Regional power grid carbon emission hierarchical optimization model based on power flow calculation and BP neural network

After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to red...

Full description

Saved in:
Bibliographic Details
Published in:R.A.I.R.O. Recherche opérationnelle
Main Authors: Ma, Rui, Zhu, Dongge, Sha, Jiangbo, Kang, Wenni, Liu, Jia
Format: Journal Article
Language:English
Published: 01.10.2025
ISSN:0399-0559, 2804-7303
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to reduce the carbon emissions of the regional power grid and mitigate the impact of power flow variations. A hierarchical optimization model for the grid’s carbon emissions is developed. The upper-level model predicts the carbon emissions of the regional power grid using the BP neural network, while the lower-level model incorporates the carbon emission prediction results and power flow characteristics to formulate an optimization objective function. This function aims to minimize the average carbon emissions, reduce the disparity in regional average carbon emissions, and lower the power flow cost. Subject to predefined constraints, the improved mayfly algorithm is employed to solve the objective function and obtain the optimal solution set. A logistic membership function is introduced to evaluate the satisfaction level of the objective function, enabling the selection of the most favorable compromise solution from the set. The test results show that the model has good carbon emission prediction performance, with correlation coefficients all above 0.927. It can provide a non-dominated solution set for each objective function, reducing carbon emissions in the regional power grid. The average prediction error of carbon emissions in the regional power grid is 0.08 tons; the maximum average carbon emission difference across regions is only 212.2 tons, indicating better stratified optimization effects.
AbstractList After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to reduce the carbon emissions of the regional power grid and mitigate the impact of power flow variations. A hierarchical optimization model for the grid’s carbon emissions is developed. The upper-level model predicts the carbon emissions of the regional power grid using the BP neural network, while the lower-level model incorporates the carbon emission prediction results and power flow characteristics to formulate an optimization objective function. This function aims to minimize the average carbon emissions, reduce the disparity in regional average carbon emissions, and lower the power flow cost. Subject to predefined constraints, the improved mayfly algorithm is employed to solve the objective function and obtain the optimal solution set. A logistic membership function is introduced to evaluate the satisfaction level of the objective function, enabling the selection of the most favorable compromise solution from the set. The test results show that the model has good carbon emission prediction performance, with correlation coefficients all above 0.927. It can provide a non-dominated solution set for each objective function, reducing carbon emissions in the regional power grid. The average prediction error of carbon emissions in the regional power grid is 0.08 tons; the maximum average carbon emission difference across regions is only 212.2 tons, indicating better stratified optimization effects.
Author Zhu, Dongge
Sha, Jiangbo
Kang, Wenni
Liu, Jia
Ma, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Ma
  fullname: Ma, Rui
– sequence: 2
  givenname: Dongge
  surname: Zhu
  fullname: Zhu, Dongge
– sequence: 3
  givenname: Jiangbo
  surname: Sha
  fullname: Sha, Jiangbo
– sequence: 4
  givenname: Wenni
  surname: Kang
  fullname: Kang, Wenni
– sequence: 5
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
BookMark eNotkMFKAzEURYNUsNZu_IKshbHJZJJJllq0CgVFuh9ekzdtcCYpmZZSv96UdnXf5R3O4t6TUYgBCXnk7JkzyWcpzkpWSi6qGzIuNauKWjAxImMmjCmYlOaOTIfBrzOslTJMjsnpBzc-BujoLh4x0U3yjlpI6xgo9j7T-dh6TJDs1tvMxd3e9_4P9udPHx12dA0DOprrxdF28ZgdnT10FwqCo6_fNOAhZUHA_TGm3wdy20I34PSaE7J6f1vNP4rl1-Jz_rIsbM2rQgqnACo0rpaqtazU2Gq0XNW1cmWFmkkDWqK1zgpQXDoQFnmJpmVKVyAm5OmitSkOQ8K22SXfQzo1nDXn2ZoUm-ts4h8jUWTC
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/ro/2025134
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2804-7303
ExternalDocumentID 10_1051_ro_2025134
GroupedDBID -E.
.FH
0E1
123
4.4
74X
74Y
7~V
8FE
8FG
AADXX
AAFWJ
AAYXX
ABKKG
ABNSH
ACGFS
ACIMK
ACIWK
ACZPN
AEMTW
AFAYI
AFHSK
AFUTZ
ALMA_UNASSIGNED_HOLDINGS
ARABE
ASPBG
AVWKF
AZPVJ
BPHCQ
C0O
CITATION
CS3
EBS
HG-
HST
HZ~
I-F
I.6
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
M-V
NIF
O9-
OAV
P62
PQQKQ
PROAC
RCA
RR0
S6-
WQ3
WXU
ID FETCH-LOGICAL-c714-53d6aa4e9d756fc028ef8ec16776d24e8059a85eccdc3a615da3ce12e9f0684a3
ISSN 0399-0559
IngestDate Thu Nov 27 00:52:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c714-53d6aa4e9d756fc028ef8ec16776d24e8059a85eccdc3a615da3ce12e9f0684a3
OpenAccessLink https://doi.org/10.1051/ro/2025134
ParticipantIDs crossref_primary_10_1051_ro_2025134
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationTitle R.A.I.R.O. Recherche opérationnelle
PublicationYear 2025
SSID ssib051866905
ssib051327486
ssj0003353
ssib050921426
Score 2.3514793
Snippet After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its...
SourceID crossref
SourceType Index Database
Title Regional power grid carbon emission hierarchical optimization model based on power flow calculation and BP neural network
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051866905
  issn: 0399-0559
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKwgEOiKeWpyzBrUo2Lz9y3EW7AgRLVSqxtypxnKhSSaqwXZYL4qczYzupeRyWA4dGjeVO1M7X8eeZ8QwhL1kFtE0JFRRgF4OMafjP1ZIHCZcFsHtWloWpM_tOnJ7Ks7N8Npn8GM7CXKxF28rLy3zzX1UNY6BsPDr7D-oehcIAvAelwxXUDtcrKX6uG-ve22ADtGnTryqsP12CmrG3G3rHptgA24QQUEMdWI3P7jim7YwzxbWtwjiClVGvu68gY61cry8TcTiaTbEYJghobSq5z3Pn4WH4JpyHH0IkpoALeMGDbFjegg7za7zEW6Pr7WrnyN5aft82zTjro41OvQVIN2U3rhXO5f0JE3V8L0bCxny48fQWVkNgrjq4NmOJjLIALFD6V1MP1gRUgYeBTlBg7Hyiv1TU_m2lG_MPTeSdxcu-W7rPXiPXE8FyTAp8__14sEjAprAk3UjYYCbs4qV3LznPo92GK01t3dPh2wwFcVl80HcH7lkeBfK4zOIOue02IfTQgucumej2Hrnllaa8T74NMKIGAhRhRC2M6AAj6sOI-jCiBkbUwIjCrZWBMKIejCjAiB7NqIURdTB6QBYnx4tXrwPXpiNQIs4Clla8KDKdV4LxWgFf1bXUKuZC8CrJtAQCX0gGpqJSaQEEuipSpeNE53XEZVakD8le27V6n1ChgdyXLE9AQMZ5lKsyzQQTUZKXsNCIR-TF8MMtN7YYy_JPVT6-0qwn5OYOh0_J3nm_1c_IDXVxvvrSPzco-Akginu1
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+power+grid+carbon+emission+hierarchical+optimization+model+based+on+power+flow+calculation+and+BP+neural+network&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Ma%2C+Rui&rft.au=Zhu%2C+Dongge&rft.au=Sha%2C+Jiangbo&rft.au=Kang%2C+Wenni&rft.date=2025-10-01&rft.issn=0399-0559&rft.eissn=2804-7303&rft_id=info:doi/10.1051%2Fro%2F2025134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2025134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon