 41
  start-page: 541
  issue: 4
  year: 2000
  ident: 10.1016/j.wasman.2015.12.009_b0210
  article-title: Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00030-8
– ident: 10.1016/j.wasman.2015.12.009_b0370
– volume: 31
  start-page: 619
  issue: 4
  year: 2011
  ident: 10.1016/j.wasman.2015.12.009_b0040
  article-title: Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2010.10.025
– volume: 174
  start-page: 1434
  issue: 4
  year: 2014
  ident: 10.1016/j.wasman.2015.12.009_b0165
  article-title: The application of the biolog ecoplate approach in ecotoxicological evaluation of dairy sewage sludge
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1131-8
– ident: 10.1016/j.wasman.2015.12.009_b0110
– ident: 10.1016/j.wasman.2015.12.009_b0265
– ident: 10.1016/j.wasman.2015.12.009_b0005
– ident: 10.1016/j.wasman.2015.12.009_b0085
– volume: 13
  start-page: 532
  year: 2008
  ident: 10.1016/j.wasman.2015.12.009_b0330
  article-title: USEtox - The UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-008-0038-4
– ident: 10.1016/j.wasman.2015.12.009_b0365
– ident: 10.1016/j.wasman.2015.12.009_b0170
– volume: 37
  start-page: 793
  year: 2014
  ident: 10.1016/j.wasman.2015.12.009_b0360
  article-title: Anaerobic digestion of microalgal residues to enhance the energetic profit of biocrude production
  publication-title: Chem. Eng. Trans.
– ident: 10.1016/j.wasman.2015.12.009_b0055
– volume: 100
  start-page: 5478
  issue: 22
  year: 2009
  ident: 10.1016/j.wasman.2015.12.009_b0205
  article-title: The future of anaerobic digestion and biogas utilization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.12.046
– volume: 268
  start-page: 68
  year: 2014
  ident: 10.1016/j.wasman.2015.12.009_b0290
  article-title: Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.01.003
– ident: 10.1016/j.wasman.2015.12.009_b0075
– volume: 12
  start-page: 79
  issue: 2
  year: 2007
  ident: 10.1016/j.wasman.2015.12.009_b0240
  article-title: GM-troph – a low data demand ecotoxicity effect indicator for use in LCIA
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1065/lca2006.12.288
– volume: 35
  start-page: 55
  issue: 2015
  year: 2015
  ident: 10.1016/j.wasman.2015.12.009_b0350
  article-title: Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.10.014
– ident: 10.1016/j.wasman.2015.12.009_b0375
– ident: 10.1016/j.wasman.2015.12.009_b0115
– ident: 10.1016/j.wasman.2015.12.009_b0030
– volume: 45
  start-page: 192
  year: 2002
  ident: 10.1016/j.wasman.2015.12.009_b0380
  article-title: Species sensitivity distributions: data and model choice
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/S0025-326X(01)00327-7
– start-page: 1
  year: 2012
  ident: 10.1016/j.wasman.2015.12.009_b0145
  article-title: The brine shrimp Artemia: Adapted to critical life conditions
  publication-title: Frontiers in Physiology
– ident: 10.1016/j.wasman.2015.12.009_b0105
– volume: 34
  start-page: 2189
  year: 2013
  ident: 10.1016/j.wasman.2015.12.009_b0270
  article-title: Optimal design of ethanol supply chains considering carbon trading effects and multiple technologies for side-product exploitation
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2013.829111
– volume: 33
  start-page: 505
  year: 2007
  ident: 10.1016/j.wasman.2015.12.009_b0015
  article-title: Evaluation of chemical and ecotoxicological characteristics of biodegradable organic residues for application to agricultural land
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2006.11.006
– volume: 19
  start-page: 63
  issue: 1
  year: 2000
  ident: 10.1016/j.wasman.2015.12.009_b0335
  publication-title: In Environmental Toxicology and Chemistry
  doi: 10.1002/etc.5620190107
– ident: 10.1016/j.wasman.2015.12.009_b0125
– volume: 49
  start-page: 1
  year: 2001
  ident: 10.1016/j.wasman.2015.12.009_b0225
  article-title: Ecotoxicity tests for compost applications
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1006/eesa.2000.1927
– volume: 34
  start-page: 747
  year: 2014
  ident: 10.1016/j.wasman.2015.12.009_b0275
  article-title: Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.01.017
– ident: 10.1016/j.wasman.2015.12.009_b0070
– volume: 2
  start-page: 43
  issue: 1
  year: 2010
  ident: 10.1016/j.wasman.2015.12.009_b0355
  article-title: Characterization of Solid Digestates: Part 1, Review of Existing Indicators to Assess Solid Digestates Agricultural Use
  publication-title: Waste and Biomass Valorization
  doi: 10.1007/s12649-010-9051-5
– ident: 10.1016/j.wasman.2015.12.009_b0035
– volume: 18
  start-page: 683
  year: 2013
  ident: 10.1016/j.wasman.2015.12.009_b0185
  article-title: Identifying best existing practice for characterization modeling in life cycle impact assessment
  publication-title: International Journal of Life-Cycle Assessement
  doi: 10.1007/s11367-012-0489-5
– volume: 37
  start-page: 219
  issue: 8
  year: 1998
  ident: 10.1016/j.wasman.2015.12.009_b0155
  article-title: Whole effluent and single substance approach: a tool for hazardous wastewater management
  publication-title: Water Science Technology
  doi: 10.1016/S0273-1223(98)00252-2
– volume: 16
  start-page: 701
  year: 2011
  ident: 10.1016/j.wasman.2015.12.009_b0190
  article-title: USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-011-0294-6
– volume: 42
  start-page: 7032
  year: 2008
  ident: 10.1016/j.wasman.2015.12.009_b9000
  article-title: Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703145t
– ident: 10.1016/j.wasman.2015.12.009_b0050
– ident: 10.1016/j.wasman.2015.12.009_b0140
– ident: 10.1016/j.wasman.2015.12.009_b0340
  doi: 10.1186/1476-069X-11-S1-S18
– volume: 426
  start-page: 179
  issue: 1–2
  year: 2005
  ident: 10.1016/j.wasman.2015.12.009_b0150
  article-title: Evaluation of digestate stability from anaerobic process by thermogravimetric analysis
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2004.07.019
– volume: 431
  start-page: 375
  year: 2012
  ident: 10.1016/j.wasman.2015.12.009_b0300
  article-title: Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.05.069
– ident: 10.1016/j.wasman.2015.12.009_b0135
– volume: 84
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.wasman.2015.12.009_b0045
  article-title: Soil plate bioassay: An effective method to determine ecotoxicological risks
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.013
– ident: 10.1016/j.wasman.2015.12.009_b0215
– ident: 10.1016/j.wasman.2015.12.009_b0060
– ident: 10.1016/j.wasman.2015.12.009_b0230
– volume: 151
  start-page: 549
  year: 2008
  ident: 10.1016/j.wasman.2015.12.009_b0065
  article-title: Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.04.007
– ident: 10.1016/j.wasman.2015.12.009_b0090
– ident: 10.1016/j.wasman.2015.12.009_b0315
– volume: 198
  start-page: 194
  year: 1997
  ident: 10.1016/j.wasman.2015.12.009_b0345
  publication-title: Environmental Contamination and Toxicology Salinity Tolerance of Daphnia magna and Potential Use for Estuarine Sediment Toxicity Tests
– volume: 40
  start-page: 181
  year: 2012
  ident: 10.1016/j.wasman.2015.12.009_b0010
  article-title: Assessment of the fertiliser potential of digestates from farm and agroindustrial residues
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.02.018
– ident: 10.1016/j.wasman.2015.12.009_b0260
– volume: 56
  start-page: 92
  issue: 2011
  year: 2011
  ident: 10.1016/j.wasman.2015.12.009_b0320
  article-title: Life cycle assessment of biogas digestate processing technologies
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2011.08.007
– year: 2013
  ident: 10.1016/j.wasman.2015.12.009_b0310
  article-title: Assessment of compost quality for its environmentally safe use by means of an ecotoxicological test on a soil organism
  publication-title: J. Mater. Cycles Waste Manage.
– volume: 66
  start-page: 428
  year: 2007
  ident: 10.1016/j.wasman.2015.12.009_b0245
  article-title: Comparison of bioassays by testing whole soil and their water extract from contaminated sites
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.06.024
– volume: 68
  start-page: 724
  year: 2007
  ident: 10.1016/j.wasman.2015.12.009_b0195
  article-title: Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.12.097
– volume: 39
  start-page: 81A
  year: 2005
  ident: 10.1016/j.wasman.2015.12.009_b0180
  article-title: Assessing environmental impacts in a life-cycle perspective
  publication-title: International Environmental Science and Technology
  doi: 10.1021/es053190s
– volume: 20
  start-page: 928
  issue: 4
  year: 2001
  ident: 10.1016/j.wasman.2015.12.009_b0200
  article-title: Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620200431
– ident: 10.1016/j.wasman.2015.12.009_b0025
– volume: 8
  start-page: 324
  issue: 6
  year: 2003
  ident: 10.1016/j.wasman.2015.12.009_b0220
  article-title: IMPACT 2002+: a new life cycle impact assessment methodology
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/BF02978505
– ident: 10.1016/j.wasman.2015.12.009_b0120
– ident: 10.1016/j.wasman.2015.12.009_b0250
– volume: 119
  start-page: 64
  year: 2013
  ident: 10.1016/j.wasman.2015.12.009_b0130
  article-title: Effects of salinity on seed germination and early seedling growth of the Mediterranean seagrass Posidonia oceanica (L.) Delile
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2012.12.013
– ident: 10.1016/j.wasman.2015.12.009_b0080
– volume: 409
  start-page: 5162
  issue: 24
  year: 2011
  ident: 10.1016/j.wasman.2015.12.009_b0295
  article-title: Ecological risk assessment of urban and industrial systems: A review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.08.053
– year: 2014
  ident: 10.1016/j.wasman.2015.12.009_b0305
  article-title: Assessment of compost dosage in farmland through ecotoxicological tests
  publication-title: J. Mater. Cycles Waste Manage.
– volume: 12
  start-page: 24
  issue: 1
  year: 2007
  ident: 10.1016/j.wasman.2015.12.009_b0235
  article-title: Evaluation of ecotoxicity effect indicators for use in LCIA
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1065/lca2006.12.287
– ident: 10.1016/j.wasman.2015.12.009_b0325
SSID ssj0014810
Score 2.5017655
Snippet •Digestate from a decentralized on-farm biogas plant was assessed by a battery of ecotoxicological tests including plants, earthworms and aquatic...
Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 378
SubjectTerms Aliivibrio fischeri - drug effects
Animals
aquatic organisms
Artemia
Bacteria
Bioassay
bioassays
biodegradability
biofertilizers
Biofuels - analysis
Biogas
Crustacea - drug effects
Daphnia magna
Digestate
dose response
earthworms
Ecotoxicity tests
ecotoxicology
effluents
Eisenia fetida
environmental assessment
environmental impact
European Union
Farms
Fertilizers - analysis
Fertilizers - toxicity
Industrial Waste - analysis
Lepidium sativum
Lepidium sativum - drug effects
lethal concentration 50
Life cycle assessment
life cycle impact assessment
luminescence
Mathematical models
nitrogen
nutrients
Oligochaeta - drug effects
organic matter
Organisms
phosphorus
Plants (organisms)
risk
Risk Assessment
salts
soil
Soils
toxicity
Toxicity Tests
trophic levels
uncertainty
Vibrio fischeri
waste management
wastewater
Title Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: An ecotoxicological study for future indicators in risk and life cycle assessment
URI https://dx.doi.org/10.1016/j.wasman.2015.12.009
https://www.ncbi.nlm.nih.gov/pubmed/26724231
https://www.proquest.com/docview/1771449389
https://www.proquest.com/docview/1773839853
https://www.proquest.com/docview/1793280932
https://www.proquest.com/docview/2116892691
Volume 49
WOSCitedRecordID wos000372676300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe6Dgl4QDD-jT-TkXirguI4jW3epqkIEEwT26BvkZM6KFOXTEtXBp-Hr8d34M52ksG0DZB4iSLXbpzer_bd-Xd3hDzHHGhMhjqYxQUYKIrFgY5lEqi8YMlMiSybFbbYhNjeltOp2hkMfrSxMMu5qCp5eqqO_quooQ2EjaGzfyHu7kuhAe5B6HAFscP1jwS_77zzM3tyBJqkiyDRo5nxRMzyGyiZdRUU-vhwlJX1Z91gMenK1pwpkGeNXZCmPmrqct543yHYqYv6tMy71dJmprU0RZeYZITH37m25XswSgZJ6-iWn5eFGeVfYZrwgDYP6Fml-JMGqHke7aFPgTqZHzaOd995KnawEJuPykE6eN1-8FFXLhPC7sIUuuraP2jnNXbs8a75nV4ivdCdOb3XIBIsbgZLnSsk3vpAWNKTwJxjrg3O6ZlQzsMJHce23DBsdW59lwIPlFwu83YDcDlT_QrOXUUhrwxwV9_o3D7jXB4HL77oBn4dZAiOrVc5VP2-2rEdd3EmOBGGJZpAA1whq5EYKzkkq5tvJtO33bFXLG36jG7mbaynJSSef9ZFutRFtpLVmfZuk1ve2KGbDqR3yMBUa-T6VltjcI3cPJMO8y75DtCldUE76FKELtX0F-hSD13qoEstdCnc9NClZUUtdF_SzYr-DlxqgUsBXdQBl_bAxZEIXArApQhcaoFLe-DeI_uvJntbrwNfRSTIRRQuAsFNnulC4_kw0yHnnJkEDY88zhTPYqFYgUqtESIpEjlLeJ7xuJBSxhL2fsnvk2FVV-YhoUwIMdYm4ZmAcaHJFMuTMXoc4syAXr5OeCuPNPcp9rHSyzxtuZQHqZNiilJMWZSCFNdJ0I06cilmrugvWlGnXk126m8K6Lxi5LMWGSkIGo8GdWXqkyaFN2NxrADul_bhYE6Bfn9ZH7AHZQiXi_tEjCVSRYli6-SBg2f33lEi0MBjj_75HR-TG_0K8YQMF8cn5im5li8XZXO8QVbEVG74v91P0LEkOA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+digestate+from+a+decentralized+on-farm+biogas+plant+as+fertilizer+in+soils%3A+An+ecotoxicological+study+for+future+indicators+in+risk+and+life+cycle+assessment&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Pivato%2C+Alberto&rft.au=Vanin%2C+Stefano&rft.au=Raga%2C+Roberto&rft.au=Lavagnolo%2C+Maria+Cristina&rft.date=2016-03-01&rft.pub=Elsevier+Ltd&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=49&rft.spage=378&rft.epage=389&rft_id=info:doi/10.1016%2Fj.wasman.2015.12.009&rft.externalDocID=S0956053X15302439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon