Biostatistics series module 3: Comparing groups: Numerical variables
Numerical data that are normally distributed can be analyzed with parametric tests, that is, tests which are based on the parameters that define a normal distribution curve. If the distribution is uncertain, the data can be plotted as a normal probability plot and visually inspected, or tested for n...
Uloženo v:
| Vydáno v: | Indian journal of dermatology Ročník 61; číslo 3; s. 251 - 260 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
India
Wolters Kluwer - Medknow Publications
01.05.2016
Medknow Publications and Media Pvt. Ltd Medknow Publications & Media Pvt. Ltd Medknow Publications & Media Pvt Ltd Wolters Kluwer Medknow Publications |
| Témata: | |
| ISSN: | 0019-5154, 1998-3611 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Numerical data that are normally distributed can be analyzed with parametric tests, that is, tests which are based on the parameters that define a normal distribution curve. If the distribution is uncertain, the data can be plotted as a normal probability plot and visually inspected, or tested for normality using one of a number of goodness of fit tests, such as the Kolmogorov-Smirnov test. The widely used Student's t-test has three variants. The one-sample t-test is used to assess if a sample mean (as an estimate of the population mean) differs significantly from a given population mean. The means of two independent samples may be compared for a statistically significant difference by the unpaired or independent samples t-test. If the data sets are related in some way, their means may be compared by the paired or dependent samples t-test. The t-test should not be used to compare the means of more than two groups. Although it is possible to compare groups in pairs, when there are more than two groups, this will increase the probability of a Type I error. The one-way analysis of variance (ANOVA) is employed to compare the means of three or more independent data sets that are normally distributed. Multiple measurements from the same set of subjects cannot be treated as separate, unrelated data sets. Comparison of means in such a situation requires repeated measures ANOVA. It is to be noted that while a multiple group comparison test such as ANOVA can point to a significant difference, it does not identify exactly between which two groups the difference lies. To do this, multiple group comparison needs to be followed up by an appropriate post hoc test. An example is the Tukey's honestly significant difference test following ANOVA. If the assumptions for parametric tests are not met, there are nonparametric alternatives for comparing data sets. These include Mann-Whitney U-test as the nonparametric counterpart of the unpaired Student's t-test, Wilcoxon signed-rank test as the counterpart of the paired Student's t-test, Kruskal-Wallis test as the nonparametric equivalent of ANOVA and the Friedman's test as the counterpart of repeated measures ANOVA. |
|---|---|
| AbstractList | Numerical data that are normally distributed can be analyzed with parametric tests, that is, tests which are based on the parameters that define a normal distribution curve. If the distribution is uncertain, the data can be plotted as a normal probability plot and visually inspected, or tested for normality using one of a number of goodness of fit tests, such as the Kolmogorov-Smirnov test. The widely used Student's t-test has three variants. The one-sample t-test is used to assess if a sample mean (as an estimate of the population mean) differs significantly from a given population mean. The means of two independent samples may be compared for a statistically significant difference by the unpaired or independent samples t-test. If the data sets are related in some way, their means may be compared by the paired or dependent samples t-test. The t-test should not be used to compare the means of more than two groups. Although it is possible to compare groups in pairs, when there are more than two groups, this will increase the probability of a Type I error. The one-way analysis of variance (ANOVA) is employed to compare the means of three or more independent data sets that are normally distributed. Multiple measurements from the same set of subjects cannot be treated as separate, unrelated data sets. Comparison of means in such a situation requires repeated measures ANOVA. It is to be noted that while a multiple group comparison test such as ANOVA can point to a significant difference, it does not identify exactly between which two groups the difference lies. To do this, multiple group comparison needs to be followed up by an appropriate post hoc test. An example is the Tukey's honestly significant difference test following ANOVA. If the assumptions for parametric tests are not met, there are nonparametric alternatives for comparing data sets. These include Mann-Whitney U-test as the nonparametric counterpart of the unpaired Student's t-test, Wilcoxon signed-rank test as the counterpart of the paired Student's t-test, Kruskal-Wallis test as the nonparametric equivalent of ANOVA and the Friedman's test as the counterpart of repeated measures ANOVA. |
| Audience | Academic |
| Author | Gogtay, Nithya Hazra, Avijit |
| AuthorAffiliation | From the Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India 1 Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India |
| AuthorAffiliation_xml | – name: 1 Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India – name: From the Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India |
| Author_xml | – sequence: 1 givenname: Avijit surname: Hazra fullname: Hazra, Avijit organization: Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal – sequence: 2 givenname: Nithya surname: Gogtay fullname: Gogtay, Nithya organization: Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27293244$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB-wZ4UisWGTwc_Y7gKpHV6VKtjA2nKcm-BpEg920hH_HodpRzPVCHlh6d7vHNvX5zw7GfwAWfYaowXDiL5HCKuCY84WWBKGy2fZGVZKFrTE-CQ727VPs_MYVwgxiiV-kZ0SQRQljJ1lH6-dj6MZXRydjXmE4CDmva-nDnJ6mS99vzbBDW3eBj-t42X-beoTZE2X36eGqTqIL7PnjekivHrYL7Kfnz_9WH4tbr9_uVle3RZWEOQKiS0zDeUVIMKACV4KrMDUhKhUFoIaVtZIWlWXVtTAlGBcSaMapQStGkMvsputb-3NSq-D6034o71x-l_Bh1abkN7RgTZUNRUvLZEUWGkqCQhkJYUSdd0IXCavD1uv9VT1UFsYxmC6A9PDzuB-6dbfayYlx2I2ePdgEPzvCeKoexctdJ0ZwE9RY6HKUlKJeULfPkFXfgpDGpVO_0GlEoLvUa1JD3BD49O5djbVV4wTwSglNFHFEaqFAdIlUzoal8oH_OIIn1YNvbNHBW_2B7ObyGNmEoC2gA0-xgDNDsFIz7HUc-70nDu9jWWSlE8k1s2h8_NoXfc_4fVWuPHdCCHeddMGgk73uhv85kBX7Ok04Vg_Jpv-BWBB95U |
| CitedBy_id | crossref_primary_10_1016_j_jobe_2024_109027 crossref_primary_10_1093_jme_tjae071 crossref_primary_10_1007_s12524_025_02180_5 crossref_primary_10_3389_fonc_2019_01285 crossref_primary_10_1016_j_jpain_2023_11_012 crossref_primary_10_3389_fcell_2022_785058 crossref_primary_10_3389_fimmu_2023_1165101 crossref_primary_10_3390_genes12101535 crossref_primary_10_3389_fimmu_2022_1022720 crossref_primary_10_3389_fgene_2021_671179 crossref_primary_10_1155_2022_2930310 crossref_primary_10_3389_fgene_2022_893380 crossref_primary_10_1038_s41598_024_52117_0 crossref_primary_10_1016_j_nbd_2023_106032 crossref_primary_10_4102_jtscm_v17i0_870 crossref_primary_10_1167_iovs_61_6_60 crossref_primary_10_3389_fmolb_2022_1034928 crossref_primary_10_1038_s41598_025_96396_7 crossref_primary_10_3390_microorganisms11051098 crossref_primary_10_1111_apt_17995 crossref_primary_10_1016_j_intimp_2020_106757 crossref_primary_10_5205_1981_8963_2023_254410 crossref_primary_10_3389_fonc_2024_1326626 crossref_primary_10_1186_s12967_024_05519_7 crossref_primary_10_1002_bmc_4733 crossref_primary_10_3389_fonc_2022_820242 crossref_primary_10_3389_fphar_2024_1420478 crossref_primary_10_1016_j_bjorl_2025_101560 crossref_primary_10_3389_fcell_2023_1173803 crossref_primary_10_3389_fmolb_2021_624951 crossref_primary_10_1016_j_intimp_2024_113277 crossref_primary_10_17208_jkpa_2022_10_57_5_136 crossref_primary_10_3390_biomedicines12030506 crossref_primary_10_1016_j_cageo_2021_104942 crossref_primary_10_3389_fendo_2023_1099703 crossref_primary_10_1186_s12935_024_03307_3 crossref_primary_10_1002_cam4_70992 crossref_primary_10_3389_fmolb_2022_1001788 crossref_primary_10_1038_s41598_024_65481_8 crossref_primary_10_1016_j_ijmedinf_2022_104939 crossref_primary_10_1007_s12672_022_00474_5 crossref_primary_10_1038_s41598_023_42140_y crossref_primary_10_1186_s12859_022_04726_7 crossref_primary_10_30621_jbachs_955091 crossref_primary_10_3390_life12060922 crossref_primary_10_1007_s42977_021_00104_1 crossref_primary_10_1186_s12967_021_03053_4 crossref_primary_10_1016_j_enbuild_2023_113285 crossref_primary_10_2147_IJGM_S348343 crossref_primary_10_3389_fcell_2021_761134 crossref_primary_10_1111_jcmm_16790 crossref_primary_10_1038_s41598_020_70309_2 crossref_primary_10_1002_mc_23770 crossref_primary_10_1155_2022_5621441 crossref_primary_10_3389_fphar_2023_1276466 crossref_primary_10_3389_fcell_2021_727935 crossref_primary_10_3389_fimmu_2021_788959 crossref_primary_10_3389_fonc_2023_1061084 crossref_primary_10_3389_fgene_2022_955240 crossref_primary_10_1080_09593985_2023_2227256 crossref_primary_10_3389_fped_2021_749707 crossref_primary_10_1055_a_1877_2745 crossref_primary_10_1158_2326_6066_CIR_18_0436 crossref_primary_10_1016_j_heliyon_2024_e26851 crossref_primary_10_1186_s40537_022_00641_z crossref_primary_10_1016_j_jiph_2021_11_006 crossref_primary_10_3389_fonc_2020_01374 crossref_primary_10_3390_cancers14020447 crossref_primary_10_3389_fphar_2023_1126916 crossref_primary_10_3390_insects13080694 crossref_primary_10_3390_toxins15050328 crossref_primary_10_1080_13685538_2025_2541694 crossref_primary_10_1016_j_compbiomed_2018_09_007 crossref_primary_10_1080_01913123_2024_2449091 crossref_primary_10_1080_02702711_2025_2551563 crossref_primary_10_1002_mc_23549 crossref_primary_10_1007_s10528_023_10387_9 crossref_primary_10_1080_23311975_2025_2480242 crossref_primary_10_3389_fgene_2022_837941 crossref_primary_10_3389_fmolb_2022_823911 crossref_primary_10_1590_s1678_9946202466057 crossref_primary_10_1002_lipd_12447 crossref_primary_10_3389_fpubh_2025_1463401 crossref_primary_10_1111_jcmm_70749 crossref_primary_10_1080_02713683_2022_2048396 crossref_primary_10_1080_01443615_2022_2160930 crossref_primary_10_1177_02841851241254746 crossref_primary_10_1016_j_tranon_2023_101660 crossref_primary_10_2147_IJGM_S498407 crossref_primary_10_3389_fgene_2021_752025 crossref_primary_10_3390_publications11020030 crossref_primary_10_1007_s12282_022_01341_5 crossref_primary_10_1038_s41598_024_77389_4 crossref_primary_10_3389_fimmu_2022_888339 crossref_primary_10_1016_j_enbuild_2024_113948 crossref_primary_10_2217_epi_2019_0151 crossref_primary_10_1016_j_intimp_2020_106931 crossref_primary_10_1016_j_ufug_2019_126512 crossref_primary_10_3389_fcell_2021_723817 crossref_primary_10_3390_ijms25010239 crossref_primary_10_1016_j_actbio_2021_03_035 crossref_primary_10_1016_j_infrared_2020_103615 crossref_primary_10_20473_fmi_v59i2_44621 crossref_primary_10_1001_jamadermatol_2020_2118 crossref_primary_10_1007_s11356_020_11047_w crossref_primary_10_3389_feduc_2025_1554124 crossref_primary_10_1016_j_jclepro_2024_140964 crossref_primary_10_1186_s12974_019_1613_2 crossref_primary_10_1016_j_jnma_2021_07_004 crossref_primary_10_1055_s_0041_1736272 crossref_primary_10_1002_iid3_539 crossref_primary_10_1074_jbc_RA120_016557 crossref_primary_10_3389_fonc_2021_764798 crossref_primary_10_3389_fimmu_2022_1064874 crossref_primary_10_1038_s41598_024_68198_w crossref_primary_10_1016_j_mad_2022_111656 crossref_primary_10_1016_j_bbr_2019_02_007 crossref_primary_10_3389_fonc_2021_620688 crossref_primary_10_1016_j_bbr_2020_112689 crossref_primary_10_1016_j_apgeog_2021_102385 crossref_primary_10_3389_feduc_2025_1571810 crossref_primary_10_1080_02713683_2024_2359981 crossref_primary_10_1007_s00586_023_08005_8 crossref_primary_10_2147_JIR_S463692 crossref_primary_10_1016_j_intimp_2020_106477 crossref_primary_10_1186_s40537_025_01067_z crossref_primary_10_3389_fphar_2023_1146468 crossref_primary_10_1155_2022_5396128 crossref_primary_10_3389_fonc_2021_740484 crossref_primary_10_3389_fonc_2023_905139 crossref_primary_10_7717_peerj_15298 crossref_primary_10_1371_journal_pone_0304012 crossref_primary_10_1016_j_tice_2025_102864 crossref_primary_10_1158_2326_6066_CIR_17_0453 crossref_primary_10_1186_s12935_023_02892_z crossref_primary_10_1007_s12672_024_01734_2 crossref_primary_10_3346_jkms_2025_40_e114 crossref_primary_10_3390_su152316405 crossref_primary_10_3390_ijerph20043461 crossref_primary_10_3390_pharmaceutics15030810 crossref_primary_10_1007_s13167_022_00287_0 crossref_primary_10_1002_cnr2_70344 crossref_primary_10_3389_fmolb_2022_807502 crossref_primary_10_1371_journal_pone_0249374 crossref_primary_10_3390_cancers14122827 crossref_primary_10_1186_s12943_020_01170_0 crossref_primary_10_1007_s12517_022_10018_4 crossref_primary_10_1038_s41598_020_68074_3 crossref_primary_10_1007_s12031_020_01484_0 crossref_primary_10_1080_2162402X_2021_1959977 crossref_primary_10_1002_cre2_887 crossref_primary_10_1097_MD_0000000000042781 crossref_primary_10_2147_JIR_S488935 crossref_primary_10_1016_j_jobe_2024_110579 crossref_primary_10_1007_s10973_024_13616_4 crossref_primary_10_3389_fimmu_2022_986785 crossref_primary_10_3390_idr15050053 crossref_primary_10_3389_fonc_2021_753330 crossref_primary_10_1007_s00128_021_03289_2 crossref_primary_10_1016_j_petrol_2019_01_069 crossref_primary_10_3389_fimmu_2022_860041 crossref_primary_10_3389_fimmu_2021_653711 crossref_primary_10_1016_j_pdpdt_2024_104328 crossref_primary_10_3390_pharmaceutics13040535 crossref_primary_10_1016_j_ebiom_2021_103716 crossref_primary_10_1080_01913123_2023_2234470 crossref_primary_10_3389_fpsyg_2022_989319 crossref_primary_10_1002_cam4_4531 crossref_primary_10_1111_hepr_13685 crossref_primary_10_2131_fts_12_49 crossref_primary_10_1093_chromsci_bmac046 crossref_primary_10_3389_fimmu_2021_746647 crossref_primary_10_3389_fpsyg_2022_1027591 crossref_primary_10_1016_j_jbc_2024_107939 crossref_primary_10_3389_fgene_2022_822966 crossref_primary_10_3390_f12121621 crossref_primary_10_1097_BRS_0000000000004857 crossref_primary_10_1155_2021_9987376 crossref_primary_10_1016_j_actpsy_2025_105128 crossref_primary_10_3389_fgene_2022_1043297 crossref_primary_10_1042_BSR20201533 crossref_primary_10_3389_fvets_2024_1301959 crossref_primary_10_1080_01913123_2024_2395849 crossref_primary_10_1002_cnr2_1176 crossref_primary_10_1227_neu_0000000000002761 crossref_primary_10_1128_JCM_02927_20 crossref_primary_10_1080_21655979_2021_2012906 crossref_primary_10_3390_jcm13164595 crossref_primary_10_3390_metabo12100963 crossref_primary_10_1177_09636897211001314 crossref_primary_10_1002_cam4_5194 crossref_primary_10_1111_pcmr_13170 crossref_primary_10_1016_j_mce_2017_10_009 crossref_primary_10_1155_2024_1117796 crossref_primary_10_4103_ijyn_ijyn_2_23 crossref_primary_10_1016_j_spinee_2017_08_237 crossref_primary_10_1186_s12967_022_03574_6 crossref_primary_10_2217_epi_2022_0202 crossref_primary_10_1038_s41598_024_83111_1 crossref_primary_10_1213_ANE_0000000000002636 crossref_primary_10_1038_s41598_020_72026_2 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2016 Medknow Publications and Media Pvt. Ltd. Copyright Medknow Publications & Media Pvt Ltd May-Jun 2016 Copyright: © 2016 Indian Journal of Dermatology 2016 |
| Copyright_xml | – notice: COPYRIGHT 2016 Medknow Publications and Media Pvt. Ltd. – notice: Copyright Medknow Publications & Media Pvt Ltd May-Jun 2016 – notice: Copyright: © 2016 Indian Journal of Dermatology 2016 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.4103/0019-5154.182416 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1998-3611 |
| EndPage | 260 |
| ExternalDocumentID | oai_doaj_org_article_a39fb56c283e46ab8e0e8b8797ddf716 PMC4885176 4158226601 A452743323 27293244 10_4103_0019_5154_182416 10.4103/0019-5154.182416_251_Biostati |
| Genre | Journal Article |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | --- 29I 2WC 53G 5GY 5VS 7X7 88E 8FI 8FJ 8G5 AAWTL ABDBF ABJNI ABUWG ACGFS ACIHN ACUHS ADBBV ADJBI ADRAZ AEAQA AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU DIK DU5 DWQXO E3Z EBD EBS EJD EOJEC ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 H13 HMCUK HYE IAO IEA IHR INH INR IOF IPNFZ ITC KQ8 M1P M2O M48 O5R O5S OBODZ OK1 OVD P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RMW RNS RPM TEORI TR2 TUS UKHRP ~8M AAYXX AFFHD C1A CITATION IHE IL9 OVT PJZUB PPXIY 3V. ABXLX M~E NPM 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c720i-81c4af35be024e4756719ead229af3773a46d08c9d6c7de4974598a9f9973bfa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 234 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000387599000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0019-5154 |
| IngestDate | Fri Oct 03 12:46:09 EDT 2025 Tue Nov 04 01:59:37 EST 2025 Thu Sep 04 20:24:23 EDT 2025 Thu Nov 20 11:21:05 EST 2025 Tue Nov 11 09:46:25 EST 2025 Sat Nov 29 11:32:24 EST 2025 Tue Nov 04 17:42:38 EST 2025 Thu Jan 02 22:23:06 EST 2025 Sat Nov 29 02:32:21 EST 2025 Tue Nov 18 22:21:56 EST 2025 Tue Jun 17 22:45:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Tukey's test Friedman's test Kolmogorov-Smirnov test Mann-Whitney U-test t-test Wilcoxon's test Kruskal-Wallis test Analysis of variance normal probability plot Kruskal–Wallis test Kolmogorov–Smirnov test Mann–Whitney U-test |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c720i-81c4af35be024e4756719ead229af3773a46d08c9d6c7de4974598a9f9973bfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/a39fb56c283e46ab8e0e8b8797ddf716 |
| PMID | 27293244 |
| PQID | 1813897755 |
| PQPubID | 226514 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a39fb56c283e46ab8e0e8b8797ddf716 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4885176 proquest_miscellaneous_1796683815 proquest_journals_1813897755 gale_infotracmisc_A452743323 gale_infotracgeneralonefile_A452743323 gale_infotracacademiconefile_A452743323 pubmed_primary_27293244 crossref_primary_10_4103_0019_5154_182416 crossref_citationtrail_10_4103_0019_5154_182416 wolterskluwer_medknow_10_4103_0019-5154_182416_251_Biostati |
| PublicationCentury | 2000 |
| PublicationDate | 2016-05-01 |
| PublicationDateYYYYMMDD | 2016-05-01 |
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | India |
| PublicationPlace_xml | – name: India – name: Kolkata |
| PublicationTitle | Indian journal of dermatology |
| PublicationTitleAlternate | Indian J Dermatol |
| PublicationYear | 2016 |
| Publisher | Wolters Kluwer - Medknow Publications Medknow Publications and Media Pvt. Ltd Medknow Publications & Media Pvt. Ltd Medknow Publications & Media Pvt Ltd Wolters Kluwer Medknow Publications |
| Publisher_xml | – name: Wolters Kluwer - Medknow Publications – name: Medknow Publications and Media Pvt. Ltd – name: Medknow Publications & Media Pvt. Ltd – name: Medknow Publications & Media Pvt Ltd – name: Wolters Kluwer Medknow Publications |
| SSID | ssj0043181 |
| Score | 2.5021906 |
| Snippet | Numerical data that are normally distributed can be analyzed with parametric tests, that is, tests which are based on the parameters that define a normal... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref wolterskluwer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 251 |
| SubjectTerms | Analysis Analysis of variance Biometry Conflicts of interest Dermatology Economic models Friedman's test IJD Independent sample Kolmogorov–Smirnov test Kruskal–Wallis test Mann–Whitney U-test Medical statistics Module on Biostatistics and Research Methodology for the Dermatologist - Module Editor: Saumya Panda Normal distribution normal probability plot Population t-test Tukey's test Values Wilcoxon's test |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIFSp4k1ZKChICMQh3SS2Y7scUFuouLDiANLerNhxlhXbpGy67d_vTOwNG0C9cLUnUTz-PI94HoS8NhxrhAsTY15ozIzCM-dMjHUJDQUb2ORl12xCTCZyOlVfww-3NoRVrmViJ6jLxuI_8jFoItCtQnD-4exXjF2j8HY1tNC4SW5h22zEuZj2DhfoRuk75qUqBr3N_DUlSxM67sf2wcBm2O18Qy111fv_ltEbSurPAMqdywYvt9ufXWz7hoY6ufe_a7tP7gbbNDr0YHpAbrj6IbnzJdy-PyIfj-YNJiD52s4Rgte10WlTrhYuogfRse9pWM-iLlekPYgmK38htIguYAKztNrH5PvJp2_Hn-PQhSG2IkvmsUwtKyrKjQN17pjguUgV4C_LFAwLQQuWl4m0qsytKB0DB4UrWahKKUFNVdAnZKtuaveURBaEiQMPhSkpmLROcSkVV45LJ8siYSMyXm-CtqFEOXbKWGhwVXDbMAJPadw27bdtRN71T5z58hzX0B7hvvZ0WFi7G2iWMx3OqS6oqgzPLVhdjuWFkS5x0kihRFlWAl_yFlGh8fjDp9kiZDHAArGQlj5kHPx8SjM6Im8GlDNfRvxfhHsDQjjfdji9Bo0O8qXVvxEzIq_6aXwSY-Zq16yARoArK8EiA5pdj9d-7Rn4VGBKA8fFAMkD5gxn6vmPrvo4SHyeCmDE-wHm9alP3xywP95gvwZLWq9x-uz6RT0n22CY5j6wdI9snS9X7gW5bS8A4cuX3SG_Aqp5VEU priority: 102 providerName: ProQuest |
| Title | Biostatistics series module 3: Comparing groups: Numerical variables |
| URI | http://www.e-ijd.org/article.asp?issn=0019-5154;year=2016;volume=61;issue=3;spage=251;epage=260;aulast=Hazra;type=0 https://www.ncbi.nlm.nih.gov/pubmed/27293244 https://www.proquest.com/docview/1813897755 https://www.proquest.com/docview/1796683815 https://pubmed.ncbi.nlm.nih.gov/PMC4885176 https://doaj.org/article/a39fb56c283e46ab8e0e8b8797ddf716 |
| Volume | 61 |
| WOSCitedRecordID | wos000387599000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1998-3611 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0043181 issn: 0019-5154 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1998-3611 dateEnd: 20230930 omitProxy: false ssIdentifier: ssj0043181 issn: 0019-5154 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1998-3611 dateEnd: 20230930 omitProxy: false ssIdentifier: ssj0043181 issn: 0019-5154 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1998-3611 dateEnd: 20230930 omitProxy: false ssIdentifier: ssj0043181 issn: 0019-5154 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1998-3611 dateEnd: 20230930 omitProxy: false ssIdentifier: ssj0043181 issn: 0019-5154 databaseCode: M2O dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96iggifls9lwqi-FC3bZImOZ9uzzv0YddFFNan0KTpubjXytU9_31nmm5pVfTFlz4kE2gmk_kgM78h5JnhiBEuTIR1oREzCu-cMxHiEhoKPrDJirbZhFgs5GqlloNWX5gT5uGBPeOmOVWl4ZkFM-hYlhvpYieNFEoURQnOPmrfWKhdMOV1MFhF6XvlJSoCi838AyVLYjrtx16Ba82wz_nAILW4_b9r54F5-jV18saPGp-1m69tVvvANp3cIjc7pzI89Ju5TS656g65Nu-eze-SN7N1jZVDHpQ5RKlzTXhWF9uNC-lBeOSbEVanYVvk0RyEi61_ydmEFzCB5VXNPfLp5Pjj0duoa58QWZHG60gmluUl5caBHXZM8EwkCgQnTRUMC0FzlhWxtKrIrCgcg8iCK5mrUilBTZnT-2Svqiv3kIQWtICD0IIpKZi0TnEpFVeOSyeLPGYBme54qG2HLY4tLjYaYgzkOqbOKY1c157rAXnZr_jmcTX-QjvDY-npEBG7HQA50Z2c6H_JSUBe4KFqvLfwazbvyg9gg4iApQ8ZhwCd0pQG5PmI8tTjf_-JcH9ECBfTjqd38qM7xdDAjvBlWAjOA_K0n8aVmOxWuXoLNAJiUAmuFNA88OLW7z2FYAh8YOC4GAniiDnjmWr9pYUNB1XNEwGMeD0SWX3m6y5H7I8G7NfgAuudnD76H2fxmFwHvzPzeaP7ZO_7-dY9IVftBdyD8wm5LFai_coJuTI7Xiw_TNrbDd95-h7Glu_my88_AcKpTNQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhwAJcb8UBgQJhngIbRM7tocQ2oVp1daqD0MaTyZ23FLRJaOhm_hT_EbOiZPQANrbHni1T6L65Du3-lwIeaEZ9gjn2se6UJ9qiTJntY99CXUIPrCOkmLYBB8OxdGRHK2Qn1UtDKZVVjqxUNRJZvA_8g5YIrCtnDP2_uSbj1Oj8Ha1GqHhYLFvf5xByJa_6-_A930ZBLsfDrf3_HKqgG940J36omdoPA6ZtmCeLOUs4j0J_AwCCcuchzGNkq4wMokMTywFh5tJEcuxlDzU4ziE914iqxTB3iKro_5g9KnS_WCNhZvR15M-eArUXYzSXjfs1GtvwKWnOF99yRAW8wL-tgpLZvHPlM3rZxlep-dfi2z6JZu4e_N_4-YtcqP0vr1NJy63yYpN75ArgzK_4C7Z2ZpmWGLluld7KJ42946zZDGzXrjhbbupjenEK6ph8g1vuHBXXjPvFDawDi2_Rz5eyBnuk1aapfYh8QyoSwsxGJWCU2GsZEJIJi0TViRxl7ZJp_roypRN2HEWyExBMIYwwRxDqRAmysGkTV7XT5y4BiTn0G4hjmo6bB1eLGTziSo1kYpDOdYsMuBXWhrFWtiuFVpwyZNkzPElrxCFChUc_DQTl3UacEBsFaY2KQs4dr0L22S9QTlxjdL_RbjWIAQNZprbFUhVqUFz9RuhbfK83sYnMSswtdkCaDgE6wJ8TqB54OSjPnsAUSMEC8Bx3pCcBnOaO-n0S9FfHWwa63FgxNuGjKljV6DaYL-_xH4FsYKqcPro_EM9I1f3DgcH6qA_3H9MroEbHrk02jXS-j5f2CfksjkFtM-flirGI58vWg5_AdtqsjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biostatistics+series+module+3%3A+Comparing+groups%3A+Numerical+variables&rft.jtitle=Indian+journal+of+dermatology&rft.au=Hazra%2C+Avijit&rft.au=Gogtay%2C+Nithya&rft.date=2016-05-01&rft.pub=Medknow+Publications+and+Media+Pvt.+Ltd&rft.issn=0019-5154&rft.volume=61&rft.issue=3&rft.spage=251&rft_id=info:doi/10.4103%2F0019-5154.182416&rft.externalDocID=A452743323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-5154&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-5154&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-5154&client=summon |