Regional power grid carbon emission hierarchical optimization model based on power flow calculation and BP neural network
After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to red...
Saved in:
| Published in: | R.A.I.R.O. Recherche opérationnelle |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.10.2025
|
| ISSN: | 0399-0559, 2804-7303 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to reduce the carbon emissions of the regional power grid and mitigate the impact of power flow variations. A hierarchical optimization model for the grid’s carbon emissions is developed. The upper-level model predicts the carbon emissions of the regional power grid using the BP neural network, while the lower-level model incorporates the carbon emission prediction results and power flow characteristics to formulate an optimization objective function. This function aims to minimize the average carbon emissions, reduce the disparity in regional average carbon emissions, and lower the power flow cost. Subject to predefined constraints, the improved mayfly algorithm is employed to solve the objective function and obtain the optimal solution set. A logistic membership function is introduced to evaluate the satisfaction level of the objective function, enabling the selection of the most favorable compromise solution from the set. The test results show that the model has good carbon emission prediction performance, with correlation coefficients all above 0.927. It can provide a non-dominated solution set for each objective function, reducing carbon emissions in the regional power grid. The average prediction error of carbon emissions in the regional power grid is 0.08 tons; the maximum average carbon emission difference across regions is only 212.2 tons, indicating better stratified optimization effects. |
|---|---|
| AbstractList | After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to reduce the carbon emissions of the regional power grid and mitigate the impact of power flow variations. A hierarchical optimization model for the grid’s carbon emissions is developed. The upper-level model predicts the carbon emissions of the regional power grid using the BP neural network, while the lower-level model incorporates the carbon emission prediction results and power flow characteristics to formulate an optimization objective function. This function aims to minimize the average carbon emissions, reduce the disparity in regional average carbon emissions, and lower the power flow cost. Subject to predefined constraints, the improved mayfly algorithm is employed to solve the objective function and obtain the optimal solution set. A logistic membership function is introduced to evaluate the satisfaction level of the objective function, enabling the selection of the most favorable compromise solution from the set. The test results show that the model has good carbon emission prediction performance, with correlation coefficients all above 0.927. It can provide a non-dominated solution set for each objective function, reducing carbon emissions in the regional power grid. The average prediction error of carbon emissions in the regional power grid is 0.08 tons; the maximum average carbon emission difference across regions is only 212.2 tons, indicating better stratified optimization effects. |
| Author | Zhu, Dongge Sha, Jiangbo Kang, Wenni Liu, Jia Ma, Rui |
| Author_xml | – sequence: 1 givenname: Rui surname: Ma fullname: Ma, Rui – sequence: 2 givenname: Dongge surname: Zhu fullname: Zhu, Dongge – sequence: 3 givenname: Jiangbo surname: Sha fullname: Sha, Jiangbo – sequence: 4 givenname: Wenni surname: Kang fullname: Kang, Wenni – sequence: 5 givenname: Jia surname: Liu fullname: Liu, Jia |
| BookMark | eNotkMFKAzEURYNUsNZu_IKshbHJZJJJllq0CgVFuh9ekzdtcCYpmZZSv96UdnXf5R3O4t6TUYgBCXnk7JkzyWcpzkpWSi6qGzIuNauKWjAxImMmjCmYlOaOTIfBrzOslTJMjsnpBzc-BujoLh4x0U3yjlpI6xgo9j7T-dh6TJDs1tvMxd3e9_4P9udPHx12dA0DOprrxdF28ZgdnT10FwqCo6_fNOAhZUHA_TGm3wdy20I34PSaE7J6f1vNP4rl1-Jz_rIsbM2rQgqnACo0rpaqtazU2Gq0XNW1cmWFmkkDWqK1zgpQXDoQFnmJpmVKVyAm5OmitSkOQ8K22SXfQzo1nDXn2ZoUm-ts4h8jUWTC |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1051/ro/2025134 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2804-7303 |
| ExternalDocumentID | 10_1051_ro_2025134 |
| GroupedDBID | -E. .FH 0E1 123 4.4 74X 74Y 7~V 8FE 8FG AADXX AAFWJ AAYXX ABKKG ABNSH ACGFS ACIMK ACIWK ACZPN AEMTW AFAYI AFHSK AFUTZ ALMA_UNASSIGNED_HOLDINGS ARABE ASPBG AVWKF AZPVJ BPHCQ C0O CITATION CS3 EBS HG- HST HZ~ I-F I.6 I~P J36 J38 J3A K60 K6V K6~ L6V L98 M-V NIF O9- OAV P62 PQQKQ PROAC RCA RR0 S6- WQ3 WXU |
| ID | FETCH-LOGICAL-c714-53d6aa4e9d756fc028ef8ec16776d24e8059a85eccdc3a615da3ce12e9f0684a3 |
| ISSN | 0399-0559 |
| IngestDate | Thu Nov 27 00:52:30 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c714-53d6aa4e9d756fc028ef8ec16776d24e8059a85eccdc3a615da3ce12e9f0684a3 |
| OpenAccessLink | https://doi.org/10.1051/ro/2025134 |
| ParticipantIDs | crossref_primary_10_1051_ro_2025134 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | R.A.I.R.O. Recherche opérationnelle |
| PublicationYear | 2025 |
| SSID | ssib051866905 ssib051327486 ssj0003353 ssib050921426 |
| Score | 2.3514793 |
| Snippet | After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Regional power grid carbon emission hierarchical optimization model based on power flow calculation and BP neural network |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2804-7303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051866905 issn: 0399-0559 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwgEOiKeWpyzBrUo2Lz9y3EW7AgRLVSqxtypxnKhSSaqwXZYL4qczYzupeRyWA4dGjeVO1M7X8eeZ8QwhL1kFtE0JFRRgF4OMafjP1ZIHCZcFsHtWloWpM_tOnJ7Ks7N8Npn8GM7CXKxF28rLy3zzX1UNY6BsPDr7D-oehcIAvAelwxXUDtcrKX6uG-ve22ADtGnTryqsP12CmrG3G3rHptgA24QQUEMdWI3P7jim7YwzxbWtwjiClVGvu68gY61cry8TcTiaTbEYJghobSq5z3Pn4WH4JpyHH0IkpoALeMGDbFjegg7za7zEW6Pr7WrnyN5aft82zTjro41OvQVIN2U3rhXO5f0JE3V8L0bCxny48fQWVkNgrjq4NmOJjLIALFD6V1MP1gRUgYeBTlBg7Hyiv1TU_m2lG_MPTeSdxcu-W7rPXiPXE8FyTAp8__14sEjAprAk3UjYYCbs4qV3LznPo92GK01t3dPh2wwFcVl80HcH7lkeBfK4zOIOue02IfTQgucumej2Hrnllaa8T74NMKIGAhRhRC2M6AAj6sOI-jCiBkbUwIjCrZWBMKIejCjAiB7NqIURdTB6QBYnx4tXrwPXpiNQIs4Clla8KDKdV4LxWgFf1bXUKuZC8CrJtAQCX0gGpqJSaQEEuipSpeNE53XEZVakD8le27V6n1ChgdyXLE9AQMZ5lKsyzQQTUZKXsNCIR-TF8MMtN7YYy_JPVT6-0qwn5OYOh0_J3nm_1c_IDXVxvvrSPzco-Akginu1 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+power+grid+carbon+emission+hierarchical+optimization+model+based+on+power+flow+calculation+and+BP+neural+network&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Ma%2C+Rui&rft.au=Zhu%2C+Dongge&rft.au=Sha%2C+Jiangbo&rft.au=Kang%2C+Wenni&rft.date=2025-10-01&rft.issn=0399-0559&rft.eissn=2804-7303&rft_id=info:doi/10.1051%2Fro%2F2025134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2025134 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon |