Trapping the dynamic acyl carrier protein in fatty acid biosynthesis
A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this com...
Gespeichert in:
| Veröffentlicht in: | Nature (London) Jg. 505; H. 7483; S. 427 - 431 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
16.01.2014
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this complex.
Acyl carrier protein structures revealed
During fatty acid and polyketide biosynthesis the growing polymer chain is stabilized by acyl carrier proteins (ACPs), but the transient nature of the process makes it difficult to visualize the molecular mechanisms involved. Two papers published in this issue of
Nature
use strategies that circumvent this problem. Ali Masoudi
et al
. solve the X-ray crystal structures of an ACP from
Escherichia coli
bound to LpxD, an acyltransferase in the lipid A biosynthetic pathway, in three different states: an intact acyl-ACP, a hydrolysed-acyl-ACP, and a holo-ACP form. Alignment of these structures makes it possible to visualize the conformational changes that take place in the ACP during catalysis. Chi Nguyen
et al
. use a crosslinking probe to tether an ACP to an active site histidine of one of its catalytic enzymes, the dehydratase FabA from
E. coli
. They obtain a high-resolution X-ray crystal structure of the stabilized ACP–FabA complex and use NMR spectroscopy to probe the dynamics of ACP–FabA interactions. Their experiments support a 'switchblade' model. This crosslink-probe approach can be applied to other carrier protein partners in metabolic and signalling pathways.
Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis
1
. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain
2
. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway
3
,
4
,
5
. The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the
Escherichia coli
ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. |
|---|---|
| AbstractList | Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. [PUBLICATION ABSTRACT] Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS enzymes operate upon ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain.2 The transient nature of ACP-enzyme interactions imposes a major obstacle to gaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to properly study protein-protein interactions. In this work, we describe the application of a mechanism-based probe that allows site-selective covalent crosslinking of AcpP to FabA, the E. coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase. We report the 1.9 Å crystal structure of the crosslinked AcpP=FabA complex as a homo-dimer, in which AcpP exhibits two different conformations likely representing snapshots of ACP in action: the 4′-phosphopantetheine (PPant) group of AcpP first binds an arginine-rich groove of FabA, followed by an AcpP helical conformational change that locks the AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution NMR techniques, including chemical shift perturbations and RDC measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. Combined with molecular dynamics simulations, we show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies will prove general for fatty acid, polyketide and non-ribosomal biosyntheses. Here the foundation is laid for defining the dynamic action of carrier protein activity in primary and secondary metabolism, providing insight into pathways that can play major roles in the treatment of cancer, obesity and infectious disease. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis (1). Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain (2). ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway (3-5). The transient nature of ACP-enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein-protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP-FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4'-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid biosynthesis; subsequent X-ray crystallography, NMR spectroscopy and molecular dynamics simulations techniques enable the detailed study of this complex. Acyl carrier protein structures revealed During fatty acid and polyketide biosynthesis the growing polymer chain is stabilized by acyl carrier proteins (ACPs), but the transient nature of the process makes it difficult to visualize the molecular mechanisms involved. Two papers published in this issue of Nature use strategies that circumvent this problem. Ali Masoudi et al . solve the X-ray crystal structures of an ACP from Escherichia coli bound to LpxD, an acyltransferase in the lipid A biosynthetic pathway, in three different states: an intact acyl-ACP, a hydrolysed-acyl-ACP, and a holo-ACP form. Alignment of these structures makes it possible to visualize the conformational changes that take place in the ACP during catalysis. Chi Nguyen et al . use a crosslinking probe to tether an ACP to an active site histidine of one of its catalytic enzymes, the dehydratase FabA from E. coli . They obtain a high-resolution X-ray crystal structure of the stabilized ACP–FabA complex and use NMR spectroscopy to probe the dynamics of ACP–FabA interactions. Their experiments support a 'switchblade' model. This crosslink-probe approach can be applied to other carrier protein partners in metabolic and signalling pathways. Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis 1 . Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain 2 . ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway 3 , 4 , 5 . The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease. |
| Audience | Academic |
| Author | Tsai, Shiou-Chuan Ishikawa, Fumihiro Lee, D. John Burkart, Michael D. Markwick, Phineus R. L. McCammon, J. Andrew Opella, Stanley J. Finzel, Kara Jackson, David R. Bruegger, Joel O’Dowd, Bing Haushalter, Robert W. Caldara-Festin, Grace Nguyen, Chi |
| AuthorAffiliation | 3 San Diego Supercomputer Center 1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 2 Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, CA 92697 4 Howard Hughes Medical Institute, La Jolla, CA 92093 |
| AuthorAffiliation_xml | – name: 4 Howard Hughes Medical Institute, La Jolla, CA 92093 – name: 1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 – name: 3 San Diego Supercomputer Center – name: 2 Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, CA 92697 |
| Author_xml | – sequence: 1 givenname: Chi surname: Nguyen fullname: Nguyen, Chi organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California – sequence: 2 givenname: Robert W. surname: Haushalter fullname: Haushalter, Robert W. organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA – sequence: 3 givenname: D. John surname: Lee fullname: Lee, D. John organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA – sequence: 4 givenname: Phineus R. L. surname: Markwick fullname: Markwick, Phineus R. L. organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA, San Diego Supercomputer Center, Howard Hughes Medical Institute – sequence: 5 givenname: Joel surname: Bruegger fullname: Bruegger, Joel organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California – sequence: 6 givenname: Grace surname: Caldara-Festin fullname: Caldara-Festin, Grace organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California – sequence: 7 givenname: Kara surname: Finzel fullname: Finzel, Kara organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA – sequence: 8 givenname: David R. surname: Jackson fullname: Jackson, David R. organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California – sequence: 9 givenname: Fumihiro surname: Ishikawa fullname: Ishikawa, Fumihiro organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA – sequence: 10 givenname: Bing surname: O’Dowd fullname: O’Dowd, Bing organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA – sequence: 11 givenname: J. Andrew surname: McCammon fullname: McCammon, J. Andrew organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA, Howard Hughes Medical Institute – sequence: 12 givenname: Stanley J. surname: Opella fullname: Opella, Stanley J. organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA – sequence: 13 givenname: Shiou-Chuan surname: Tsai fullname: Tsai, Shiou-Chuan email: sctsai@uci.edu organization: Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California – sequence: 14 givenname: Michael D. surname: Burkart fullname: Burkart, Michael D. email: mburkart@ucsd.edu organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24362570$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10tuL1DAUB-AiK-7s6pPvUtwXRbsmbS7tizCMt4VFQUd8DGl62s3SSbpJKva_N8PsZUYqLZQ03_k15ZyT5MhYA0nyHKNzjIrynZFhdIDzEqNHyQITzjLCSn6ULBDKywyVBTtOTry_RghRzMmT5DgnBcspR4vkw9rJYdCmS8MVpM1k5EarVKqpT5V0ToNLB2cDaJPGu5UhTHFXN2mtrZ9MLPLaP00et7L38Oz2eZr8_PRxvfqSXX77fLFaXmaKYxIyaDClABgoYg1AVUlal3VD24LUJS9wzXJoSI3buKIlBcZUW0sGUkWDCS1Ok_e73GGsN9AoMMHJXgxOb6SbhJVaHO4YfSU6-1sQUnCOtgGvbgOcvRnBB7HRXkHfSwN29AKTCnHKOWGRnv1Dr-3oTPy9rSqqKkeselCd7EFo09r4XbUNFcuCliWpKsKjymZUBwbiIWMzWx1fH_iXM14N-kbso_MZFK8GYgtnU18fFEQT4E_o5Oi9uPjx_dC--b9drn-tvh7qF_t9uW_I3ZhFgHdAOeu9g1YoHWTQdtsm3QuMxHaUxd4oPxzhvuYudl6_3WkflenA7bVrhv8FdZoB0w |
| CODEN | NATUAS |
| CitedBy_id | crossref_primary_10_1016_j_fm_2024_104655 crossref_primary_10_1128_mbio_03997_24 crossref_primary_10_1016_j_bbrc_2022_11_023 crossref_primary_10_1186_s13068_016_0430_4 crossref_primary_10_1016_j_bbamcr_2019_118540 crossref_primary_10_1016_j_bbrc_2015_01_119 crossref_primary_10_1002_anie_202313109 crossref_primary_10_1073_pnas_1503832112 crossref_primary_10_1016_j_bbapap_2025_141082 crossref_primary_10_1021_jacs_5c05635 crossref_primary_10_1016_j_chembiol_2015_09_009 crossref_primary_10_1042_BCJ20190797 crossref_primary_10_3390_ijms21072600 crossref_primary_10_3390_metabo10100400 crossref_primary_10_1002_cbic_201402095 crossref_primary_10_1002_cbic_201600410 crossref_primary_10_1074_jbc_RA118_004561 crossref_primary_10_1007_s13238_015_0181_1 crossref_primary_10_1073_pnas_1607210113 crossref_primary_10_1021_jacs_5b07772 crossref_primary_10_1371_journal_ppat_1010615 crossref_primary_10_3390_plants13070950 crossref_primary_10_1002_cbic_202200200 crossref_primary_10_1016_j_chembiol_2016_10_007 crossref_primary_10_1038_s41467_025_62168_0 crossref_primary_10_15252_embj_2021109800 crossref_primary_10_1002_anie_201605401 crossref_primary_10_1016_j_chembiol_2014_10_005 crossref_primary_10_1002_anie_201903815 crossref_primary_10_1073_pnas_2009805117 crossref_primary_10_1002_cbic_201700361 crossref_primary_10_1073_pnas_1520042113 crossref_primary_10_1002_ange_202004105 crossref_primary_10_1039_C6CC07793E crossref_primary_10_1111_febs_16405 crossref_primary_10_1002_ps_70199 crossref_primary_10_1038_nature13423 crossref_primary_10_1016_j_ijbiomac_2019_01_094 crossref_primary_10_1016_j_jbc_2021_100328 crossref_primary_10_1073_pnas_1818686116 crossref_primary_10_1093_plphys_kiae118 crossref_primary_10_1016_j_chembiol_2018_12_001 crossref_primary_10_1042_BCJ20160041 crossref_primary_10_1016_j_cell_2023_10_009 crossref_primary_10_1002_ange_202315850 crossref_primary_10_1038_s41598_019_49261_3 crossref_primary_10_1074_jbc_M115_702597 crossref_primary_10_1007_s00284_025_04332_9 crossref_primary_10_1002_cbic_201600275 crossref_primary_10_1002_psc_2943 crossref_primary_10_1111_cbdd_13851 crossref_primary_10_1016_j_algal_2021_102420 crossref_primary_10_1002_cbic_201800809 crossref_primary_10_1038_s41929_019_0353_0 crossref_primary_10_1002_anie_201408576 crossref_primary_10_1021_jacs_5b04525 crossref_primary_10_1038_s41467_023_41889_0 crossref_primary_10_1002_ange_201903815 crossref_primary_10_3390_molecules23092213 crossref_primary_10_1007_s10295_015_1704_8 crossref_primary_10_1038_nsmb_3436 crossref_primary_10_1016_j_ymben_2017_11_003 crossref_primary_10_1111_1541_4337_70224 crossref_primary_10_1002_aic_16355 crossref_primary_10_1038_s41589_020_0530_0 crossref_primary_10_1021_jacs_5b04520 crossref_primary_10_1038_nature13409 crossref_primary_10_1016_j_biochi_2023_09_007 crossref_primary_10_1039_D1SC03478B crossref_primary_10_1016_j_jbc_2025_110749 crossref_primary_10_1038_s41467_024_52797_2 crossref_primary_10_1002_cbic_201700301 crossref_primary_10_1016_j_scitotenv_2023_169217 crossref_primary_10_1021_jacs_0c05133 crossref_primary_10_1002_bit_27921 crossref_primary_10_1016_j_molcel_2020_04_014 crossref_primary_10_1016_j_chroma_2016_07_017 crossref_primary_10_3390_ijms22073317 crossref_primary_10_1021_acscatal_5c05457 crossref_primary_10_1038_cr_2016_136 crossref_primary_10_3389_fmolb_2021_746523 crossref_primary_10_1038_s41589_018_0026_3 crossref_primary_10_3390_ph16030425 crossref_primary_10_1021_jacs_0c10840 crossref_primary_10_1016_j_ymben_2019_04_009 crossref_primary_10_1039_C4NP00098F crossref_primary_10_1002_1873_3468_13954 crossref_primary_10_1107_S2059798322004612 crossref_primary_10_1002_ange_201806865 crossref_primary_10_1039_C7CC07079A crossref_primary_10_1038_s41586_025_08587_x crossref_primary_10_1002_cbic_201402578 crossref_primary_10_1021_jacs_5b13456 crossref_primary_10_1038_s42003_020_0997_y crossref_primary_10_1016_j_lwt_2025_118353 crossref_primary_10_1146_annurev_biochem_080923_043654 crossref_primary_10_1002_cbic_202000747 crossref_primary_10_1038_s41467_020_15455_x crossref_primary_10_1038_s41589_019_0301_y crossref_primary_10_1016_j_micpath_2017_09_055 crossref_primary_10_1038_s41594_024_01464_7 crossref_primary_10_1002_1873_3468_15103 crossref_primary_10_1038_s41467_021_27107_9 crossref_primary_10_1038_s42003_021_01838_3 crossref_primary_10_1039_C4AN01314J crossref_primary_10_1002_anie_202412195 crossref_primary_10_1002_1873_3468_13339 crossref_primary_10_1074_jbc_M117_792549 crossref_primary_10_3389_fpls_2015_00306 crossref_primary_10_1038_s41467_019_10184_2 crossref_primary_10_1038_s41467_021_27148_0 crossref_primary_10_1007_s10295_019_02189_z crossref_primary_10_1042_BJ20140239 crossref_primary_10_1371_journal_pone_0162851 crossref_primary_10_1002_pro_4964 crossref_primary_10_1038_s41467_025_63024_x crossref_primary_10_1016_j_bbagen_2025_130763 crossref_primary_10_1002_anie_202315850 crossref_primary_10_1021_jacs_8b04162 crossref_primary_10_1002_ange_202312476 crossref_primary_10_1146_annurev_biochem_063011_164509 crossref_primary_10_1002_pmic_201700001 crossref_primary_10_1002_ange_201408576 crossref_primary_10_1074_jbc_M115_648402 crossref_primary_10_1002_ange_201605401 crossref_primary_10_1016_j_bbapap_2018_12_001 crossref_primary_10_3390_biology11040483 crossref_primary_10_1038_srep24291 crossref_primary_10_1016_j_jbc_2023_104602 crossref_primary_10_1016_j_bbrc_2018_09_079 crossref_primary_10_1038_nature13505 crossref_primary_10_1002_ange_202412195 crossref_primary_10_1016_j_jmb_2017_03_026 crossref_primary_10_1021_ja508661x crossref_primary_10_1002_anie_202312476 crossref_primary_10_1007_s00432_024_05857_5 crossref_primary_10_1002_cbic_202400466 crossref_primary_10_1021_jacs_3c10181 crossref_primary_10_1073_pnas_2025597118 crossref_primary_10_1016_j_chembiol_2016_08_014 crossref_primary_10_1073_pnas_1506386112 crossref_primary_10_1016_j_jmb_2015_10_027 crossref_primary_10_1002_anie_201806865 crossref_primary_10_1074_jbc_M116_766220 crossref_primary_10_1016_j_tet_2016_01_062 crossref_primary_10_1186_s40543_024_00447_z crossref_primary_10_1016_j_jprot_2015_03_008 crossref_primary_10_1039_C5NP00092K crossref_primary_10_1002_ange_202313109 crossref_primary_10_1038_s42003_021_02963_9 crossref_primary_10_1038_nrmicro3508 crossref_primary_10_1039_D4SC05499G crossref_primary_10_1073_pnas_1707645114 crossref_primary_10_1002_anie_202004105 crossref_primary_10_1021_ja5064857 crossref_primary_10_1074_jbc_M115_674408 crossref_primary_10_1128_AEM_02868_17 crossref_primary_10_1038_s41598_018_32379_1 crossref_primary_10_1007_s11248_015_9919_z crossref_primary_10_1016_j_ijfoodmicro_2016_09_016 crossref_primary_10_1016_j_jbc_2021_101394 crossref_primary_10_1002_1873_3468_13593 crossref_primary_10_1002_cbic_201800439 crossref_primary_10_3762_bjoc_13_119 crossref_primary_10_1016_j_bbagen_2021_129964 |
| Cites_doi | 10.1110/ps.073011407 10.1039/c1cp22100k 10.1016/j.molcel.2006.06.030 10.1039/c2np20062g 10.1016/S0969-2126(96)00030-5 10.1016/0076-6879(81)71043-7 10.1042/BJ20100462 10.1073/pnas.95.23.13585 10.1021/ja907476w 10.1107/S0907444901020091 10.1016/S0969-2126(00)00178-7 10.1038/nature07162 10.1021/ja2082334 10.1021/bi702334h 10.1074/jbc.272.29.17903 10.1126/science.1138249 10.1073/pnas.1110221108 10.1073/pnas.1207028109 10.1039/b805115c 10.1016/j.jmb.2012.11.017 10.1073/pnas.0805983105 10.1016/j.jmb.2006.09.049 10.1038/351759a0 10.1107/S0907444904015422 10.1016/j.str.2010.08.015 10.1038/4176 10.1021/bi047856r 10.1128/MMBR.57.3.522-542.1993 10.1016/S0021-9258(17)36289-0 10.1016/S0021-9258(19)63793-2 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2013 COPYRIGHT 2014 Nature Publishing Group Copyright Nature Publishing Group Jan 16, 2014 |
| Copyright_xml | – notice: Springer Nature Limited 2013 – notice: COPYRIGHT 2014 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 16, 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
| DOI | 10.1038/nature12810 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) ProQuest Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 431 |
| ExternalDocumentID | PMC4437705 3202515111 A358849947 24362570 10_1038_nature12810 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM095970 – fundername: NIGMS NIH HHS grantid: R01 GM100305 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: GM095970 – fundername: NIGMS NIH HHS grantid: R01 GM066978 – fundername: NIGMS NIH HHS grantid: GM100305 – fundername: NIBIB NIH HHS grantid: P41 EB002031 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AETEA AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADGHP CGR CUY CVF ECM EIF NPM ACMFV AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K ESTFP FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c714t-ed155ee1e506dee99a5b8bd5f34b8731b62ed4b1fb87585e66cfba6eacd5f1453 |
| IEDL.DBID | M2M |
| ISICitedReferencesCount | 216 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329621800048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 01:51:48 EST 2025 Sun Nov 09 13:33:10 EST 2025 Thu Dec 04 04:13:29 EST 2025 Sat Nov 29 13:01:26 EST 2025 Mon Nov 24 15:53:25 EST 2025 Tue Jun 10 15:33:40 EDT 2025 Sun Nov 23 09:06:04 EST 2025 Wed Nov 26 10:24:53 EST 2025 Mon Nov 24 14:49:33 EST 2025 Mon Jul 21 05:52:57 EDT 2025 Tue Nov 18 21:56:02 EST 2025 Sat Nov 29 04:12:57 EST 2025 Fri Feb 21 02:37:43 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7483 |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c714t-ed155ee1e506dee99a5b8bd5f34b8731b62ed4b1fb87585e66cfba6eacd5f1453 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4437705 |
| PMID | 24362570 |
| PQID | 1493992069 |
| PQPubID | 40569 |
| PageCount | 5 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4437705 proquest_miscellaneous_1490757746 proquest_journals_1493992069 gale_infotracmisc_A358849947 gale_infotracgeneralonefile_A358849947 gale_infotraccpiq_358849947 gale_infotracacademiconefile_A358849947 gale_incontextgauss_ISR_A358849947 gale_incontextgauss_ATWCN_A358849947 pubmed_primary_24362570 crossref_citationtrail_10_1038_nature12810 crossref_primary_10_1038_nature12810 springer_journals_10_1038_nature12810 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-01-16 |
| PublicationDateYYYYMMDD | 2014-01-16 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2014 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Anderson, Bulawa, Raetz (CR8) 1985; 260 Zhuang (CR18) 2008; 47 Cryle, Schlichting (CR22) 2008; 105 Alekseyev, Liu, Cane, Puglisi, Khosla (CR30) 2007; 16 Issartel, Koronakis, Hughes (CR6) 1991; 351 Salzmann, Pervushin, Wider, Senn, Wuthrich (CR25) 1998; 95 Chan, Vogel (CR1) 2010; 430 Magnuson, Jackowski, Rock, Cronan (CR4) 1993; 57 Joshi, Witkowski, Berman, Zhang, Smith (CR5) 2005; 44 Ishikawa, Haushalter, Burkart (CR15) 2012; 134 Endo, Helmkamp, Bloch (CR16) 1970; 245 Parris (CR21) 2000; 8 Agarwal, Lin, Lukk, Nair, Cronan (CR7) 2012; 109 Crosby, Crump (CR3) 2012; 29 Markwick, McCammon (CR27) 2011; 13 Guy (CR20) 2011; 108 Rock, Cronan (CR2) 1981; 71 Babu (CR23) 2010; 18 Markwick (CR28) 2009; 131 Lu (CR10) 2006; 23 Roujeinikova (CR13) 2007; 365 Leesong, Henderson, Gillig, Schwab, Smith (CR17) 1996; 4 Meier, Burkart (CR14) 2009; 38 Jordan, Cronan (CR9) 1997; 272 Leibundgut, Jenni, Frick, Ban (CR12) 2007; 316 Frueh (CR29) 2008; 454 Roujeinikova (CR11) 2002; 58 Moynié (CR19) 2013; 425 Qiu, Janson (CR24) 2004; 60 Hansen, Mueller, Pardi (CR26) 1998; 5 DP Frueh (BFnature12810_CR29) 2008; 454 AK Joshi (BFnature12810_CR5) 2005; 44 M Salzmann (BFnature12810_CR25) 1998; 95 Z Zhuang (BFnature12810_CR18) 2008; 47 VY Alekseyev (BFnature12810_CR30) 2007; 16 PR Markwick (BFnature12810_CR28) 2009; 131 F Ishikawa (BFnature12810_CR15) 2012; 134 DI Chan (BFnature12810_CR1) 2010; 430 X Qiu (BFnature12810_CR24) 2004; 60 PRL Markwick (BFnature12810_CR27) 2011; 13 M Leibundgut (BFnature12810_CR12) 2007; 316 SW Jordan (BFnature12810_CR9) 1997; 272 YJ Lu (BFnature12810_CR10) 2006; 23 A Roujeinikova (BFnature12810_CR11) 2002; 58 JP Issartel (BFnature12810_CR6) 1991; 351 CO Rock (BFnature12810_CR2) 1981; 71 J Crosby (BFnature12810_CR3) 2012; 29 A Roujeinikova (BFnature12810_CR13) 2007; 365 K Endo (BFnature12810_CR16) 1970; 245 JE Guy (BFnature12810_CR20) 2011; 108 M Leesong (BFnature12810_CR17) 1996; 4 K Magnuson (BFnature12810_CR4) 1993; 57 MJ Cryle (BFnature12810_CR22) 2008; 105 MR Hansen (BFnature12810_CR26) 1998; 5 JL Meier (BFnature12810_CR14) 2009; 38 L Moynié (BFnature12810_CR19) 2013; 425 V Agarwal (BFnature12810_CR7) 2012; 109 M Babu (BFnature12810_CR23) 2010; 18 MS Anderson (BFnature12810_CR8) 1985; 260 KD Parris (BFnature12810_CR21) 2000; 8 9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74 21070944 - Structure. 2010 Nov 10;18(11):1450-62 18838690 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15696-701 19919148 - J Am Chem Soc. 2009 Nov 25;131(46):16968-75 21930947 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16594-9 17431182 - Science. 2007 Apr 13;316(5822):288-90 2062368 - Nature. 1991 Jun 27;351(6329):759-61 18704088 - Nature. 2008 Aug 14;454(7206):903-6 15333924 - Acta Crystallogr D Biol Crystallogr. 2004 Sep;60(Pt 9):1545-54 22188524 - J Am Chem Soc. 2012 Jan 18;134(2):769-72 22015376 - Phys Chem Chem Phys. 2011 Dec 7;13(45):20053-65 17059829 - J Mol Biol. 2007 Jan 5;365(1):135-45 8246839 - Microbiol Rev. 1993 Sep;57(3):522-42 8805534 - Structure. 1996 Mar 15;4(3):253-64 5498414 - J Biol Chem. 1970 Sep 10;245(17):4293-6 11807267 - Acta Crystallogr D Biol Crystallogr. 2002 Feb;58(Pt 2):330-2 23045647 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17406-11 16949372 - Mol Cell. 2006 Sep 1;23(5):765-72 19551180 - Chem Soc Rev. 2009 Jul;38(7):2012-45 17893358 - Protein Sci. 2007 Oct;16(10):2093-107 18247525 - Biochemistry. 2008 Mar 4;47(9):2789-96 22930263 - Nat Prod Rep. 2012 Oct;29(10):1111-37 10997907 - Structure. 2000 Aug 15;8(8):883-95 3905795 - J Biol Chem. 1985 Dec 15;260(29):15536-41 20662770 - Biochem J. 2010 Aug 15;430(1):1-19 7024729 - Methods Enzymol. 1981;71 Pt C:341-51 23174186 - J Mol Biol. 2013 Jan 23;425(2):365-77 15751987 - Biochemistry. 2005 Mar 15;44(10):4100-7 9811843 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13585-90 9218413 - J Biol Chem. 1997 Jul 18;272(29):17903-6 |
| References_xml | – volume: 16 start-page: 2093 year: 2007 end-page: 2107 ident: CR30 article-title: Solution structure and proposed domain–domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase publication-title: Protein Sci. doi: 10.1110/ps.073011407 – volume: 13 start-page: 20053 year: 2011 end-page: 20065 ident: CR27 article-title: Studying functional dynamics in bio-molecules using accelerated molecular dynamics publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22100k – volume: 23 start-page: 765 year: 2006 end-page: 772 ident: CR10 article-title: Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.030 – volume: 245 start-page: 4293 year: 1970 end-page: 4296 ident: CR16 article-title: Mode of inhibition of β-hydroxydecanoyl thioester dehydrase by 3-decynoyl- -acetylcysteamine publication-title: J. Biol. Chem. – volume: 29 start-page: 1111 year: 2012 end-page: 1137 ident: CR3 article-title: The structural role of the carrier protein—active controller or passive carrier publication-title: Nat. Prod. Rep. doi: 10.1039/c2np20062g – volume: 4 start-page: 253 year: 1996 end-page: 264 ident: CR17 article-title: Structure of a dehydratase–isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site publication-title: Structure doi: 10.1016/S0969-2126(96)00030-5 – volume: 71 start-page: 341 year: 1981 end-page: 351 ident: CR2 article-title: Acyl carrier protein from publication-title: Methods Enzymol. doi: 10.1016/0076-6879(81)71043-7 – volume: 430 start-page: 1 year: 2010 end-page: 19 ident: CR1 article-title: Current understanding of fatty acid biosynthesis and the acyl carrier protein publication-title: Biochem. J. doi: 10.1042/BJ20100462 – volume: 95 start-page: 13585 year: 1998 end-page: 13590 ident: CR25 article-title: TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.23.13585 – volume: 131 start-page: 16968 year: 2009 end-page: 16975 ident: CR28 article-title: Toward a unified representation of protein structural dynamics in solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907476w – volume: 260 start-page: 15536 year: 1985 end-page: 15541 ident: CR8 article-title: The biosynthesis of gram-negative endotoxin. Formation of lipid A precursors from UDP-GlcNAc in extracts of publication-title: J. Biol. Chem. – volume: 58 start-page: 330 year: 2002 end-page: 332 ident: CR11 article-title: Crystallization and preliminary X-ray crystallographic studies on acyl-(acyl carrier protein) from publication-title: Acta Crystallogr. D doi: 10.1107/S0907444901020091 – volume: 8 start-page: 883 year: 2000 end-page: 895 ident: CR21 article-title: Crystal structures of substrate binding to holo-(acyl carrier protein) synthase reveal a novel trimeric arrangement of molecules resulting in three active sites publication-title: Structure doi: 10.1016/S0969-2126(00)00178-7 – volume: 454 start-page: 903 year: 2008 end-page: 906 ident: CR29 article-title: Dynamic thiolation–thioesterase structure of a non-ribosomal peptide synthetase publication-title: Nature doi: 10.1038/nature07162 – volume: 134 start-page: 769 year: 2012 end-page: 772 ident: CR15 article-title: Dehydratase-specific probes for fatty acid and polyketide synthases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2082334 – volume: 47 start-page: 2789 year: 2008 end-page: 2796 ident: CR18 article-title: Divergence of function in the hot dog fold enzyme superfamily: the bacterial thioesterase YciA publication-title: Biochemistry doi: 10.1021/bi702334h – volume: 272 start-page: 17903 year: 1997 end-page: 17906 ident: CR9 article-title: A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in and mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.29.17903 – volume: 316 start-page: 288 year: 2007 end-page: 290 ident: CR12 article-title: Structural basis for substrate delivery by acyl carrier protein in the yeast fatty acid synthase publication-title: Science doi: 10.1126/science.1138249 – volume: 108 start-page: 16594 year: 2011 end-page: 16599 ident: CR20 article-title: Remote control of regioselectivity in acyl-acyl carrier protein-desaturases publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1110221108 – volume: 109 start-page: 17406 year: 2012 end-page: 17411 ident: CR7 article-title: Structure of the enzyme-acyl carrier protein (ACP) substrate gatekeeper complex required for biotin synthesis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1207028109 – volume: 38 start-page: 2012 year: 2009 end-page: 2045 ident: CR14 article-title: The chemical biology of modular biosynthetic enzymes publication-title: Chem. Soc. Rev. doi: 10.1039/b805115c – volume: 425 start-page: 365 year: 2013 end-page: 377 ident: CR19 article-title: Structural insights into the mechanism and inhibition of the β-hydroxydecanoyl-acyl carrier protein dehydratase from publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.11.017 – volume: 105 start-page: 15696 year: 2008 end-page: 15701 ident: CR22 article-title: Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0805983105 – volume: 57 start-page: 522 year: 1993 end-page: 542 ident: CR4 article-title: Regulation of fatty acid biosynthesis in publication-title: Microbiol. Rev. – volume: 365 start-page: 135 year: 2007 end-page: 145 ident: CR13 article-title: Structural studies of fatty acyl-(acyl carrier protein) thioesters reveal a hydrophobic binding cavity that can expand to fit longer substrates publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.09.049 – volume: 351 start-page: 759 year: 1991 end-page: 761 ident: CR6 article-title: Activation of prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation publication-title: Nature doi: 10.1038/351759a0 – volume: 60 start-page: 1545 year: 2004 end-page: 1554 ident: CR24 article-title: Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904015422 – volume: 18 start-page: 1450 year: 2010 end-page: 1462 ident: CR23 article-title: Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for YchM in fatty acid metabolism publication-title: Structure doi: 10.1016/j.str.2010.08.015 – volume: 5 start-page: 1065 year: 1998 end-page: 1074 ident: CR26 article-title: Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions publication-title: Nature Struct. Biol. doi: 10.1038/4176 – volume: 44 start-page: 4100 year: 2005 end-page: 4107 ident: CR5 article-title: Effect of modification of the length and flexibility of the acyl carrier protein–thioesterase interdomain linker on functionality of the animal fatty acid synthase publication-title: Biochemistry doi: 10.1021/bi047856r – volume: 16 start-page: 2093 year: 2007 ident: BFnature12810_CR30 publication-title: Protein Sci. doi: 10.1110/ps.073011407 – volume: 58 start-page: 330 year: 2002 ident: BFnature12810_CR11 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444901020091 – volume: 57 start-page: 522 year: 1993 ident: BFnature12810_CR4 publication-title: Microbiol. Rev. doi: 10.1128/MMBR.57.3.522-542.1993 – volume: 8 start-page: 883 year: 2000 ident: BFnature12810_CR21 publication-title: Structure doi: 10.1016/S0969-2126(00)00178-7 – volume: 365 start-page: 135 year: 2007 ident: BFnature12810_CR13 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.09.049 – volume: 105 start-page: 15696 year: 2008 ident: BFnature12810_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0805983105 – volume: 5 start-page: 1065 year: 1998 ident: BFnature12810_CR26 publication-title: Nature Struct. Biol. doi: 10.1038/4176 – volume: 95 start-page: 13585 year: 1998 ident: BFnature12810_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.23.13585 – volume: 29 start-page: 1111 year: 2012 ident: BFnature12810_CR3 publication-title: Nat. Prod. Rep. doi: 10.1039/c2np20062g – volume: 134 start-page: 769 year: 2012 ident: BFnature12810_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2082334 – volume: 108 start-page: 16594 year: 2011 ident: BFnature12810_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1110221108 – volume: 430 start-page: 1 year: 2010 ident: BFnature12810_CR1 publication-title: Biochem. J. doi: 10.1042/BJ20100462 – volume: 109 start-page: 17406 year: 2012 ident: BFnature12810_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1207028109 – volume: 351 start-page: 759 year: 1991 ident: BFnature12810_CR6 publication-title: Nature doi: 10.1038/351759a0 – volume: 260 start-page: 15536 year: 1985 ident: BFnature12810_CR8 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)36289-0 – volume: 38 start-page: 2012 year: 2009 ident: BFnature12810_CR14 publication-title: Chem. Soc. Rev. doi: 10.1039/b805115c – volume: 13 start-page: 20053 year: 2011 ident: BFnature12810_CR27 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp22100k – volume: 60 start-page: 1545 year: 2004 ident: BFnature12810_CR24 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444904015422 – volume: 23 start-page: 765 year: 2006 ident: BFnature12810_CR10 publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.06.030 – volume: 316 start-page: 288 year: 2007 ident: BFnature12810_CR12 publication-title: Science doi: 10.1126/science.1138249 – volume: 71 start-page: 341 year: 1981 ident: BFnature12810_CR2 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(81)71043-7 – volume: 245 start-page: 4293 year: 1970 ident: BFnature12810_CR16 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)63793-2 – volume: 18 start-page: 1450 year: 2010 ident: BFnature12810_CR23 publication-title: Structure doi: 10.1016/j.str.2010.08.015 – volume: 425 start-page: 365 year: 2013 ident: BFnature12810_CR19 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.11.017 – volume: 272 start-page: 17903 year: 1997 ident: BFnature12810_CR9 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.29.17903 – volume: 4 start-page: 253 year: 1996 ident: BFnature12810_CR17 publication-title: Structure doi: 10.1016/S0969-2126(96)00030-5 – volume: 454 start-page: 903 year: 2008 ident: BFnature12810_CR29 publication-title: Nature doi: 10.1038/nature07162 – volume: 131 start-page: 16968 year: 2009 ident: BFnature12810_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907476w – volume: 44 start-page: 4100 year: 2005 ident: BFnature12810_CR5 publication-title: Biochemistry doi: 10.1021/bi047856r – volume: 47 start-page: 2789 year: 2008 ident: BFnature12810_CR18 publication-title: Biochemistry doi: 10.1021/bi702334h – reference: 8805534 - Structure. 1996 Mar 15;4(3):253-64 – reference: 17893358 - Protein Sci. 2007 Oct;16(10):2093-107 – reference: 19919148 - J Am Chem Soc. 2009 Nov 25;131(46):16968-75 – reference: 16949372 - Mol Cell. 2006 Sep 1;23(5):765-72 – reference: 9218413 - J Biol Chem. 1997 Jul 18;272(29):17903-6 – reference: 7024729 - Methods Enzymol. 1981;71 Pt C:341-51 – reference: 17059829 - J Mol Biol. 2007 Jan 5;365(1):135-45 – reference: 19551180 - Chem Soc Rev. 2009 Jul;38(7):2012-45 – reference: 11807267 - Acta Crystallogr D Biol Crystallogr. 2002 Feb;58(Pt 2):330-2 – reference: 9846877 - Nat Struct Biol. 1998 Dec;5(12):1065-74 – reference: 9811843 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13585-90 – reference: 15333924 - Acta Crystallogr D Biol Crystallogr. 2004 Sep;60(Pt 9):1545-54 – reference: 23045647 - Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17406-11 – reference: 3905795 - J Biol Chem. 1985 Dec 15;260(29):15536-41 – reference: 2062368 - Nature. 1991 Jun 27;351(6329):759-61 – reference: 17431182 - Science. 2007 Apr 13;316(5822):288-90 – reference: 23174186 - J Mol Biol. 2013 Jan 23;425(2):365-77 – reference: 18704088 - Nature. 2008 Aug 14;454(7206):903-6 – reference: 22015376 - Phys Chem Chem Phys. 2011 Dec 7;13(45):20053-65 – reference: 21070944 - Structure. 2010 Nov 10;18(11):1450-62 – reference: 8246839 - Microbiol Rev. 1993 Sep;57(3):522-42 – reference: 20662770 - Biochem J. 2010 Aug 15;430(1):1-19 – reference: 22930263 - Nat Prod Rep. 2012 Oct;29(10):1111-37 – reference: 5498414 - J Biol Chem. 1970 Sep 10;245(17):4293-6 – reference: 15751987 - Biochemistry. 2005 Mar 15;44(10):4100-7 – reference: 21930947 - Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16594-9 – reference: 22188524 - J Am Chem Soc. 2012 Jan 18;134(2):769-72 – reference: 18838690 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15696-701 – reference: 10997907 - Structure. 2000 Aug 15;8(8):883-95 – reference: 18247525 - Biochemistry. 2008 Mar 4;47(9):2789-96 |
| SSID | ssj0005174 |
| Score | 2.5439625 |
| Snippet | A highly specific chemical crosslinking method is used to trap a complex between an acyl carrier protein and a fatty acid dehydratase during fatty acid... Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS... Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis (1). Because FAS... Acyl carrier protein (ACP) transports the growing fatty acid chain between enzyme domains of fatty acid synthase (FAS) during biosynthesis.1 Because FAS... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 427 |
| SubjectTerms | 631/535/1266 631/92/287/1183 631/92/60 Acyl Carrier Protein - chemistry Acyl Carrier Protein - metabolism Binding Sites Biosynthesis Catalytic Domain Cross-Linking Reagents - chemistry Crosslinked polymers Crystal structure Crystallography, X-Ray Dehydration E coli Enzymes Escherichia coli - chemistry Fatty Acid Synthase, Type II - chemistry Fatty Acid Synthase, Type II - metabolism Fatty acids Fatty Acids - biosynthesis Histidine - metabolism Humanities and Social Sciences Hydro-Lyases - chemistry Hydro-Lyases - metabolism Infectious diseases letter Magnetic Resonance Spectroscopy Metabolites Models, Molecular Molecular Dynamics Simulation multidisciplinary NMR Nuclear magnetic resonance Physiological aspects Protein Binding Protein Interaction Maps Proteins Science Synthesis |
| Title | Trapping the dynamic acyl carrier protein in fatty acid biosynthesis |
| URI | https://link.springer.com/article/10.1038/nature12810 https://www.ncbi.nlm.nih.gov/pubmed/24362570 https://www.proquest.com/docview/1493992069 https://www.proquest.com/docview/1490757746 https://pubmed.ncbi.nlm.nih.gov/PMC4437705 |
| Volume | 505 |
| WOSCitedRecordID | wos000329621800048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (ProQuest) customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELfYBhJfgI1X2KgCGk8pLA87dj6hrmwCTS3VHlDxJYodu0Sa0q5pkfrfc3bcrimDL0jVSdFdIid3Pv8aX36H0H4eE8pzhT0pg8jDeiomJKQA5HjOFIcw8ZVpNkF7PTYYJH37wq2yZZWLnGgSdT4S-h35ASB5zaHqx8nH8ZWnu0bp3VXbQmMDbQFQZnpidsPudYnHGguz_T7Pj9hBTZupt5H8xoq0npdXFqb1osm1nVOzIB3f_99beYDuWSjqtuvY2Ua3ZLmD7piSUFHtoG077Sv3reWmfvcQfYK1TTM6DF0Ajm5et7N3MzG_dEU20d3vXMP8UJQu_FQ2nc5BW-QuL0bVvISTqqJ6hC6Oj847nz3biMETNMBTT-aAOsCZkvhxLmWSZIQznhMVYc5oFPA4lDnmgYIj-Psh41gonsWQ08EmwCR6jDbLUSmfIlfKMJSEZIBrMBZMJYwkPlw2VkowHioHvV84IxWWpVw3y7hMzW55xNIVzzlof2k8rsk5_mKmvZpquotS19MMs1lVpe3z751e2o70p7pJgqmDXt5k9uXstGH0xhqpEYxLZPYrBrg7TaTVsNxtWIpxcZWuaF83tMPakTddZq9hCLNfNNWLGEtt9qnS6wBz0IulWp-pK-pKOZoZG0CLAP5jBz2pI3v5DEMMsIZQeHC0EfNLA81J3tSUxU_DTY5xRKlPHPRqMTtWhvWna579e_i76C4AVF0m5QXxHtqcTmbyObotfk2LatJCG_T0m5YDaiQDyTpBC20dHvX6p3B0cvgBZNc_aZnEYORXI_ta0lqegeyTH78BZRNqJQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB5VBQQvQMtlWmBBLZdk1cf6ekAoaqkatQREg-ib8a53g6XipHECyp_iNzLjI41D4a0PSHmJ5rO19s613tlvALZS3wtEqrmplO2anEwx8pwAEzmRhlqgmli6bDYR9HrhyUn0cQV-NWdhqKyy8Ymlo06Hkr6R72AmTxyqlh-9HZ2Z1DWKdlebFhqVWhyq2U9cshVvuns4v9uOs_-uv3tg1l0FTBnYfGKqFEMojkx5lp8qFUWJJ0KRetrlIgxcW_iOSrmwNf7DXFr5vtQi8dFBIcbm1CUCXf4VTishKhV0PpyXlCyxPtfnAS033KloOmnbympFwOU4sBAIl4s0l3ZqywC4f-t_e3W34WadarNOZRtrsKLydbhWlrzKYh3WardWsJc19_arO7CHsZsYKwYME2OWzvLkeyZZImenTCZj6u7HSmaLLGf408lkMkNpljKRDYtZjhcVWXEXPl_Kc92D1XyYqwfAlHIc5XkJ5m2cy1BHoRdZeFtfaxkKRxvwupn8WNYs7NQM5DQuqwHcMF7QFAO25uBRRT7yFxhpUUx0HjnVCw2SaVHEnf6X3V7ccekochTxwIBnF8G6x59aoBc1SA9xXDKpT2ng0xFRWAu50ULKUXYWL0ift6SDaiIvus1mC4jeTbbFjU7HtXct4nOFNuDpXExXUsVgrobTEoPZMC5ufAPuV5Y0f4cOx7TNC_DFBS0bmwOIc70tybNvJfc6524QWJ4B2401Lgzrz6l5-O_hP4HrB_33R_FRt3e4ATcwGaeSMNP2N2F1Mp6qR3BV_phkxfhx6WgYfL1s8_wNo9e-hQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qyiIuQMtmWmBALZtkxcuMlwNCUUNEVBRF0IqKi_GMZ4KlYqdxAspf49fxxksah8KtB6RcovfZGnveNp433wPYSzzm80RRU0rbNak2xZA5PiZyPAkURzWxVNlswh8Og5OTcLQBv5qzMLqssvGJpaNOcqG_kXcwk9ccqpYXdlRdFjHq9d9OzkzdQUrvtDbtNCoVOZSLn7h8K94MejjX-47Tf3d08N6sOwyYwrfpzJQJhlMcpWSWl0gZhjHjAU-YcikPfNfmniMTym2F_zCvlp4nFI89dFaIsanuGIHu_4qPa0xdTjhiX87LS9YYoOuzgZYbdCrKTr2FZbWi4XpMWAmK6wWba7u2ZTDs3_qfX-NtuFmn4KRb2cwWbMhsG66VpbCi2Iat2t0V5GXNyf3qDvQwpmsmizHBhJkkiyz-ngoSi8UpEfFUd_0jJeNFmhH8qXg2W6A0TQhP82KR4UVFWtyF40t5rnuwmeWZfABESseRjMWYz1EqAhUGLLTwtp5SIuCOMuB1owiRqNnZdZOQ06isEnCDaEVrDNhbgicVKclfYFqjIk3zkemZHsfzooi6R58PhlHX1UeUw5D6Bjy7CDb49LEFelGDVI7jEnF9egOfThOItZA7LaSYpGfRivR5SzquJvKi2-y2gOj1RFvc6HdUe90iOlduA54uxfpKXUmYyXxeYjBLxkWPZ8D9yqqW79ChmM4xH1-c37K3JUBzsbclWfqt5GSn1PV9ixmw31jmyrD-nJqH_x7-E7iOVhl9GAwPd-AG5ui6Usy0vV3YnE3n8hFcFT9maTF9XPocAl8v2zp_A-GKx3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trapping+the+dynamic+acyl+carrier+protein+in+fatty+acid+biosynthesis&rft.jtitle=Nature+%28London%29&rft.au=Nguyen%2C+Chi&rft.au=Haushalter%2C+Robert+W.&rft.au=Lee%2C+D.+John&rft.au=Markwick%2C+Phineus+R.+L.&rft.date=2014-01-16&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=505&rft.issue=7483&rft.spage=427&rft.epage=431&rft_id=info:doi/10.1038%2Fnature12810&rft.externalDocID=10_1038_nature12810 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |