Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) Jg. 505; H. 7483; S. 427 - 431
Hauptverfasser: Nguyen, Chi, Haushalter, Robert W., Lee, D. John, Markwick, Phineus R. L., Bruegger, Joel, Caldara-Festin, Grace, Finzel, Kara, Jackson, David R., Ishikawa, Fumihiro, O’Dowd, Bing, McCammon, J. Andrew, Opella, Stanley J., Tsai, Shiou-Chuan, Burkart, Michael D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 16.01.2014
Nature Publishing Group
Schlagworte:
ISSN:0028-0836, 1476-4687, 1476-4687
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this complex. Acyl carrier protein structures revealed During fatty acid and polyketide biosynthesis the growing polymer chain is stabilized by acyl carrier proteins (ACPs), but the transient nature of the process makes it difficult to visualize the molecular mechanisms involved. Two papers published in this issue of Nature use strategies that circumvent this problem. Ali Masoudi et al . solve the X-ray crystal structures of an ACP from Escherichia coli bound to LpxD, an acyltransferase in the lipid A biosynthetic pathway, in three different states: an intact acyl-ACP, a hydrolysed-acyl-ACP, and a holo-ACP form. Alignment of these structures makes it possible to visualize the conformational changes that take place in the ACP during catalysis. Chi Nguyen et al . use a crosslinking probe to tether an ACP to an active site histidine of one of its catalytic enzymes, the dehydratase FabA from E. coli . They obtain a high-resolution X-ray crystal structure of the stabilized ACP–FabA complex and use NMR spectroscopy to probe the dynamics of ACP–FabA interactions. Their experiments support a 'switchblade' model. This crosslink-probe approach can be applied to other carrier protein partners in metabolic and signalling pathways. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis 1 . Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain 2 . ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway 3 , 4 , 5 . The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.
AbstractList Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. [PUBLICATION ABSTRACT]
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious disease.
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis (1). Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain (2). ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway (3-5). The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.
A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this complex. Acyl carrier protein structures revealed During fatty acid and polyketide biosynthesis the growing polymer chain is stabilized by acyl carrier proteins (ACPs), but the transient nature of the process makes it difficult to visualize the molecular mechanisms involved. Two papers published in this issue of Nature use strategies that circumvent this problem. Ali Masoudi et al . solve the X-ray crystal structures of an ACP from Escherichia coli bound to LpxD, an acyltransferase in the lipid A biosynthetic pathway, in three different states: an intact acyl-ACP, a hydrolysed-acyl-ACP, and a holo-ACP form. Alignment of these structures makes it possible to visualize the conformational changes that take place in the ACP during catalysis. Chi Nguyen et al . use a crosslinking probe to tether an ACP to an active site histidine of one of its catalytic enzymes, the dehydratase FabA from E. coli . They obtain a high-resolution X-ray crystal structure of the stabilized ACP–FabA complex and use NMR spectroscopy to probe the dynamics of ACP–FabA interactions. Their experiments support a 'switchblade' model. This crosslink-probe approach can be applied to other carrier protein partners in metabolic and signalling pathways. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis 1 . Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain 2 . ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway 3 , 4 , 5 . The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.
Audience Academic
Author Tsai, Shiou-Chuan
Ishikawa, Fumihiro
Lee, D. John
Burkart, Michael D.
Markwick, Phineus R. L.
McCammon, J. Andrew
Opella, Stanley J.
Finzel, Kara
Jackson, David R.
Bruegger, Joel
O’Dowd, Bing
Haushalter, Robert W.
Caldara-Festin, Grace
Nguyen, Chi
AuthorAffiliation 3 San Diego Supercomputer Center
1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
2 Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, CA 92697
4 Howard Hughes Medical Institute, La Jolla, CA 92093
AuthorAffiliation_xml – name: 4 Howard Hughes Medical Institute, La Jolla, CA 92093
– name: 1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
– name: 3 San Diego Supercomputer Center
– name: 2 Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, CA 92697
Author_xml – sequence: 1
  givenname: Chi
  surname: Nguyen
  fullname: Nguyen, Chi
  organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California
– sequence: 2
  givenname: Robert W.
  surname: Haushalter
  fullname: Haushalter, Robert W.
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
– sequence: 3
  givenname: D. John
  surname: Lee
  fullname: Lee, D. John
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
– sequence: 4
  givenname: Phineus R. L.
  surname: Markwick
  fullname: Markwick, Phineus R. L.
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA, San Diego Supercomputer Center, Howard Hughes Medical Institute
– sequence: 5
  givenname: Joel
  surname: Bruegger
  fullname: Bruegger, Joel
  organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California
– sequence: 6
  givenname: Grace
  surname: Caldara-Festin
  fullname: Caldara-Festin, Grace
  organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California
– sequence: 7
  givenname: Kara
  surname: Finzel
  fullname: Finzel, Kara
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
– sequence: 8
  givenname: David R.
  surname: Jackson
  fullname: Jackson, David R.
  organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California
– sequence: 9
  givenname: Fumihiro
  surname: Ishikawa
  fullname: Ishikawa, Fumihiro
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
– sequence: 10
  givenname: Bing
  surname: O’Dowd
  fullname: O’Dowd, Bing
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
– sequence: 11
  givenname: J. Andrew
  surname: McCammon
  fullname: McCammon, J. Andrew
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA, Howard Hughes Medical Institute
– sequence: 12
  givenname: Stanley J.
  surname: Opella
  fullname: Opella, Stanley J.
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
– sequence: 13
  givenname: Shiou-Chuan
  surname: Tsai
  fullname: Tsai, Shiou-Chuan
  email: sctsai@uci.edu
  organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California
– sequence: 14
  givenname: Michael D.
  surname: Burkart
  fullname: Burkart, Michael D.
  email: mburkart@ucsd.edu
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24362570$$D View this record in MEDLINE/PubMed
BookMark eNp10tuL1DAUB-AiK-7s6pPvUtwXRbsmbS7tizCMt4VFQUd8DGl62s3SSbpJKva_N8PsZUYqLZQ03_k15ZyT5MhYA0nyHKNzjIrynZFhdIDzEqNHyQITzjLCSn6ULBDKywyVBTtOTry_RghRzMmT5DgnBcspR4vkw9rJYdCmS8MVpM1k5EarVKqpT5V0ToNLB2cDaJPGu5UhTHFXN2mtrZ9MLPLaP00et7L38Oz2eZr8_PRxvfqSXX77fLFaXmaKYxIyaDClABgoYg1AVUlal3VD24LUJS9wzXJoSI3buKIlBcZUW0sGUkWDCS1Ok_e73GGsN9AoMMHJXgxOb6SbhJVaHO4YfSU6-1sQUnCOtgGvbgOcvRnBB7HRXkHfSwN29AKTCnHKOWGRnv1Dr-3oTPy9rSqqKkeselCd7EFo09r4XbUNFcuCliWpKsKjymZUBwbiIWMzWx1fH_iXM14N-kbso_MZFK8GYgtnU18fFEQT4E_o5Oi9uPjx_dC--b9drn-tvh7qF_t9uW_I3ZhFgHdAOeu9g1YoHWTQdtsm3QuMxHaUxd4oPxzhvuYudl6_3WkflenA7bVrhv8FdZoB0w
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_fm_2024_104655
crossref_primary_10_1128_mbio_03997_24
crossref_primary_10_1016_j_bbrc_2022_11_023
crossref_primary_10_1186_s13068_016_0430_4
crossref_primary_10_1016_j_bbamcr_2019_118540
crossref_primary_10_1016_j_bbrc_2015_01_119
crossref_primary_10_1002_anie_202313109
crossref_primary_10_1073_pnas_1503832112
crossref_primary_10_1016_j_bbapap_2025_141082
crossref_primary_10_1021_jacs_5c05635
crossref_primary_10_1016_j_chembiol_2015_09_009
crossref_primary_10_1042_BCJ20190797
crossref_primary_10_3390_ijms21072600
crossref_primary_10_3390_metabo10100400
crossref_primary_10_1002_cbic_201402095
crossref_primary_10_1002_cbic_201600410
crossref_primary_10_1074_jbc_RA118_004561
crossref_primary_10_1007_s13238_015_0181_1
crossref_primary_10_1073_pnas_1607210113
crossref_primary_10_1021_jacs_5b07772
crossref_primary_10_1371_journal_ppat_1010615
crossref_primary_10_3390_plants13070950
crossref_primary_10_1002_cbic_202200200
crossref_primary_10_1016_j_chembiol_2016_10_007
crossref_primary_10_1038_s41467_025_62168_0
crossref_primary_10_15252_embj_2021109800
crossref_primary_10_1002_anie_201605401
crossref_primary_10_1016_j_chembiol_2014_10_005
crossref_primary_10_1002_anie_201903815
crossref_primary_10_1073_pnas_2009805117
crossref_primary_10_1002_cbic_201700361
crossref_primary_10_1073_pnas_1520042113
crossref_primary_10_1002_ange_202004105
crossref_primary_10_1039_C6CC07793E
crossref_primary_10_1111_febs_16405
crossref_primary_10_1002_ps_70199
crossref_primary_10_1038_nature13423
crossref_primary_10_1016_j_ijbiomac_2019_01_094
crossref_primary_10_1016_j_jbc_2021_100328
crossref_primary_10_1073_pnas_1818686116
crossref_primary_10_1093_plphys_kiae118
crossref_primary_10_1016_j_chembiol_2018_12_001
crossref_primary_10_1042_BCJ20160041
crossref_primary_10_1016_j_cell_2023_10_009
crossref_primary_10_1002_ange_202315850
crossref_primary_10_1038_s41598_019_49261_3
crossref_primary_10_1074_jbc_M115_702597
crossref_primary_10_1007_s00284_025_04332_9
crossref_primary_10_1002_cbic_201600275
crossref_primary_10_1002_psc_2943
crossref_primary_10_1111_cbdd_13851
crossref_primary_10_1016_j_algal_2021_102420
crossref_primary_10_1002_cbic_201800809
crossref_primary_10_1038_s41929_019_0353_0
crossref_primary_10_1002_anie_201408576
crossref_primary_10_1021_jacs_5b04525
crossref_primary_10_1038_s41467_023_41889_0
crossref_primary_10_1002_ange_201903815
crossref_primary_10_3390_molecules23092213
crossref_primary_10_1007_s10295_015_1704_8
crossref_primary_10_1038_nsmb_3436
crossref_primary_10_1016_j_ymben_2017_11_003
crossref_primary_10_1111_1541_4337_70224
crossref_primary_10_1002_aic_16355
crossref_primary_10_1038_s41589_020_0530_0
crossref_primary_10_1021_jacs_5b04520
crossref_primary_10_1038_nature13409
crossref_primary_10_1016_j_biochi_2023_09_007
crossref_primary_10_1039_D1SC03478B
crossref_primary_10_1016_j_jbc_2025_110749
crossref_primary_10_1038_s41467_024_52797_2
crossref_primary_10_1002_cbic_201700301
crossref_primary_10_1016_j_scitotenv_2023_169217
crossref_primary_10_1021_jacs_0c05133
crossref_primary_10_1002_bit_27921
crossref_primary_10_1016_j_molcel_2020_04_014
crossref_primary_10_1016_j_chroma_2016_07_017
crossref_primary_10_3390_ijms22073317
crossref_primary_10_1021_acscatal_5c05457
crossref_primary_10_1038_cr_2016_136
crossref_primary_10_3389_fmolb_2021_746523
crossref_primary_10_1038_s41589_018_0026_3
crossref_primary_10_3390_ph16030425
crossref_primary_10_1021_jacs_0c10840
crossref_primary_10_1016_j_ymben_2019_04_009
crossref_primary_10_1039_C4NP00098F
crossref_primary_10_1002_1873_3468_13954
crossref_primary_10_1107_S2059798322004612
crossref_primary_10_1002_ange_201806865
crossref_primary_10_1039_C7CC07079A
crossref_primary_10_1038_s41586_025_08587_x
crossref_primary_10_1002_cbic_201402578
crossref_primary_10_1021_jacs_5b13456
crossref_primary_10_1038_s42003_020_0997_y
crossref_primary_10_1016_j_lwt_2025_118353
crossref_primary_10_1146_annurev_biochem_080923_043654
crossref_primary_10_1002_cbic_202000747
crossref_primary_10_1038_s41467_020_15455_x
crossref_primary_10_1038_s41589_019_0301_y
crossref_primary_10_1016_j_micpath_2017_09_055
crossref_primary_10_1038_s41594_024_01464_7
crossref_primary_10_1002_1873_3468_15103
crossref_primary_10_1038_s41467_021_27107_9
crossref_primary_10_1038_s42003_021_01838_3
crossref_primary_10_1039_C4AN01314J
crossref_primary_10_1002_anie_202412195
crossref_primary_10_1002_1873_3468_13339
crossref_primary_10_1074_jbc_M117_792549
crossref_primary_10_3389_fpls_2015_00306
crossref_primary_10_1038_s41467_019_10184_2
crossref_primary_10_1038_s41467_021_27148_0
crossref_primary_10_1007_s10295_019_02189_z
crossref_primary_10_1042_BJ20140239
crossref_primary_10_1371_journal_pone_0162851
crossref_primary_10_1002_pro_4964
crossref_primary_10_1038_s41467_025_63024_x
crossref_primary_10_1016_j_bbagen_2025_130763
crossref_primary_10_1002_anie_202315850
crossref_primary_10_1021_jacs_8b04162
crossref_primary_10_1002_ange_202312476
crossref_primary_10_1146_annurev_biochem_063011_164509
crossref_primary_10_1002_pmic_201700001
crossref_primary_10_1002_ange_201408576
crossref_primary_10_1074_jbc_M115_648402
crossref_primary_10_1002_ange_201605401
crossref_primary_10_1016_j_bbapap_2018_12_001
crossref_primary_10_3390_biology11040483
crossref_primary_10_1038_srep24291
crossref_primary_10_1016_j_jbc_2023_104602
crossref_primary_10_1016_j_bbrc_2018_09_079
crossref_primary_10_1038_nature13505
crossref_primary_10_1002_ange_202412195
crossref_primary_10_1016_j_jmb_2017_03_026
crossref_primary_10_1021_ja508661x
crossref_primary_10_1002_anie_202312476
crossref_primary_10_1007_s00432_024_05857_5
crossref_primary_10_1002_cbic_202400466
crossref_primary_10_1021_jacs_3c10181
crossref_primary_10_1073_pnas_2025597118
crossref_primary_10_1016_j_chembiol_2016_08_014
crossref_primary_10_1073_pnas_1506386112
crossref_primary_10_1016_j_jmb_2015_10_027
crossref_primary_10_1002_anie_201806865
crossref_primary_10_1074_jbc_M116_766220
crossref_primary_10_1016_j_tet_2016_01_062
crossref_primary_10_1186_s40543_024_00447_z
crossref_primary_10_1016_j_jprot_2015_03_008
crossref_primary_10_1039_C5NP00092K
crossref_primary_10_1002_ange_202313109
crossref_primary_10_1038_s42003_021_02963_9
crossref_primary_10_1038_nrmicro3508
crossref_primary_10_1039_D4SC05499G
crossref_primary_10_1073_pnas_1707645114
crossref_primary_10_1002_anie_202004105
crossref_primary_10_1021_ja5064857
crossref_primary_10_1074_jbc_M115_674408
crossref_primary_10_1128_AEM_02868_17
crossref_primary_10_1038_s41598_018_32379_1
crossref_primary_10_1007_s11248_015_9919_z
crossref_primary_10_1016_j_ijfoodmicro_2016_09_016
crossref_primary_10_1016_j_jbc_2021_101394
crossref_primary_10_1002_1873_3468_13593
crossref_primary_10_1002_cbic_201800439
crossref_primary_10_3762_bjoc_13_119
crossref_primary_10_1016_j_bbagen_2021_129964
Cites_doi 10.1110/ps.073011407
10.1039/c1cp22100k
10.1016/j.molcel.2006.06.030
10.1039/c2np20062g
10.1016/S0969-2126(96)00030-5
10.1016/0076-6879(81)71043-7
10.1042/BJ20100462
10.1073/pnas.95.23.13585
10.1021/ja907476w
10.1107/S0907444901020091
10.1016/S0969-2126(00)00178-7
10.1038/nature07162
10.1021/ja2082334
10.1021/bi702334h
10.1074/jbc.272.29.17903
10.1126/science.1138249
10.1073/pnas.1110221108
10.1073/pnas.1207028109
10.1039/b805115c
10.1016/j.jmb.2012.11.017
10.1073/pnas.0805983105
10.1016/j.jmb.2006.09.049
10.1038/351759a0
10.1107/S0907444904015422
10.1016/j.str.2010.08.015
10.1038/4176
10.1021/bi047856r
10.1128/MMBR.57.3.522-542.1993
10.1016/S0021-9258(17)36289-0
10.1016/S0021-9258(19)63793-2
ContentType Journal Article
Copyright Springer Nature Limited 2013
COPYRIGHT 2014 Nature Publishing Group
Copyright Nature Publishing Group Jan 16, 2014
Copyright_xml – notice: Springer Nature Limited 2013
– notice: COPYRIGHT 2014 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 16, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature12810
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 431
ExternalDocumentID PMC4437705
3202515111
A358849947
24362570
10_1038_nature12810
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM095970
– fundername: NIGMS NIH HHS
  grantid: R01 GM100305
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: GM095970
– fundername: NIGMS NIH HHS
  grantid: R01 GM066978
– fundername: NIGMS NIH HHS
  grantid: GM100305
– fundername: NIBIB NIH HHS
  grantid: P41 EB002031
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADGHP
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
ESTFP
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c714t-ed155ee1e506dee99a5b8bd5f34b8731b62ed4b1fb87585e66cfba6eacd5f1453
IEDL.DBID M2M
ISICitedReferencesCount 216
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329621800048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 01:51:48 EST 2025
Sun Nov 09 13:33:10 EST 2025
Thu Dec 04 04:13:29 EST 2025
Sat Nov 29 13:01:26 EST 2025
Mon Nov 24 15:53:25 EST 2025
Tue Jun 10 15:33:40 EDT 2025
Sun Nov 23 09:06:04 EST 2025
Wed Nov 26 10:24:53 EST 2025
Mon Nov 24 14:49:33 EST 2025
Mon Jul 21 05:52:57 EDT 2025
Tue Nov 18 21:56:02 EST 2025
Sat Nov 29 04:12:57 EST 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7483
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c714t-ed155ee1e506dee99a5b8bd5f34b8731b62ed4b1fb87585e66cfba6eacd5f1453
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4437705
PMID 24362570
PQID 1493992069
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437705
proquest_miscellaneous_1490757746
proquest_journals_1493992069
gale_infotracmisc_A358849947
gale_infotracgeneralonefile_A358849947
gale_infotraccpiq_358849947
gale_infotracacademiconefile_A358849947
gale_incontextgauss_ISR_A358849947
gale_incontextgauss_ATWCN_A358849947
pubmed_primary_24362570
crossref_citationtrail_10_1038_nature12810
crossref_primary_10_1038_nature12810
springer_journals_10_1038_nature12810
PublicationCentury 2000
PublicationDate 2014-01-16
PublicationDateYYYYMMDD 2014-01-16
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Anderson, Bulawa, Raetz (CR8) 1985; 260
Zhuang (CR18) 2008; 47
Cryle, Schlichting (CR22) 2008; 105
Alekseyev, Liu, Cane, Puglisi, Khosla (CR30) 2007; 16
Issartel, Koronakis, Hughes (CR6) 1991; 351
Salzmann, Pervushin, Wider, Senn, Wuthrich (CR25) 1998; 95
Chan, Vogel (CR1) 2010; 430
Magnuson, Jackowski, Rock, Cronan (CR4) 1993; 57
Joshi, Witkowski, Berman, Zhang, Smith (CR5) 2005; 44
Ishikawa, Haushalter, Burkart (CR15) 2012; 134
Endo, Helmkamp, Bloch (CR16) 1970; 245
Parris (CR21) 2000; 8
Agarwal, Lin, Lukk, Nair, Cronan (CR7) 2012; 109
Crosby, Crump (CR3) 2012; 29
Markwick, McCammon (CR27) 2011; 13
Guy (CR20) 2011; 108
Rock, Cronan (CR2) 1981; 71
Babu (CR23) 2010; 18
Markwick (CR28) 2009; 131
Lu (CR10) 2006; 23
Roujeinikova (CR13) 2007; 365
Leesong, Henderson, Gillig, Schwab, Smith (CR17) 1996; 4
Meier, Burkart (CR14) 2009; 38
Jordan, Cronan (CR9) 1997; 272
Leibundgut, Jenni, Frick, Ban (CR12) 2007; 316
Frueh (CR29) 2008; 454
Roujeinikova (CR11) 2002; 58
Moynié (CR19) 2013; 425
Qiu, Janson (CR24) 2004; 60
Hansen, Mueller, Pardi (CR26) 1998; 5
DP Frueh (BFnature12810_CR29) 2008; 454
AK Joshi (BFnature12810_CR5) 2005; 44
M Salzmann (BFnature12810_CR25) 1998; 95
Z Zhuang (BFnature12810_CR18) 2008; 47
VY Alekseyev (BFnature12810_CR30) 2007; 16
PR Markwick (BFnature12810_CR28) 2009; 131
F Ishikawa (BFnature12810_CR15) 2012; 134
DI Chan (BFnature12810_CR1) 2010; 430
X Qiu (BFnature12810_CR24) 2004; 60
PRL Markwick (BFnature12810_CR27) 2011; 13
M Leibundgut (BFnature12810_CR12) 2007; 316
SW Jordan (BFnature12810_CR9) 1997; 272
YJ Lu (BFnature12810_CR10) 2006; 23
A Roujeinikova (BFnature12810_CR11) 2002; 58
JP Issartel (BFnature12810_CR6) 1991; 351
CO Rock (BFnature12810_CR2) 1981; 71
J Crosby (BFnature12810_CR3) 2012; 29
A Roujeinikova (BFnature12810_CR13) 2007; 365
K Endo (BFnature12810_CR16) 1970; 245
JE Guy (BFnature12810_CR20) 2011; 108
M Leesong (BFnature12810_CR17) 1996; 4
K Magnuson (BFnature12810_CR4) 1993; 57
MJ Cryle (BFnature12810_CR22) 2008; 105
MR Hansen (BFnature12810_CR26) 1998; 5
JL Meier (BFnature12810_CR14) 2009; 38
L Moynié (BFnature12810_CR19) 2013; 425
V Agarwal (BFnature12810_CR7) 2012; 109
M Babu (BFnature12810_CR23) 2010; 18
MS Anderson (BFnature12810_CR8) 1985; 260
KD Parris (BFnature12810_CR21) 2000; 8
9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74
21070944 - Structure. 2010 Nov 10;18(11):1450-62
18838690 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15696-701
19919148 - J Am Chem Soc. 2009 Nov 25;131(46):16968-75
21930947 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16594-9
17431182 - Science. 2007 Apr 13;316(5822):288-90
2062368 - Nature. 1991 Jun 27;351(6329):759-61
18704088 - Nature. 2008 Aug 14;454(7206):903-6
15333924 - Acta Crystallogr D Biol Crystallogr. 2004 Sep;60(Pt 9):1545-54
22188524 - J Am Chem Soc. 2012 Jan 18;134(2):769-72
22015376 - Phys Chem Chem Phys. 2011 Dec 7;13(45):20053-65
17059829 - J Mol Biol. 2007 Jan 5;365(1):135-45
8246839 - Microbiol Rev. 1993 Sep;57(3):522-42
8805534 - Structure. 1996 Mar 15;4(3):253-64
5498414 - J Biol Chem. 1970 Sep 10;245(17):4293-6
11807267 - Acta Crystallogr D Biol Crystallogr. 2002 Feb;58(Pt 2):330-2
23045647 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17406-11
16949372 - Mol Cell. 2006 Sep 1;23(5):765-72
19551180 - Chem Soc Rev. 2009 Jul;38(7):2012-45
17893358 - Protein Sci. 2007 Oct;16(10):2093-107
18247525 - Biochemistry. 2008 Mar 4;47(9):2789-96
22930263 - Nat Prod Rep. 2012 Oct;29(10):1111-37
10997907 - Structure. 2000 Aug 15;8(8):883-95
3905795 - J Biol Chem. 1985 Dec 15;260(29):15536-41
20662770 - Biochem J. 2010 Aug 15;430(1):1-19
7024729 - Methods Enzymol. 1981;71 Pt C:341-51
23174186 - J Mol Biol. 2013 Jan 23;425(2):365-77
15751987 - Biochemistry. 2005 Mar 15;44(10):4100-7
9811843 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13585-90
9218413 - J Biol Chem. 1997 Jul 18;272(29):17903-6
References_xml – volume: 16
  start-page: 2093
  year: 2007
  end-page: 2107
  ident: CR30
  article-title: Solution structure and proposed domain–domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase
  publication-title: Protein Sci.
  doi: 10.1110/ps.073011407
– volume: 13
  start-page: 20053
  year: 2011
  end-page: 20065
  ident: CR27
  article-title: Studying functional dynamics in bio-molecules using accelerated molecular dynamics
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22100k
– volume: 23
  start-page: 765
  year: 2006
  end-page: 772
  ident: CR10
  article-title: Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.030
– volume: 245
  start-page: 4293
  year: 1970
  end-page: 4296
  ident: CR16
  article-title: Mode of inhibition of β-hydroxydecanoyl thioester dehydrase by 3-decynoyl- -acetylcysteamine
  publication-title: J. Biol. Chem.
– volume: 29
  start-page: 1111
  year: 2012
  end-page: 1137
  ident: CR3
  article-title: The structural role of the carrier protein—active controller or passive carrier
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c2np20062g
– volume: 4
  start-page: 253
  year: 1996
  end-page: 264
  ident: CR17
  article-title: Structure of a dehydratase–isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00030-5
– volume: 71
  start-page: 341
  year: 1981
  end-page: 351
  ident: CR2
  article-title: Acyl carrier protein from
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(81)71043-7
– volume: 430
  start-page: 1
  year: 2010
  end-page: 19
  ident: CR1
  article-title: Current understanding of fatty acid biosynthesis and the acyl carrier protein
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100462
– volume: 95
  start-page: 13585
  year: 1998
  end-page: 13590
  ident: CR25
  article-title: TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.23.13585
– volume: 131
  start-page: 16968
  year: 2009
  end-page: 16975
  ident: CR28
  article-title: Toward a unified representation of protein structural dynamics in solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907476w
– volume: 260
  start-page: 15536
  year: 1985
  end-page: 15541
  ident: CR8
  article-title: The biosynthesis of gram-negative endotoxin. Formation of lipid A precursors from UDP-GlcNAc in extracts of
  publication-title: J. Biol. Chem.
– volume: 58
  start-page: 330
  year: 2002
  end-page: 332
  ident: CR11
  article-title: Crystallization and preliminary X-ray crystallographic studies on acyl-(acyl carrier protein) from
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444901020091
– volume: 8
  start-page: 883
  year: 2000
  end-page: 895
  ident: CR21
  article-title: Crystal structures of substrate binding to holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00178-7
– volume: 454
  start-page: 903
  year: 2008
  end-page: 906
  ident: CR29
  article-title: Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase
  publication-title: Nature
  doi: 10.1038/nature07162
– volume: 134
  start-page: 769
  year: 2012
  end-page: 772
  ident: CR15
  article-title: Dehydratase-specific probes for fatty acid and polyketide synthases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2082334
– volume: 47
  start-page: 2789
  year: 2008
  end-page: 2796
  ident: CR18
  article-title: Divergence of function in the hot dog fold enzyme superfamily: the bacterial thioesterase YciA
  publication-title: Biochemistry
  doi: 10.1021/bi702334h
– volume: 272
  start-page: 17903
  year: 1997
  end-page: 17906
  ident: CR9
  article-title: A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in and mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.29.17903
– volume: 316
  start-page: 288
  year: 2007
  end-page: 290
  ident: CR12
  article-title: Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase
  publication-title: Science
  doi: 10.1126/science.1138249
– volume: 108
  start-page: 16594
  year: 2011
  end-page: 16599
  ident: CR20
  article-title: Remote control of regioselectivity in acyl-acyl carrier protein-desaturases
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1110221108
– volume: 109
  start-page: 17406
  year: 2012
  end-page: 17411
  ident: CR7
  article-title: Structure of the enzyme-acyl carrier protein (ACP) substrate gatekeeper complex required for biotin synthesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1207028109
– volume: 38
  start-page: 2012
  year: 2009
  end-page: 2045
  ident: CR14
  article-title: The chemical biology of modular biosynthetic enzymes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b805115c
– volume: 425
  start-page: 365
  year: 2013
  end-page: 377
  ident: CR19
  article-title: Structural insights into the mechanism and inhibition of the β-hydroxydecanoyl-acyl carrier protein dehydratase from
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.11.017
– volume: 105
  start-page: 15696
  year: 2008
  end-page: 15701
  ident: CR22
  article-title: Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0805983105
– volume: 57
  start-page: 522
  year: 1993
  end-page: 542
  ident: CR4
  article-title: Regulation of fatty acid biosynthesis in
  publication-title: Microbiol. Rev.
– volume: 365
  start-page: 135
  year: 2007
  end-page: 145
  ident: CR13
  article-title: Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.09.049
– volume: 351
  start-page: 759
  year: 1991
  end-page: 761
  ident: CR6
  article-title: Activation of prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation
  publication-title: Nature
  doi: 10.1038/351759a0
– volume: 60
  start-page: 1545
  year: 2004
  end-page: 1554
  ident: CR24
  article-title: Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904015422
– volume: 18
  start-page: 1450
  year: 2010
  end-page: 1462
  ident: CR23
  article-title: Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for YchM in fatty acid metabolism
  publication-title: Structure
  doi: 10.1016/j.str.2010.08.015
– volume: 5
  start-page: 1065
  year: 1998
  end-page: 1074
  ident: CR26
  article-title: Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions
  publication-title: Nature Struct. Biol.
  doi: 10.1038/4176
– volume: 44
  start-page: 4100
  year: 2005
  end-page: 4107
  ident: CR5
  article-title: Effect of modification of the length and flexibility of the acyl carrier protein–thioesterase interdomain linker on functionality of the animal fatty acid synthase
  publication-title: Biochemistry
  doi: 10.1021/bi047856r
– volume: 16
  start-page: 2093
  year: 2007
  ident: BFnature12810_CR30
  publication-title: Protein Sci.
  doi: 10.1110/ps.073011407
– volume: 58
  start-page: 330
  year: 2002
  ident: BFnature12810_CR11
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444901020091
– volume: 57
  start-page: 522
  year: 1993
  ident: BFnature12810_CR4
  publication-title: Microbiol. Rev.
  doi: 10.1128/MMBR.57.3.522-542.1993
– volume: 8
  start-page: 883
  year: 2000
  ident: BFnature12810_CR21
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00178-7
– volume: 365
  start-page: 135
  year: 2007
  ident: BFnature12810_CR13
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.09.049
– volume: 105
  start-page: 15696
  year: 2008
  ident: BFnature12810_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0805983105
– volume: 5
  start-page: 1065
  year: 1998
  ident: BFnature12810_CR26
  publication-title: Nature Struct. Biol.
  doi: 10.1038/4176
– volume: 95
  start-page: 13585
  year: 1998
  ident: BFnature12810_CR25
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.23.13585
– volume: 29
  start-page: 1111
  year: 2012
  ident: BFnature12810_CR3
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c2np20062g
– volume: 134
  start-page: 769
  year: 2012
  ident: BFnature12810_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2082334
– volume: 108
  start-page: 16594
  year: 2011
  ident: BFnature12810_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1110221108
– volume: 430
  start-page: 1
  year: 2010
  ident: BFnature12810_CR1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100462
– volume: 109
  start-page: 17406
  year: 2012
  ident: BFnature12810_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1207028109
– volume: 351
  start-page: 759
  year: 1991
  ident: BFnature12810_CR6
  publication-title: Nature
  doi: 10.1038/351759a0
– volume: 260
  start-page: 15536
  year: 1985
  ident: BFnature12810_CR8
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)36289-0
– volume: 38
  start-page: 2012
  year: 2009
  ident: BFnature12810_CR14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b805115c
– volume: 13
  start-page: 20053
  year: 2011
  ident: BFnature12810_CR27
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22100k
– volume: 60
  start-page: 1545
  year: 2004
  ident: BFnature12810_CR24
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444904015422
– volume: 23
  start-page: 765
  year: 2006
  ident: BFnature12810_CR10
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.06.030
– volume: 316
  start-page: 288
  year: 2007
  ident: BFnature12810_CR12
  publication-title: Science
  doi: 10.1126/science.1138249
– volume: 71
  start-page: 341
  year: 1981
  ident: BFnature12810_CR2
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(81)71043-7
– volume: 245
  start-page: 4293
  year: 1970
  ident: BFnature12810_CR16
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)63793-2
– volume: 18
  start-page: 1450
  year: 2010
  ident: BFnature12810_CR23
  publication-title: Structure
  doi: 10.1016/j.str.2010.08.015
– volume: 425
  start-page: 365
  year: 2013
  ident: BFnature12810_CR19
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.11.017
– volume: 272
  start-page: 17903
  year: 1997
  ident: BFnature12810_CR9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.29.17903
– volume: 4
  start-page: 253
  year: 1996
  ident: BFnature12810_CR17
  publication-title: Structure
  doi: 10.1016/S0969-2126(96)00030-5
– volume: 454
  start-page: 903
  year: 2008
  ident: BFnature12810_CR29
  publication-title: Nature
  doi: 10.1038/nature07162
– volume: 131
  start-page: 16968
  year: 2009
  ident: BFnature12810_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907476w
– volume: 44
  start-page: 4100
  year: 2005
  ident: BFnature12810_CR5
  publication-title: Biochemistry
  doi: 10.1021/bi047856r
– volume: 47
  start-page: 2789
  year: 2008
  ident: BFnature12810_CR18
  publication-title: Biochemistry
  doi: 10.1021/bi702334h
– reference: 8805534 - Structure. 1996 Mar 15;4(3):253-64
– reference: 17893358 - Protein Sci. 2007 Oct;16(10):2093-107
– reference: 19919148 - J Am Chem Soc. 2009 Nov 25;131(46):16968-75
– reference: 16949372 - Mol Cell. 2006 Sep 1;23(5):765-72
– reference: 9218413 - J Biol Chem. 1997 Jul 18;272(29):17903-6
– reference: 7024729 - Methods Enzymol. 1981;71 Pt C:341-51
– reference: 17059829 - J Mol Biol. 2007 Jan 5;365(1):135-45
– reference: 19551180 - Chem Soc Rev. 2009 Jul;38(7):2012-45
– reference: 11807267 - Acta Crystallogr D Biol Crystallogr. 2002 Feb;58(Pt 2):330-2
– reference: 9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74
– reference: 9811843 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13585-90
– reference: 15333924 - Acta Crystallogr D Biol Crystallogr. 2004 Sep;60(Pt 9):1545-54
– reference: 23045647 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17406-11
– reference: 3905795 - J Biol Chem. 1985 Dec 15;260(29):15536-41
– reference: 2062368 - Nature. 1991 Jun 27;351(6329):759-61
– reference: 17431182 - Science. 2007 Apr 13;316(5822):288-90
– reference: 23174186 - J Mol Biol. 2013 Jan 23;425(2):365-77
– reference: 18704088 - Nature. 2008 Aug 14;454(7206):903-6
– reference: 22015376 - Phys Chem Chem Phys. 2011 Dec 7;13(45):20053-65
– reference: 21070944 - Structure. 2010 Nov 10;18(11):1450-62
– reference: 8246839 - Microbiol Rev. 1993 Sep;57(3):522-42
– reference: 20662770 - Biochem J. 2010 Aug 15;430(1):1-19
– reference: 22930263 - Nat Prod Rep. 2012 Oct;29(10):1111-37
– reference: 5498414 - J Biol Chem. 1970 Sep 10;245(17):4293-6
– reference: 15751987 - Biochemistry. 2005 Mar 15;44(10):4100-7
– reference: 21930947 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16594-9
– reference: 22188524 - J Am Chem Soc. 2012 Jan 18;134(2):769-72
– reference: 18838690 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15696-701
– reference: 10997907 - Structure. 2000 Aug 15;8(8):883-95
– reference: 18247525 - Biochemistry. 2008 Mar 4;47(9):2789-96
SSID ssj0005174
Score 2.5439625
Snippet A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid...
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS...
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis (1). Because FAS...
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 427
SubjectTerms 631/535/1266
631/92/287/1183
631/92/60
Acyl Carrier Protein - chemistry
Acyl Carrier Protein - metabolism
Binding Sites
Biosynthesis
Catalytic Domain
Cross-Linking Reagents - chemistry
Crosslinked polymers
Crystal structure
Crystallography, X-Ray
Dehydration
E coli
Enzymes
Escherichia coli - chemistry
Fatty Acid Synthase, Type II - chemistry
Fatty Acid Synthase, Type II - metabolism
Fatty acids
Fatty Acids - biosynthesis
Histidine - metabolism
Humanities and Social Sciences
Hydro-Lyases - chemistry
Hydro-Lyases - metabolism
Infectious diseases
letter
Magnetic Resonance Spectroscopy
Metabolites
Models, Molecular
Molecular Dynamics Simulation
multidisciplinary
NMR
Nuclear magnetic resonance
Physiological aspects
Protein Binding
Protein Interaction Maps
Proteins
Science
Synthesis
Title Trapping the dynamic acyl carrier protein in fatty acid biosynthesis
URI https://link.springer.com/article/10.1038/nature12810
https://www.ncbi.nlm.nih.gov/pubmed/24362570
https://www.proquest.com/docview/1493992069
https://www.proquest.com/docview/1490757746
https://pubmed.ncbi.nlm.nih.gov/PMC4437705
Volume 505
WOSCitedRecordID wos000329621800048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELfYBhJfgI1X2KgCGk8pLA87dj6hrmwCTS3VHlDxJYodu0Sa0q5pkfrfc3bcrimDL0jVSdFdIid3Pv8aX36H0H4eE8pzhT0pg8jDeiomJKQA5HjOFIcw8ZVpNkF7PTYYJH37wq2yZZWLnGgSdT4S-h35ASB5zaHqx8nH8ZWnu0bp3VXbQmMDbQFQZnpidsPudYnHGguz_T7Pj9hBTZupt5H8xoq0npdXFqb1osm1nVOzIB3f_99beYDuWSjqtuvY2Ua3ZLmD7piSUFHtoG077Sv3reWmfvcQfYK1TTM6DF0Ajm5et7N3MzG_dEU20d3vXMP8UJQu_FQ2nc5BW-QuL0bVvISTqqJ6hC6Oj847nz3biMETNMBTT-aAOsCZkvhxLmWSZIQznhMVYc5oFPA4lDnmgYIj-Psh41gonsWQ08EmwCR6jDbLUSmfIlfKMJSEZIBrMBZMJYwkPlw2VkowHioHvV84IxWWpVw3y7hMzW55xNIVzzlof2k8rsk5_mKmvZpquotS19MMs1lVpe3z751e2o70p7pJgqmDXt5k9uXstGH0xhqpEYxLZPYrBrg7TaTVsNxtWIpxcZWuaF83tMPakTddZq9hCLNfNNWLGEtt9qnS6wBz0IulWp-pK-pKOZoZG0CLAP5jBz2pI3v5DEMMsIZQeHC0EfNLA81J3tSUxU_DTY5xRKlPHPRqMTtWhvWna579e_i76C4AVF0m5QXxHtqcTmbyObotfk2LatJCG_T0m5YDaiQDyTpBC20dHvX6p3B0cvgBZNc_aZnEYORXI_ta0lqegeyTH78BZRNqJQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB5VBQQvQMtlWmBBLZdk1cf6ekAoaqkatQREg-ib8a53g6XipHECyp_iNzLjI41D4a0PSHmJ5rO19s613tlvALZS3wtEqrmplO2anEwx8pwAEzmRhlqgmli6bDYR9HrhyUn0cQV-NWdhqKyy8Ymlo06Hkr6R72AmTxyqlh-9HZ2Z1DWKdlebFhqVWhyq2U9cshVvuns4v9uOs_-uv3tg1l0FTBnYfGKqFEMojkx5lp8qFUWJJ0KRetrlIgxcW_iOSrmwNf7DXFr5vtQi8dFBIcbm1CUCXf4VTishKhV0PpyXlCyxPtfnAS033KloOmnbympFwOU4sBAIl4s0l3ZqywC4f-t_e3W34WadarNOZRtrsKLydbhWlrzKYh3WardWsJc19_arO7CHsZsYKwYME2OWzvLkeyZZImenTCZj6u7HSmaLLGf408lkMkNpljKRDYtZjhcVWXEXPl_Kc92D1XyYqwfAlHIc5XkJ5m2cy1BHoRdZeFtfaxkKRxvwupn8WNYs7NQM5DQuqwHcMF7QFAO25uBRRT7yFxhpUUx0HjnVCw2SaVHEnf6X3V7ccekochTxwIBnF8G6x59aoBc1SA9xXDKpT2ng0xFRWAu50ULKUXYWL0ift6SDaiIvus1mC4jeTbbFjU7HtXct4nOFNuDpXExXUsVgrobTEoPZMC5ufAPuV5Y0f4cOx7TNC_DFBS0bmwOIc70tybNvJfc6524QWJ4B2401Lgzrz6l5-O_hP4HrB_33R_FRt3e4ATcwGaeSMNP2N2F1Mp6qR3BV_phkxfhx6WgYfL1s8_wNo9e-hQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qyiIuQMtmWmBALZtkxcuMlwNCUUNEVBRF0IqKi_GMZ4KlYqdxAspf49fxxksah8KtB6RcovfZGnveNp433wPYSzzm80RRU0rbNak2xZA5PiZyPAkURzWxVNlswh8Og5OTcLQBv5qzMLqssvGJpaNOcqG_kXcwk9ccqpYXdlRdFjHq9d9OzkzdQUrvtDbtNCoVOZSLn7h8K94MejjX-47Tf3d08N6sOwyYwrfpzJQJhlMcpWSWl0gZhjHjAU-YcikPfNfmniMTym2F_zCvlp4nFI89dFaIsanuGIHu_4qPa0xdTjhiX87LS9YYoOuzgZYbdCrKTr2FZbWi4XpMWAmK6wWba7u2ZTDs3_qfX-NtuFmn4KRb2cwWbMhsG66VpbCi2Iat2t0V5GXNyf3qDvQwpmsmizHBhJkkiyz-ngoSi8UpEfFUd_0jJeNFmhH8qXg2W6A0TQhP82KR4UVFWtyF40t5rnuwmeWZfABESseRjMWYz1EqAhUGLLTwtp5SIuCOMuB1owiRqNnZdZOQ06isEnCDaEVrDNhbgicVKclfYFqjIk3zkemZHsfzooi6R58PhlHX1UeUw5D6Bjy7CDb49LEFelGDVI7jEnF9egOfThOItZA7LaSYpGfRivR5SzquJvKi2-y2gOj1RFvc6HdUe90iOlduA54uxfpKXUmYyXxeYjBLxkWPZ8D9yqqW79ChmM4xH1-c37K3JUBzsbclWfqt5GSn1PV9ixmw31jmyrD-nJqH_x7-E7iOVhl9GAwPd-AG5ui6Usy0vV3YnE3n8hFcFT9maTF9XPocAl8v2zp_A-GKx3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trapping+the+dynamic+acyl+carrier+protein+in+fatty+acid+biosynthesis&rft.jtitle=Nature+%28London%29&rft.au=Nguyen%2C+Chi&rft.au=Haushalter%2C+Robert+W.&rft.au=Lee%2C+D.+John&rft.au=Markwick%2C+Phineus+R.+L.&rft.date=2014-01-16&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=505&rft.issue=7483&rft.spage=427&rft.epage=431&rft_id=info:doi/10.1038%2Fnature12810&rft.externalDocID=10_1038_nature12810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon