Cooperative Control of Traffic Signals and Vehicle Trajectories

The transportation system is one of the most important parts of the country's economy. At the same time, the growth in road traffic has a significant negative impact on the economic performance of the industry. One of the ways to increase the efficiency of using the transportation infrastructur...

Full description

Saved in:
Bibliographic Details
Published in:Informatika i avtomatizaciâ (Online) Vol. 22; no. 1; pp. 5 - 32
Main Authors: Agafonov, Anton, Yumaganov, Alexander
Format: Journal Article
Language:English
Published: 27.01.2023
ISSN:2713-3192, 2713-3206
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The transportation system is one of the most important parts of the country's economy. At the same time, the growth in road traffic has a significant negative impact on the economic performance of the industry. One of the ways to increase the efficiency of using the transportation infrastructure is to manage traffic flows, incl. by controlling traffic signals at signalized intersections. One of the trends in the development of intelligent transportation systems is the creation of vehicular ad hoc networks that allow the exchange of information between vehicles and infrastructure, as well as the development of autonomous vehicles. As a result, it becomes possible to formulate the problem of cooperative control of vehicle trajectories and traffic signals to increase the capacity of intersections and reduce fuel consumption and travel time. This paper presents a method for managing traffic flow at an intersection, which consists of the cooperative control of traffic signals and trajectories of connected/autonomous vehicles. The developed method combines an algorithm for the adaptive control of traffic signals based on a deterministic model for predicting the movement of vehicles and a two-stage algorithm for constructing the trajectory of vehicles. The objective optimization function used to construct the optimal trajectories takes into account fuel consumption, travel time on the road lane, and waiting time at the intersection. Experimental studies of the developed method were carried out in the microscopic traffic simulation package SUMO using three simulation scenarios, including two synthetic scenarios and a scenario in a real urban environment. The results of experimental studies confirm the effectiveness of the developed method in terms of fuel consumption, travel time, and waiting time in comparison with the adaptive traffic signal control algorithm.
AbstractList The transportation system is one of the most important parts of the country's economy. At the same time, the growth in road traffic has a significant negative impact on the economic performance of the industry. One of the ways to increase the efficiency of using the transportation infrastructure is to manage traffic flows, incl. by controlling traffic signals at signalized intersections. One of the trends in the development of intelligent transportation systems is the creation of vehicular ad hoc networks that allow the exchange of information between vehicles and infrastructure, as well as the development of autonomous vehicles. As a result, it becomes possible to formulate the problem of cooperative control of vehicle trajectories and traffic signals to increase the capacity of intersections and reduce fuel consumption and travel time. This paper presents a method for managing traffic flow at an intersection, which consists of the cooperative control of traffic signals and trajectories of connected/autonomous vehicles. The developed method combines an algorithm for the adaptive control of traffic signals based on a deterministic model for predicting the movement of vehicles and a two-stage algorithm for constructing the trajectory of vehicles. The objective optimization function used to construct the optimal trajectories takes into account fuel consumption, travel time on the road lane, and waiting time at the intersection. Experimental studies of the developed method were carried out in the microscopic traffic simulation package SUMO using three simulation scenarios, including two synthetic scenarios and a scenario in a real urban environment. The results of experimental studies confirm the effectiveness of the developed method in terms of fuel consumption, travel time, and waiting time in comparison with the adaptive traffic signal control algorithm.
Author Agafonov, Anton
Yumaganov, Alexander
Author_xml – sequence: 1
  givenname: Anton
  surname: Agafonov
  fullname: Agafonov, Anton
– sequence: 2
  givenname: Alexander
  surname: Yumaganov
  fullname: Yumaganov, Alexander
BookMark eNo1j0tLxDAUhYOM4DjOxl-QtdCamzQpXYkUXzDgwuI23KQ3GqnNkBTBf-_42pzvwAcHzilbzWkmxs5B1KCNlJcRaylrqOGIrWULqlJSmNV_h06esG0p0QktWiWNEGt21ae0p4xL_CDep3nJaeIp8CFjCNHzp_gy41Q4ziN_ptfoJ_p2b-SXlCOVM3YcDp62f9yw4fZm6O-r3ePdQ3-9q3wLUDWd9rID4xTJxmgfwIzkVcBGoxYhBDcGGoXTamwQ0TmFEpTXbadJtZ1UG3bxO-tzKiVTsPsc3zF_WhD257yNaA8JFtQX8dlOvA
Cites_doi 10.1109/TITS.2020.3008612
10.1109/TITS.2020.3023788
10.3390/su14031542
10.1155/2020/1456207
10.1016/j.neunet.2021.03.015
10.1016/j.trc.2021.103416
10.1109/TCYB.2020.3015811
10.15439/2021F109
10.1109/FISTS.2011.5973594
10.1016/j.scitotenv.2013.01.074
10.1145/3219819.3220096
10.1145/3467707.3467767
10.1177/0361198119845363
10.1109/TCST.2010.2047860
10.1061/(ASCE)0733-947X(2003)129:3(278)
10.1109/TITS.2011.2178836
10.1109/ITNT55410.2022.9848651
10.1016/j.trb.2016.06.010
10.15622/sp.2019.18.3.557-581
10.1016/j.trb.2014.09.014
10.1145/3068287
10.1016/j.trb.2016.05.007
10.3141/1683-15
10.1109/ITSC.2010.5625066
10.1109/ITSC.2018.8569938
10.3390/vehicles3030032
10.1016/j.trc.2017.04.001
10.1016/j.envint.2017.11.025
10.1109/JPROC.2003.819610
10.1016/j.trc.2016.04.009
10.1007/978-1-4614-6243-9_2
10.1016/j.trb.2019.03.002
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.15622/ia.22.1.1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2713-3206
EndPage 32
ExternalDocumentID 10_15622_ia_22_1_1
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c711-495c2916b3e2465cf16dec3fa45a50fffbdfed0b53d4aaabb3a213c5795e37923
ISSN 2713-3192
IngestDate Sat Nov 29 04:02:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c711-495c2916b3e2465cf16dec3fa45a50fffbdfed0b53d4aaabb3a213c5795e37923
OpenAccessLink http://ia.spcras.ru/index.php/sp/article/download/15356/15180
PageCount 28
ParticipantIDs crossref_primary_10_15622_ia_22_1_1
PublicationCentury 2000
PublicationDate 2023-01-27
PublicationDateYYYYMMDD 2023-01-27
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-27
  day: 27
PublicationDecade 2020
PublicationTitle Informatika i avtomatizaciâ (Online)
PublicationYear 2023
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref42
  doi: 10.1109/TITS.2020.3008612
– ident: ref37
  doi: 10.1109/TITS.2020.3023788
– ident: ref45
  doi: 10.3390/su14031542
– ident: ref1
– ident: ref39
– ident: ref43
  doi: 10.1155/2020/1456207
– ident: ref3
– ident: ref38
  doi: 10.1016/j.neunet.2021.03.015
– ident: ref7
– ident: ref44
  doi: 10.1016/j.trc.2021.103416
– ident: ref29
– ident: ref41
– ident: ref32
  doi: 10.1109/TCYB.2020.3015811
– ident: ref33
  doi: 10.15439/2021F109
– ident: ref21
  doi: 10.1109/FISTS.2011.5973594
– ident: ref22
– ident: ref5
  doi: 10.1016/j.scitotenv.2013.01.074
– ident: ref31
  doi: 10.1145/3219819.3220096
– ident: ref36
  doi: 10.1145/3467707.3467767
– ident: ref48
– ident: ref20
  doi: 10.1177/0361198119845363
– ident: ref14
  doi: 10.1109/TCST.2010.2047860
– ident: ref30
  doi: 10.1061/(ASCE)0733-947X(2003)129:3(278)
– ident: ref9
– ident: ref17
  doi: 10.1109/TITS.2011.2178836
– ident: ref46
  doi: 10.1109/ITNT55410.2022.9848651
– ident: ref12
  doi: 10.1016/j.trb.2016.06.010
– ident: ref10
  doi: 10.15622/sp.2019.18.3.557-581
– ident: ref34
– ident: ref6
  doi: 10.1016/j.trb.2014.09.014
– ident: ref2
– ident: ref40
  doi: 10.1145/3068287
– ident: ref19
  doi: 10.1016/j.trb.2016.05.007
– ident: ref24
  doi: 10.3141/1683-15
– ident: ref26
  doi: 10.1109/ITSC.2010.5625066
– ident: ref28
– ident: ref11
  doi: 10.1109/ITSC.2018.8569938
– ident: ref23
– ident: ref15
  doi: 10.3390/vehicles3030032
– ident: ref16
  doi: 10.1016/j.trc.2017.04.001
– ident: ref47
– ident: ref4
  doi: 10.1016/j.envint.2017.11.025
– ident: ref25
  doi: 10.1109/JPROC.2003.819610
– ident: ref8
– ident: ref13
  doi: 10.1016/j.trc.2016.04.009
– ident: ref27
  doi: 10.1007/978-1-4614-6243-9_2
– ident: ref18
  doi: 10.1016/j.trb.2019.03.002
– ident: ref35
SSID ssib050732600
ssj0002921710
Score 2.2082388
Snippet The transportation system is one of the most important parts of the country's economy. At the same time, the growth in road traffic has a significant negative...
SourceID crossref
SourceType Index Database
StartPage 5
Title Cooperative Control of Traffic Signals and Vehicle Trajectories
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2713-3206
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002921710
  issn: 2713-3192
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2713-3206
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050732600
  issn: 2713-3192
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcm4LDLBmxoMECWxq1KSew4HyeEKhAHhiZRIXaKnh27SxFJBaVCO-xv5zlx0ohe4LCL1dhxlOb99L78_DMhR0pCKEWSez5A6oXKgJeglfBMjAMxWoikPhvw5jK-ukpub9NfriDzsT5OIC7L5Pk5nf1XUWMfCttunX2HuLuHYgf-RqFji2LH9k2CH1XVTDs-75ErREePEI2SZYsYXBeTmjLZJsxv9B87245N6-x9W1E4bevbnUt7B4NiAIt5ZS_-girq9XX2mqu0gc4ETFVWC0dNsFzm__10DxNoR9qNNf20A7NFV16zi7_RTgyjW1TgzUF2Q93rY37UV6-MrcCo0ZWiZ3SbHOeKOkfnzPLDFjBkbBgMg6XRahfqX9myrsLQxjZ2dlZAhm2QYYS8zmKR2rK_n__OWp2D7jC3HP1dXo6lGKTVJBbdP3SstvZxx92r9PyYnkMy3iSfXCRBTxsEbJEPutwmn9tTOqhT2l_ISQ8Q1AGCVoY6QFAHCIrSoA4QtA-Ir2R8fjYeXXju2AxPxUHgYcSrGDr9kmsWRkKZIMq14gZCAcI3xsjc6NyXguchAEjJgQVciTgVmls2yR2yVlal_kYo-LnOo1RAbJKQG1_mEfDISJyAXp4Md8mP9htks4YcJVv98Htvuus7-biE2T5Zmz886QOyoRbz4vHhsE6VHNaSewGC2Fla
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cooperative+Control+of+Traffic+Signals+and+Vehicle+Trajectories&rft.jtitle=Informatika+i+avtomatizaci%C3%A2+%28Online%29&rft.au=Agafonov%2C+Anton&rft.au=Yumaganov%2C+Alexander&rft.date=2023-01-27&rft.issn=2713-3192&rft.eissn=2713-3206&rft.volume=22&rft.issue=1&rft.spage=5&rft.epage=32&rft_id=info:doi/10.15622%2Fia.22.1.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_15622_ia_22_1_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2713-3192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2713-3192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2713-3192&client=summon