Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports

Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed f...

Full description

Saved in:
Bibliographic Details
Published in:Molecular psychiatry Vol. 21; no. 10; pp. 1366 - 1371
Main Authors: Kessler, R C, van Loo, H M, Wardenaar, K J, Bossarte, R M, Brenner, L A, Cai, T, Ebert, D D, Hwang, I, Li, J, de Jonge, P, Nierenberg, A A, Petukhova, M V, Rosellini, A J, Sampson, N A, Schoevers, R A, Wilcox, M A, Zaslavsky, A M
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.10.2016
Nature Publishing Group
Subjects:
ISSN:1359-4184, 1476-5578, 1476-5578
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared with observed scores assessed 10–12 years after baseline. ML model prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating characteristic curve based on ML (0.63 for high chronicity and 0.71–0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62–0.70) despite the latter models including more predictors. A total of 34.6–38.1% of respondents with subsequent high persistence chronicity and 40.8–55.8% with the severity indicators were in the top 20% of the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models.
AbstractList Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. While efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity, and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1,056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared to observed scores assessed 10–12 years after baseline. ML model prediction accuracy was also compared to that of conventional logistic regression models. Area under the receiver operating characteristic curve (AUC) based on ML (.63 for high chronicity and .71–.76 for the other prospective outcomes) was consistently higher than for the logistic models (.62–.70) despite the latter models including more predictors. 34.6–38.1% of respondents with subsequent high persistence-chronicity and 40.8–55.8% with the severity indicators were in the top 20% of the baseline ML predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML predicted risk distribution. These results confirm that clinically useful MDD risk stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models.
Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared with observed scores assessed 10-12 years after baseline. ML model prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating characteristic curve based on ML (0.63 for high chronicity and 0.71-0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62-0.70) despite the latter models including more predictors. A total of 34.6-38.1% of respondents with subsequent high persistence chronicity and 40.8-55.8% with the severity indicators were in the top 20% of the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models.
Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared with observed scores assessed 10-12 years after baseline. ML model prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating characteristic curve based on ML (0.63 for high chronicity and 0.71-0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62-0.70) despite the latter models including more predictors. A total of 34.6-38.1% of respondents with subsequent high persistence chronicity and 40.8-55.8% with the severity indicators were in the top 20% of the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models.Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared with observed scores assessed 10-12 years after baseline. ML model prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating characteristic curve based on ML (0.63 for high chronicity and 0.71-0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62-0.70) despite the latter models including more predictors. A total of 34.6-38.1% of respondents with subsequent high persistence chronicity and 40.8-55.8% with the severity indicators were in the top 20% of the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models.
Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to develop clinically useful prognostic subtypes have had limited success, a recent report showed that machine-learning (ML) models developed from self-reports about incident episode characteristics and comorbidities among respondents with lifetime MDD in the World Health Organization World Mental Health (WMH) Surveys predicted MDD persistence, chronicity and severity with good accuracy. We report results of model validation in an independent prospective national household sample of 1056 respondents with lifetime MDD at baseline. The WMH ML models were applied to these baseline data to generate predicted outcome scores that were compared with observed scores assessed 10-12 years after baseline. ML model prediction accuracy was also compared with that of conventional logistic regression models. Area under the receiver operating characteristic curve based on ML (0.63 for high chronicity and 0.71-0.76 for the other prospective outcomes) was consistently higher than for the logistic models (0.62-0.70) despite the latter models including more predictors. A total of 34.6-38.1% of respondents with subsequent high persistence chronicity and 40.8-55.8% with the severity indicators were in the top 20% of the baseline ML-predicted risk distribution, while only 0.9% of respondents with subsequent hospitalizations and 1.5% with suicide attempts were in the lowest 20% of the ML-predicted risk distribution. These results confirm that clinically useful MDD risk-stratification models can be generated from baseline patient self-reports and that ML methods improve on conventional methods in developing such models. Molecular Psychiatry (2016) 21, 1366-1371; doi: 10.1038/mp.2015.198; published online 5 January 2016
Audience Academic
Author Petukhova, M V
Ebert, D D
Schoevers, R A
de Jonge, P
Li, J
Wilcox, M A
van Loo, H M
Rosellini, A J
Cai, T
Nierenberg, A A
Zaslavsky, A M
Brenner, L A
Hwang, I
Kessler, R C
Bossarte, R M
Sampson, N A
Wardenaar, K J
Author_xml – sequence: 1
  givenname: R C
  surname: Kessler
  fullname: Kessler, R C
  email: Kessler@hcp.med.harvard.edu
  organization: Department of Health Care Policy, Harvard Medical School
– sequence: 2
  givenname: H M
  surname: van Loo
  fullname: van Loo, H M
  organization: Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen
– sequence: 3
  givenname: K J
  surname: Wardenaar
  fullname: Wardenaar, K J
  organization: Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen
– sequence: 4
  givenname: R M
  surname: Bossarte
  fullname: Bossarte, R M
  organization: Department of Veterans Affairs, Office of Public Health
– sequence: 5
  givenname: L A
  surname: Brenner
  fullname: Brenner, L A
  organization: Departments of Physical Medicine and Rehabilitation, Psychiatry, and Neurology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Mental Illness Research Education and Clinical Center
– sequence: 6
  givenname: T
  surname: Cai
  fullname: Cai, T
  organization: Department of Biostatistics, Harvard School of Public Health
– sequence: 7
  givenname: D D
  surname: Ebert
  fullname: Ebert, D D
  organization: Department of Health Care Policy, Harvard Medical School, Department of Psychology, Clinical Psychology and Psychotherapy, Friedrich-Alexander University Nuremberg-Erlangen
– sequence: 8
  givenname: I
  surname: Hwang
  fullname: Hwang, I
  organization: Department of Health Care Policy, Harvard Medical School
– sequence: 9
  givenname: J
  surname: Li
  fullname: Li, J
  organization: Department of Biostatistics, Harvard School of Public Health
– sequence: 10
  givenname: P
  surname: de Jonge
  fullname: de Jonge, P
  organization: Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen
– sequence: 11
  givenname: A A
  surname: Nierenberg
  fullname: Nierenberg, A A
  organization: Department of Psychiatry and Depression Clinical and Research Program, Harvard Medical School and Massachusetts General Hospital
– sequence: 12
  givenname: M V
  surname: Petukhova
  fullname: Petukhova, M V
  organization: Department of Health Care Policy, Harvard Medical School
– sequence: 13
  givenname: A J
  surname: Rosellini
  fullname: Rosellini, A J
  organization: Department of Health Care Policy, Harvard Medical School
– sequence: 14
  givenname: N A
  surname: Sampson
  fullname: Sampson, N A
  organization: Department of Health Care Policy, Harvard Medical School
– sequence: 15
  givenname: R A
  surname: Schoevers
  fullname: Schoevers, R A
  organization: Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, University Medical Center Groningen
– sequence: 16
  givenname: M A
  surname: Wilcox
  fullname: Wilcox, M A
  organization: Epidemiology, Janssen Research & Development, LLC
– sequence: 17
  givenname: A M
  surname: Zaslavsky
  fullname: Zaslavsky, A M
  organization: Department of Health Care Policy, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26728563$$D View this record in MEDLINE/PubMed
BookMark eNqNkstrFTEUxgep2Ieu3EvAjaBzTSaTx2yEUnxBwU1dh0zm5N6UmWRMci907x9uxttqWy4iWSSc_M53OB_faXXkg4eqeknwimAq30_zqsGErUgnn1QnpBW8ZkzIo_KmrKtbItvj6jSla4yXT_asOm64aCTj9KT6eQUpO79GGk3abJyHegQd_e_SuA7R5c2EckBzhMGZjPIG0AwxuZTBG0DaDyjBDgp4g4ItKtchogEKn5LbARpcCnGAiGwME-p1grFMKT2jrSPMIeb0vHpq9Zjgxe19Vn3_9PHq4kt9-e3z14vzy9oIgnNtO0xb3eMGd70VjBJsBDW0Jy02gGWnscUGg2GgOW16Iq3gQ88kFdawQXJ6Vn3Y687bfoLBgM9Rj2qObtLxRgXt1MMf7zZqHXaq7SjjrC0Cb24FYvixLc6pySUD46g9hG1SRDaiI10j6f-gZGHZgr5-hF6HbfTFCdXwlgnecin_RRUtzDqMBf9LrfUIynkbyiJmGa3OW07LHg3rCrU6QJUzwORMiZd1pf6g4dV95_5YdhekApA9YGJIKYJVxmWdXViMdKMiWC1hVdOslrCqEtbS8_ZRz53sYfrdnk6F8muI9_Y_gP8Ckwr5Fw
CitedBy_id crossref_primary_10_1016_j_cobeha_2017_07_003
crossref_primary_10_1016_j_jad_2018_08_073
crossref_primary_10_1002_brb3_2000
crossref_primary_10_1016_j_cpr_2020_101940
crossref_primary_10_2196_26681
crossref_primary_10_3390_electronics9030516
crossref_primary_10_1016_j_psychres_2023_115165
crossref_primary_10_1016_j_jad_2019_11_093
crossref_primary_10_1186_s12967_016_1116_1
crossref_primary_10_1017_S0033291720000227
crossref_primary_10_1016_j_imu_2018_12_004
crossref_primary_10_1007_s10826_019_01689_x
crossref_primary_10_1111_acps_12959
crossref_primary_10_1016_j_adolescence_2019_12_013
crossref_primary_10_3390_ijerph17165929
crossref_primary_10_3389_fpsyt_2017_00116
crossref_primary_10_1016_j_addbeh_2018_02_017
crossref_primary_10_3390_encyclopedia4010032
crossref_primary_10_1002_da_22867
crossref_primary_10_1016_j_jad_2024_02_070
crossref_primary_10_1111_jcpp_12916
crossref_primary_10_1186_s12916_020_01623_9
crossref_primary_10_3390_jpm11080812
crossref_primary_10_1016_j_jad_2024_03_035
crossref_primary_10_1002_eat_23510
crossref_primary_10_1007_s11920_019_1080_6
crossref_primary_10_1016_j_neulet_2020_134804
crossref_primary_10_1093_schbul_sby005
crossref_primary_10_3390_jpm11121316
crossref_primary_10_1002_wps_20882
crossref_primary_10_1016_j_jad_2022_05_020
crossref_primary_10_1146_annurev_clinpsy_050817_084746
crossref_primary_10_2196_27113
crossref_primary_10_1111_sltb_12598
crossref_primary_10_1136_bmjopen_2019_031087
crossref_primary_10_1038_s42003_024_06461_6
crossref_primary_10_1080_0886022X_2025_2529452
crossref_primary_10_1007_s10578_025_01873_9
crossref_primary_10_1002_erv_2850
crossref_primary_10_1017_S2045796016000020
crossref_primary_10_1016_j_heliyon_2021_e06626
crossref_primary_10_1007_s00115_017_0456_2
crossref_primary_10_1080_13607863_2022_2031868
crossref_primary_10_1016_j_jpsychires_2025_01_007
crossref_primary_10_1186_s12888_023_04791_z
crossref_primary_10_1016_j_jad_2019_05_073
crossref_primary_10_1186_s12888_019_2026_6
crossref_primary_10_12688_f1000research_13723_1
crossref_primary_10_1007_s12152_018_9371_x
crossref_primary_10_1038_s41537_021_00162_3
crossref_primary_10_12688_f1000research_13723_2
crossref_primary_10_1080_15622975_2019_1635270
crossref_primary_10_3390_math11143145
crossref_primary_10_1016_j_heliyon_2024_e33973
crossref_primary_10_1016_j_procs_2020_04_213
crossref_primary_10_3389_fpsyt_2020_00472
crossref_primary_10_1016_j_jad_2019_06_034
crossref_primary_10_1016_j_neuroimage_2018_11_057
crossref_primary_10_3233_IDT_200061
crossref_primary_10_1016_j_psycom_2022_100055
crossref_primary_10_1146_annurev_clinpsy_032816_045037
crossref_primary_10_1177_2167702619838464
crossref_primary_10_1016_j_psychres_2021_113823
crossref_primary_10_1007_s11571_021_09724_8
crossref_primary_10_2196_29838
crossref_primary_10_1186_s40001_025_02680_7
crossref_primary_10_1002_hbm_70287
crossref_primary_10_3389_frai_2019_00031
crossref_primary_10_1002_mpr_1834
crossref_primary_10_1186_s12911_020_01361_1
crossref_primary_10_1016_j_jcrc_2019_09_024
crossref_primary_10_3389_fnins_2023_1174080
crossref_primary_10_3389_fpsyg_2025_1650667
crossref_primary_10_1016_j_jad_2025_01_060
crossref_primary_10_1016_j_genhosppsych_2019_07_004
crossref_primary_10_2196_15901
crossref_primary_10_3390_informatics8030056
crossref_primary_10_1007_s44202_022_00027_5
crossref_primary_10_2147_NDT_S275620
crossref_primary_10_1192_j_eurpsy_2023_10
crossref_primary_10_1038_s41380_019_0581_3
crossref_primary_10_1192_bjp_2022_16
crossref_primary_10_1016_j_jpsychires_2021_06_044
crossref_primary_10_1186_s12911_018_0653_3
crossref_primary_10_1038_s41598_020_72289_9
crossref_primary_10_1111_bdi_12603
crossref_primary_10_1007_s13131_024_2392_x
crossref_primary_10_3389_fpubh_2022_814366
crossref_primary_10_2196_42045
crossref_primary_10_1111_1475_6773_13871
crossref_primary_10_1017_S0033291722003452
crossref_primary_10_3390_jpm11070597
crossref_primary_10_3389_fpsyt_2020_00125
crossref_primary_10_3389_fpubh_2021_795007
crossref_primary_10_1016_j_jad_2020_07_098
crossref_primary_10_1038_s41398_021_01445_0
crossref_primary_10_1016_j_nicl_2020_102213
crossref_primary_10_1016_j_pmip_2017_09_001
crossref_primary_10_1186_s12888_016_0971_x
crossref_primary_10_1186_s12888_025_07145_z
crossref_primary_10_3389_ijph_2023_1605322
crossref_primary_10_1007_s13748_019_00192_0
crossref_primary_10_3389_fpsyt_2021_764806
crossref_primary_10_1016_j_pscychresns_2022_111485
crossref_primary_10_1177_21677026251340348
crossref_primary_10_1016_j_imu_2019_100228
crossref_primary_10_1016_j_psychres_2021_114261
crossref_primary_10_1186_s12888_025_07030_9
crossref_primary_10_2196_jmir_7897
crossref_primary_10_1016_j_beth_2017_05_004
crossref_primary_10_1186_s40359_025_03071_7
crossref_primary_10_1111_cdev_13910
crossref_primary_10_12688_f1000research_110090_1
crossref_primary_10_1002_capr_12758
crossref_primary_10_1007_s10560_020_00733_w
crossref_primary_10_1002_ajmg_b_33014
crossref_primary_10_1016_j_inffus_2023_101960
crossref_primary_10_1017_S0033291719000151
crossref_primary_10_1007_s10802_018_0401_2
crossref_primary_10_1016_j_jpsychores_2020_110126
crossref_primary_10_1002_adfm_201801690
crossref_primary_10_1016_j_procs_2022_09_089
crossref_primary_10_3389_fpsyt_2021_684406
crossref_primary_10_1016_j_jad_2020_04_057
crossref_primary_10_12720_jait_16_8_1061_1071
crossref_primary_10_3389_fpsyt_2025_1650453
crossref_primary_10_2196_59826
crossref_primary_10_1080_0144929X_2021_1877356
crossref_primary_10_12788_acp_0041
crossref_primary_10_1007_s10916_018_0934_5
crossref_primary_10_1016_j_psychres_2019_06_011
crossref_primary_10_1038_s41598_022_09226_5
crossref_primary_10_1016_j_measurement_2021_109804
crossref_primary_10_1016_j_procs_2022_09_090
crossref_primary_10_1109_ACCESS_2023_3262467
crossref_primary_10_1080_21641846_2021_1885119
crossref_primary_10_1038_s41598_020_61593_z
crossref_primary_10_1038_s41398_018_0289_1
crossref_primary_10_1093_aje_kwab112
crossref_primary_10_1186_s12888_022_04439_4
crossref_primary_10_1177_2167702616651075
crossref_primary_10_1159_000507819
crossref_primary_10_2196_24066
crossref_primary_10_3390_diagnostics15111412
crossref_primary_10_1136_bmjopen_2017_018582
Cites_doi 10.1002/da.22233
10.1001/jama.2009.1757
10.1007/s10979-005-6832-7
10.1002/da.21985
10.1161/CIRCOUTCOMES.113.000497
10.2202/1544-6115.1309
10.1017/S0033291714000993
10.1002/mpr.33
10.1007/s00406-010-0120-3
10.1186/1741-7015-10-156
10.1007/978-1-4419-9782-1
10.1002/bsl.2053
10.1111/acps.12176
10.1186/1471-2288-12-185
10.1002/sim.6099
10.1002/bimj.200900228
10.1176/appi.ajp.2009.09070932
10.1016/j.jad.2011.04.007
10.2174/138161212803523635
10.18637/jss.v033.i01
10.1016/j.ijrobp.2011.02.019
10.1097/00131746-200105000-00006
10.1097/00005053-199906000-00005
10.1080/14999013.2002.10471172
10.1136/bmj.e3318
10.1016/j.biopsych.2012.12.007
10.3109/00048674.2011.619161
10.1001/archpsyc.60.11.1117
10.1007/978-1-4614-7138-7
10.1186/1471-2288-12-2
10.1016/j.diabet.2013.07.002
10.1111/j.1600-0447.2007.01136.x
10.1038/mp.2011.23
10.1186/1745-6215-12-4
10.1002/da.22045
10.1016/j.jpsychires.2007.01.009
10.1185/030079906X167444
10.1186/s12913-014-0519-z
10.1001/archpsyc.1992.01820080032005
10.1007/s10549-011-1853-z
10.1016/j.jad.2013.10.020
10.1185/03007995.2011.654010
10.1176/appi.ajp.2010.09111680
10.1002/14651858.MR000034.pub2
10.1001/archpsyc.1994.03950010008002
ContentType Journal Article
Copyright Macmillan Publishers Limited 2016
COPYRIGHT 2016 Nature Publishing Group
Copyright Nature Publishing Group Oct 2016
Macmillan Publishers Limited 2016.
Copyright_xml – notice: Macmillan Publishers Limited 2016
– notice: COPYRIGHT 2016 Nature Publishing Group
– notice: Copyright Nature Publishing Group Oct 2016
– notice: Macmillan Publishers Limited 2016.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1038/mp.2015.198
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest One Psychology
MEDLINE - Academic

ProQuest One Psychology

MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Public Health
EISSN 1476-5578
EndPage 1371
ExternalDocumentID PMC4935654
4186475171
A463935259
26728563
10_1038_mp_2015_198
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U01 MH060220
– fundername: NIMH NIH HHS
  grantid: R01 MH070884
– fundername: NIMH NIH HHS
  grantid: R01 MH046376
– fundername: NIMH NIH HHS
  grantid: R13 MH066849
– fundername: NIMH NIH HHS
  grantid: R01 MH069864
– fundername: NIDA NIH HHS
  grantid: K05 DA015799
– fundername: FIC NIH HHS
  grantid: R03 TW006481
– fundername: NIDA NIH HHS
  grantid: R01 DA016558
– fundername: NIDA NIH HHS
  grantid: R01 DA012058
GroupedDBID ---
-Q-
0R~
123
29M
2WC
36B
39C
3V.
4.4
406
53G
70F
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AXYYD
AZQEC
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
IPY
ITC
IWAJR
JSO
JZLTJ
KQ8
M1P
M2M
M7P
NAO
NQJWS
O9-
OK1
OVD
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
TUS
UKHRP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FE
8FH
8FK
K9.
LK8
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c710t-f9034ab0209bf75310c73c3b140ce089a0f0c0ec5ea632b18f76db5837fc5d863
IEDL.DBID BENPR
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384127000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4184
1476-5578
IngestDate Tue Nov 04 01:56:04 EST 2025
Fri Sep 05 13:02:56 EDT 2025
Fri Sep 05 07:16:37 EDT 2025
Mon Oct 06 18:22:05 EDT 2025
Mon Oct 06 18:32:59 EDT 2025
Tue Nov 11 10:11:27 EST 2025
Tue Nov 04 18:03:26 EST 2025
Wed Feb 19 02:41:19 EST 2025
Sat Nov 29 01:35:01 EST 2025
Tue Nov 18 21:20:22 EST 2025
Fri Feb 21 02:39:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c710t-f9034ab0209bf75310c73c3b140ce089a0f0c0ec5ea632b18f76db5837fc5d863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4935654
PMID 26728563
PQID 1820590076
PQPubID 44096
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4935654
proquest_miscellaneous_1827919283
proquest_miscellaneous_1821791953
proquest_journals_2645764688
proquest_journals_1820590076
gale_infotracmisc_A463935259
gale_infotracacademiconefile_A463935259
pubmed_primary_26728563
crossref_citationtrail_10_1038_mp_2015_198
crossref_primary_10_1038_mp_2015_198
springer_journals_10_1038_mp_2015_198
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
PublicationTitle Molecular psychiatry
PublicationTitleAbbrev Mol Psychiatry
PublicationTitleAlternate Mol Psychiatry
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Uher, Perroud, Ng, Hauser, Henigsberg, Maier (CR9) 2010; 167
Anothaisintawee, Teerawattananon, Wiratkapun, Kasamesup, Thakkinstian (CR39) 2012; 133
Kuiper, McLean, Fritz, Lampe, Malhi (CR3) 2013; 444
Cuijpers, Reynolds, Donker, Li, Andersson, Beekman (CR50) 2012; 29
Vrieze, Demyttenaere, Bruffaerts, Hermans, Pizzagalli, Sienaert (CR6) 2014; 155
Echouffo-Tcheugui, Kengne (CR36) 2013; 39
van Loo, Cai, Gruber, Li, de Jonge, Petukhova (CR16) 2014; 31
Angst, Gamma, Rossler, Ajdacic, Klein (CR31) 2011; 261
van der Laan, Rose (CR11) 2011
Morris, Howard, Steel, Schreiber, Fries, Lipsitz (CR41) 2014; 14
Wardenaar, van Loo, Cai, Fava, Gruber, Li (CR17) 2014; 44
Rice, Harris (CR33) 2005; 29
Neugebauer, Schmittdiel, van der Laan (CR46) 2014; 33
Riedel, Moller, Obermeier, Adli, Bauer, Kronmuller (CR15) 2011; 133
van der Laan, Polley, Hubbard (CR28) 2007; 6
Chao, Koyfman, Woody, Angelov, Soeder, Reddy (CR13) 2012; 82
Kessler, Merikangas, Berglund, Eaton, Koretz, Walters (CR19) 2003; 60
CR47
Sjostedt, Grann (CR35) 2002; 1
Li, Lu (CR45) 2010; 52
Kennedy, Downar, Evans, Feilotter, Lam, MacQueen (CR8) 2012; 18
Nelson, Zhang, Deberdt, Marangell, Karamustafalioglu, Lipkovich (CR14) 2012; 28
Therneau, Atkinson (CR23) 2015
Hetrick, Simmons, Thompson, Parker (CR2) 2011; 45
Jain, Hunter, Brooks, Leuchter (CR48) 2013; 30
Perlis (CR49) 2013; 74
Spitzer, Williams, Gibbon, First (CR21) 1992; 49
Tzoulaki, Liberopoulos, Ioannidis (CR38) 2009; 302
Altshuler, Cohen, Moline, Kahn, Carpenter, Docherty (CR1) 2001; 7
Haas, Takahashi, Shah, Stroebel, Bernard, Finnie (CR40) 2013; 19
Marsland (CR27) 2015
Williams, Rush, Koslow, Wisniewski, Cooper, Nemeroff (CR42) 2011; 12
Bradvik, Mattisson, Bogren, Nettelbladt (CR32) 2008; 117
Klein, Shankman, Rose (CR29) 2008; 42
Singh, Desmarais, Van Dorn (CR34) 2013; 31
Friedman, Hastie, Tibshirani (CR24) 2010; 33
van Loo, de Jonge, Romeijn, Kessler, Schoevers (CR5) 2012; 10
James, Witten, Hastie, Tibshirani (CR10) 2013
Willke, Zheng, Subedi, Althin, Mullins (CR44) 2012; 12
Perlis (CR4) 2007; 23
Simon, Perlis (CR51) 2010; 167
Kessler, Wittchen, Abelson, McGonagle, Schwarz, Kendler (CR20) 1998; 7
CR26
Siontis, Tzoulaki, Siontis, Ioannidis (CR37) 2012; 344
CR25
Kessler, McGonagle, Zhao, Nelson, Hughes, Eshleman (CR18) 1994; 51
Moos, Cronkite (CR30) 1999; 187
Endicott, Andreasen, Spitzer (CR22) 1978
Hasler, Northoff (CR7) 2011; 16
Chang, Chen, Chung, Lai (CR12) 2012; 12
Burke, Hayward, Nelson, Kent (CR43) 2014; 7
MJ van der Laan (BFmp2015198_CR11) 2011
T Therneau (BFmp2015198_CR23) 2015
I Tzoulaki (BFmp2015198_CR38) 2009; 302
RH Perlis (BFmp2015198_CR4) 2007; 23
LR Haas (BFmp2015198_CR40) 2013; 19
JC Nelson (BFmp2015198_CR14) 2012; 28
L Bradvik (BFmp2015198_CR32) 2008; 117
JF Burke (BFmp2015198_CR43) 2014; 7
C Li (BFmp2015198_CR45) 2010; 52
ST Chao (BFmp2015198_CR13) 2012; 82
R Uher (BFmp2015198_CR9) 2010; 167
KJ Wardenaar (BFmp2015198_CR17) 2014; 44
S Marsland (BFmp2015198_CR27) 2015
DN Klein (BFmp2015198_CR29) 2008; 42
J Endicott (BFmp2015198_CR22) 1978
GC Siontis (BFmp2015198_CR37) 2012; 344
BFmp2015198_CR47
YJ Chang (BFmp2015198_CR12) 2012; 12
G James (BFmp2015198_CR10) 2013
S Kuiper (BFmp2015198_CR3) 2013; 444
J Friedman (BFmp2015198_CR24) 2010; 33
J Angst (BFmp2015198_CR31) 2011; 261
JN Morris (BFmp2015198_CR41) 2014; 14
G Sjostedt (BFmp2015198_CR35) 2002; 1
P Cuijpers (BFmp2015198_CR50) 2012; 29
LL Altshuler (BFmp2015198_CR1) 2001; 7
ME Rice (BFmp2015198_CR33) 2005; 29
JP Singh (BFmp2015198_CR34) 2013; 31
RC Kessler (BFmp2015198_CR20) 1998; 7
RC Kessler (BFmp2015198_CR18) 1994; 51
RH Perlis (BFmp2015198_CR49) 2013; 74
FA Jain (BFmp2015198_CR48) 2013; 30
RC Kessler (BFmp2015198_CR19) 2003; 60
MJ van der Laan (BFmp2015198_CR28) 2007; 6
HM van Loo (BFmp2015198_CR16) 2014; 31
M Riedel (BFmp2015198_CR15) 2011; 133
BFmp2015198_CR26
BFmp2015198_CR25
SE Hetrick (BFmp2015198_CR2) 2011; 45
LM Williams (BFmp2015198_CR42) 2011; 12
RL Spitzer (BFmp2015198_CR21) 1992; 49
T Anothaisintawee (BFmp2015198_CR39) 2012; 133
RH Moos (BFmp2015198_CR30) 1999; 187
RJ Willke (BFmp2015198_CR44) 2012; 12
GE Simon (BFmp2015198_CR51) 2010; 167
JB Echouffo-Tcheugui (BFmp2015198_CR36) 2013; 39
E Vrieze (BFmp2015198_CR6) 2014; 155
HM van Loo (BFmp2015198_CR5) 2012; 10
SH Kennedy (BFmp2015198_CR8) 2012; 18
R Neugebauer (BFmp2015198_CR46) 2014; 33
G Hasler (BFmp2015198_CR7) 2011; 16
8279933 - Arch Gen Psychiatry. 1994 Jan;51(1):8-19
21602829 - Mol Psychiatry. 2011 Jun;16(6):604-19
17466334 - J Psychiatr Res. 2008 Apr;42(5):408-15
23909694 - Acta Psychiatr Scand Suppl. 2013;(444):24-30
20589507 - Eur Arch Psychiatry Clin Neurosci. 2011 Feb;261(1):21-7
21208417 - Trials. 2011 Jan 05;12:4
24080092 - Diabetes Metab. 2013 Oct;39(5):389-96
1637252 - Arch Gen Psychiatry. 1992 Aug;49(8):624-9
20496347 - Biom J. 2010 Jun;52(3):417-35
22681173 - Curr Pharm Des. 2012;18(36):5976-89
23444299 - Behav Sci Law. 2013 Jan-Feb;31(1):55-73
24782322 - Cochrane Database Syst Rev. 2014 Apr 29;(4):MR000034
21489717 - Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):1738-43
25391559 - BMC Health Serv Res. 2014 Nov 14;14:519
24425710 - Circ Cardiovasc Qual Outcomes. 2014 Jan;7(1):163-9
22815247 - Depress Anxiety. 2012 Oct;29(10):855-64
24304255 - Am J Manag Care. 2013 Sep;19(9):725-32
23210727 - BMC Med. 2012 Dec 04;10:156
15990522 - J Psychiatr Pract. 2001 May;7(3):185-208
25066141 - Psychol Med. 2014 Nov;44(15):3289-302
14609887 - Arch Gen Psychiatry. 2003 Nov;60(11):1117-22
10379723 - J Nerv Ment Dis. 1999 Jun;187(6):360-8
19952321 - JAMA. 2009 Dec 2;302(21):2345-52
22292447 - Curr Med Res Opin. 2012 Mar;28(3):325-34
22628003 - BMJ. 2012 May 24;344:e3318
20808728 - J Stat Softw. 2010;33(1):1-22
24210628 - J Affect Disord. 2014 Feb;155:35-41
17910531 - Stat Appl Genet Mol Biol. 2007;6:Article25
20360315 - Am J Psychiatry. 2010 May;167(5):555-64
22214198 - BMC Med Res Methodol. 2012 Jan 03;12:2
18190676 - Acta Psychiatr Scand. 2008 Mar;117(3):185-91
24425049 - Depress Anxiety. 2014 Sep;31(9):765-77
17355728 - Curr Med Res Opin. 2007 Mar;23(3):467-75
24535915 - Stat Med. 2014 Jun 30;33(14):2480-520
20843873 - Am J Psychiatry. 2010 Dec;167(12):1445-55
23380715 - Biol Psychiatry. 2013 Jul 1;74(1):7-14
23234603 - BMC Med Res Methodol. 2012 Dec 13;12:185
16254746 - Law Hum Behav. 2005 Oct;29(5):615-20
22076477 - Breast Cancer Res Treat. 2012 May;133(1):1-10
21999241 - Aust N Z J Psychiatry. 2011 Nov;45(11):993-1001
23288666 - Depress Anxiety. 2013 Jul;30(7):624-30
21555156 - J Affect Disord. 2011 Sep;133(1-2):137-49
References_xml – volume: 31
  start-page: 765
  year: 2014
  end-page: 777
  ident: CR16
  article-title: Major depressive disorder subtypes to predict long-term course
  publication-title: Depress Anxiety
  doi: 10.1002/da.22233
– volume: 302
  start-page: 2345
  year: 2009
  end-page: 2352
  ident: CR38
  article-title: Assessment of claims of improved prediction beyond the Framingham risk score
  publication-title: JAMA
  doi: 10.1001/jama.2009.1757
– volume: 29
  start-page: 615
  year: 2005
  end-page: 620
  ident: CR33
  article-title: Comparing effect sizes in follow-up studies: ROC Area, Cohen's d, and r
  publication-title: Law Hum Behav
  doi: 10.1007/s10979-005-6832-7
– volume: 29
  start-page: 855
  year: 2012
  end-page: 864
  ident: CR50
  article-title: Personalized treatment of adult depression: medication, psychotherapy, or both? A systematic review
  publication-title: Depress Anxiety
  doi: 10.1002/da.21985
– year: 2015
  ident: CR27
  publication-title: Machine Learning: An Algorithmic Perspective
– volume: 7
  start-page: 163
  year: 2014
  end-page: 169
  ident: CR43
  article-title: Using internally developed risk models to assess heterogeneity in treatment effects in clinical trials
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.113.000497
– volume: 6
  start-page: Article 25
  year: 2007
  ident: CR28
  article-title: Super learner
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1309
– volume: 44
  start-page: 3289
  year: 2014
  end-page: 3302
  ident: CR17
  article-title: The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity
  publication-title: Psychol Med
  doi: 10.1017/S0033291714000993
– volume: 7
  start-page: 33
  year: 1998
  end-page: 55
  ident: CR20
  article-title: Methodological studies of the Composite International Diagnostic Interview (CIDI) in the US National Comorbidity Survey
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.33
– volume: 261
  start-page: 21
  year: 2011
  end-page: 27
  ident: CR31
  article-title: Childhood adversity and chronicity of mood disorders
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-010-0120-3
– volume: 10
  start-page: 156
  year: 2012
  ident: CR5
  article-title: Data-driven subtypes of major depressive disorder: a systematic review
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-156
– ident: CR25
– year: 2011
  ident: CR11
  publication-title: Targeted Learning: Causal Inference for Observational and Experimental Data
  doi: 10.1007/978-1-4419-9782-1
– volume: 31
  start-page: 55
  year: 2013
  end-page: 73
  ident: CR34
  article-title: Measurement of predictive validity in violence risk assessment studies: a second-order systematic review
  publication-title: Behav Sci Law
  doi: 10.1002/bsl.2053
– volume: 444
  start-page: 24
  year: 2013
  end-page: 30
  ident: CR3
  article-title: Getting depression clinical practice guidelines right: time for change?
  publication-title: Acta Psychiatr Scand Suppl
  doi: 10.1111/acps.12176
– volume: 12
  start-page: 185
  year: 2012
  ident: CR44
  article-title: From concepts, theory, and evidence of heterogeneity of treatment effects to methodological approaches: a primer
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-12-185
– volume: 33
  start-page: 2480
  year: 2014
  end-page: 2520
  ident: CR46
  article-title: Targeted learning in real-world comparative effectiveness research with time-varying interventions
  publication-title: Stat Med
  doi: 10.1002/sim.6099
– year: 2015
  ident: CR23
  publication-title: An Introduction to Recursive Partitioning Using the RPART Routines
– volume: 52
  start-page: 417
  year: 2010
  end-page: 435
  ident: CR45
  article-title: Evaluating the improvement in diagnostic utility from adding new predictors
  publication-title: Biom J
  doi: 10.1002/bimj.200900228
– volume: 167
  start-page: 555
  year: 2010
  end-page: 564
  ident: CR9
  article-title: Genome-wide pharmacogenetics of antidepressant response in the GENDEP project
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2009.09070932
– volume: 133
  start-page: 137
  year: 2011
  end-page: 149
  ident: CR15
  article-title: Clinical predictors of response and remission in inpatients with depressive syndromes
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2011.04.007
– volume: 18
  start-page: 5976
  year: 2012
  end-page: 5989
  ident: CR8
  article-title: The Canadian Biomarker Integration Network in Depression (CAN-BIND): advances in response prediction
  publication-title: Curr Pharm Des
  doi: 10.2174/138161212803523635
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: CR24
  article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 82
  start-page: 1738
  year: 2012
  end-page: 1743
  ident: CR13
  article-title: Recursive partitioning analysis index is predictive for overall survival in patients undergoing spine stereotactic body radiation therapy for spinal metastases
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.02.019
– ident: CR26
– volume: 7
  start-page: 185
  year: 2001
  end-page: 208
  ident: CR1
  article-title: Treatment of depression in women: a summary of the expert consensus guidelines
  publication-title: J Psychiatr Pract
  doi: 10.1097/00131746-200105000-00006
– volume: 187
  start-page: 360
  year: 1999
  end-page: 368
  ident: CR30
  article-title: Symptom-based predictors of a 10-year chronic course of treated depression
  publication-title: J Nerv Ment Dis
  doi: 10.1097/00005053-199906000-00005
– volume: 1
  start-page: 179
  year: 2002
  end-page: 183
  ident: CR35
  article-title: Risk assessment: what is being predicted by actuarial prediction instruments?
  publication-title: Int J Forensic Ment Health
  doi: 10.1080/14999013.2002.10471172
– volume: 344
  start-page: e3318
  year: 2012
  ident: CR37
  article-title: Comparisons of established risk prediction models for cardiovascular disease: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.e3318
– volume: 74
  start-page: 7
  year: 2013
  end-page: 14
  ident: CR49
  article-title: A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.12.007
– ident: CR47
– volume: 45
  start-page: 993
  year: 2011
  end-page: 1001
  ident: CR2
  article-title: What are specialist mental health clinician attitudes to guideline recommendations for the treatment of depression in young people?
  publication-title: Aust N Z J Psychiatry
  doi: 10.3109/00048674.2011.619161
– year: 1978
  ident: CR22
  publication-title: Family History Research Diagnostic Criteria (FHRDC)
– volume: 60
  start-page: 1117
  year: 2003
  end-page: 1122
  ident: CR19
  article-title: Mild disorders should not be eliminated from the DSM-V
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.60.11.1117
– volume: 19
  start-page: 725
  year: 2013
  end-page: 732
  ident: CR40
  article-title: Risk-stratification methods for identifying patients for care coordination
  publication-title: Am J Manag Care
– year: 2013
  ident: CR10
  publication-title: An Introduction to Statistical Learning: With Applications in R
  doi: 10.1007/978-1-4614-7138-7
– volume: 12
  start-page: 2
  year: 2012
  ident: CR12
  article-title: Risk groups defined by Recursive Partitioning Analysis of patients with colorectal adenocarcinoma treated with colorectal resection
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-12-2
– volume: 39
  start-page: 389
  year: 2013
  end-page: 396
  ident: CR36
  article-title: Comparative performance of diabetes-specific and general population-based cardiovascular risk assessment models in people with diabetes mellitus
  publication-title: Diabetes Metab
  doi: 10.1016/j.diabet.2013.07.002
– volume: 117
  start-page: 185
  year: 2008
  end-page: 191
  ident: CR32
  article-title: Long-term suicide risk of depression in the Lundby cohort 1947–1997—severity and gender
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.2007.01136.x
– volume: 16
  start-page: 604
  year: 2011
  end-page: 619
  ident: CR7
  article-title: Discovering imaging endophenotypes for major depression
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2011.23
– volume: 12
  start-page: 4
  year: 2011
  ident: CR42
  article-title: International Study to Predict Optimized Treatment for Depression (iSPOT-D), a randomized clinical trial: rationale and protocol
  publication-title: Trials
  doi: 10.1186/1745-6215-12-4
– volume: 30
  start-page: 624
  year: 2013
  end-page: 630
  ident: CR48
  article-title: Predictive socioeconomic and clinical profiles of antidepressant response and remission
  publication-title: Depress Anxiety
  doi: 10.1002/da.22045
– volume: 51
  start-page: 8
  year: 1994
  end-page: 19
  ident: CR18
  article-title: Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey
  publication-title: Arch Gen Psychiatry
– volume: 42
  start-page: 408
  year: 2008
  end-page: 415
  ident: CR29
  article-title: Dysthymic disorder and double depression: prediction of 10-year course trajectories and outcomes
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2007.01.009
– volume: 23
  start-page: 467
  year: 2007
  end-page: 475
  ident: CR4
  article-title: Use of treatment guidelines in clinical decision making in bipolar disorder: a pilot survey of clinicians
  publication-title: Curr Med Res Opin
  doi: 10.1185/030079906X167444
– volume: 14
  start-page: 519
  year: 2014
  ident: CR41
  article-title: Predicting risk of hospital and emergency department use for home care elderly persons through a secondary analysis of cross-national data
  publication-title: BMC Health Serv Res
  doi: 10.1186/s12913-014-0519-z
– volume: 49
  start-page: 624
  year: 1992
  end-page: 629
  ident: CR21
  article-title: The Structured Clinical Interview for DSM-III-R (SCID). I: history, rationale, and description
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1992.01820080032005
– volume: 133
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR39
  article-title: Risk prediction models of breast cancer: a systematic review of model performances
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-011-1853-z
– volume: 155
  start-page: 35
  year: 2014
  end-page: 41
  ident: CR6
  article-title: Dimensions in major depressive disorder and their relevance for treatment outcome
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2013.10.020
– volume: 28
  start-page: 325
  year: 2012
  end-page: 334
  ident: CR14
  article-title: Predictors of remission with placebo using an integrated study database from patients with major depressive disorder
  publication-title: Curr Med Res Opin
  doi: 10.1185/03007995.2011.654010
– volume: 167
  start-page: 1445
  year: 2010
  end-page: 1455
  ident: CR51
  article-title: Personalized medicine for depression: can we match patients with treatments?
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2010.09111680
– volume: 155
  start-page: 35
  year: 2014
  ident: BFmp2015198_CR6
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2013.10.020
– volume-title: Machine Learning: An Algorithmic Perspective
  year: 2015
  ident: BFmp2015198_CR27
– volume-title: An Introduction to Statistical Learning: With Applications in R
  year: 2013
  ident: BFmp2015198_CR10
  doi: 10.1007/978-1-4614-7138-7
– volume: 60
  start-page: 1117
  year: 2003
  ident: BFmp2015198_CR19
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.60.11.1117
– volume: 16
  start-page: 604
  year: 2011
  ident: BFmp2015198_CR7
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2011.23
– volume: 29
  start-page: 615
  year: 2005
  ident: BFmp2015198_CR33
  publication-title: Law Hum Behav
  doi: 10.1007/s10979-005-6832-7
– volume: 39
  start-page: 389
  year: 2013
  ident: BFmp2015198_CR36
  publication-title: Diabetes Metab
  doi: 10.1016/j.diabet.2013.07.002
– volume: 117
  start-page: 185
  year: 2008
  ident: BFmp2015198_CR32
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.2007.01136.x
– volume: 12
  start-page: 4
  year: 2011
  ident: BFmp2015198_CR42
  publication-title: Trials
  doi: 10.1186/1745-6215-12-4
– volume: 29
  start-page: 855
  year: 2012
  ident: BFmp2015198_CR50
  publication-title: Depress Anxiety
  doi: 10.1002/da.21985
– volume: 12
  start-page: 185
  year: 2012
  ident: BFmp2015198_CR44
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-12-185
– volume: 261
  start-page: 21
  year: 2011
  ident: BFmp2015198_CR31
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-010-0120-3
– volume: 133
  start-page: 1
  year: 2012
  ident: BFmp2015198_CR39
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-011-1853-z
– volume: 52
  start-page: 417
  year: 2010
  ident: BFmp2015198_CR45
  publication-title: Biom J
  doi: 10.1002/bimj.200900228
– volume: 33
  start-page: 2480
  year: 2014
  ident: BFmp2015198_CR46
  publication-title: Stat Med
  doi: 10.1002/sim.6099
– volume: 7
  start-page: 33
  year: 1998
  ident: BFmp2015198_CR20
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.33
– volume: 31
  start-page: 55
  year: 2013
  ident: BFmp2015198_CR34
  publication-title: Behav Sci Law
  doi: 10.1002/bsl.2053
– volume: 74
  start-page: 7
  year: 2013
  ident: BFmp2015198_CR49
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.12.007
– volume: 23
  start-page: 467
  year: 2007
  ident: BFmp2015198_CR4
  publication-title: Curr Med Res Opin
  doi: 10.1185/030079906X167444
– volume: 44
  start-page: 3289
  year: 2014
  ident: BFmp2015198_CR17
  publication-title: Psychol Med
  doi: 10.1017/S0033291714000993
– volume: 31
  start-page: 765
  year: 2014
  ident: BFmp2015198_CR16
  publication-title: Depress Anxiety
  doi: 10.1002/da.22233
– volume: 19
  start-page: 725
  year: 2013
  ident: BFmp2015198_CR40
  publication-title: Am J Manag Care
– volume: 18
  start-page: 5976
  year: 2012
  ident: BFmp2015198_CR8
  publication-title: Curr Pharm Des
  doi: 10.2174/138161212803523635
– volume: 7
  start-page: 185
  year: 2001
  ident: BFmp2015198_CR1
  publication-title: J Psychiatr Pract
  doi: 10.1097/00131746-200105000-00006
– volume: 444
  start-page: 24
  year: 2013
  ident: BFmp2015198_CR3
  publication-title: Acta Psychiatr Scand Suppl
  doi: 10.1111/acps.12176
– volume: 33
  start-page: 1
  year: 2010
  ident: BFmp2015198_CR24
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 12
  start-page: 2
  year: 2012
  ident: BFmp2015198_CR12
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-12-2
– volume-title: Family History Research Diagnostic Criteria (FHRDC)
  year: 1978
  ident: BFmp2015198_CR22
– volume: 344
  start-page: e3318
  year: 2012
  ident: BFmp2015198_CR37
  publication-title: BMJ
  doi: 10.1136/bmj.e3318
– volume: 1
  start-page: 179
  year: 2002
  ident: BFmp2015198_CR35
  publication-title: Int J Forensic Ment Health
  doi: 10.1080/14999013.2002.10471172
– ident: BFmp2015198_CR47
  doi: 10.1002/14651858.MR000034.pub2
– volume-title: An Introduction to Recursive Partitioning Using the RPART Routines
  year: 2015
  ident: BFmp2015198_CR23
– volume: 6
  start-page: Article 25
  year: 2007
  ident: BFmp2015198_CR28
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1309
– volume: 14
  start-page: 519
  year: 2014
  ident: BFmp2015198_CR41
  publication-title: BMC Health Serv Res
  doi: 10.1186/s12913-014-0519-z
– ident: BFmp2015198_CR25
– volume: 302
  start-page: 2345
  year: 2009
  ident: BFmp2015198_CR38
  publication-title: JAMA
  doi: 10.1001/jama.2009.1757
– volume: 187
  start-page: 360
  year: 1999
  ident: BFmp2015198_CR30
  publication-title: J Nerv Ment Dis
  doi: 10.1097/00005053-199906000-00005
– volume: 30
  start-page: 624
  year: 2013
  ident: BFmp2015198_CR48
  publication-title: Depress Anxiety
  doi: 10.1002/da.22045
– volume: 45
  start-page: 993
  year: 2011
  ident: BFmp2015198_CR2
  publication-title: Aust N Z J Psychiatry
  doi: 10.3109/00048674.2011.619161
– volume-title: Targeted Learning: Causal Inference for Observational and Experimental Data
  year: 2011
  ident: BFmp2015198_CR11
  doi: 10.1007/978-1-4419-9782-1
– volume: 51
  start-page: 8
  year: 1994
  ident: BFmp2015198_CR18
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1994.03950010008002
– volume: 133
  start-page: 137
  year: 2011
  ident: BFmp2015198_CR15
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2011.04.007
– volume: 167
  start-page: 1445
  year: 2010
  ident: BFmp2015198_CR51
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2010.09111680
– volume: 42
  start-page: 408
  year: 2008
  ident: BFmp2015198_CR29
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2007.01.009
– volume: 82
  start-page: 1738
  year: 2012
  ident: BFmp2015198_CR13
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.02.019
– volume: 49
  start-page: 624
  year: 1992
  ident: BFmp2015198_CR21
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1992.01820080032005
– volume: 10
  start-page: 156
  year: 2012
  ident: BFmp2015198_CR5
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-156
– volume: 7
  start-page: 163
  year: 2014
  ident: BFmp2015198_CR43
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.113.000497
– volume: 28
  start-page: 325
  year: 2012
  ident: BFmp2015198_CR14
  publication-title: Curr Med Res Opin
  doi: 10.1185/03007995.2011.654010
– ident: BFmp2015198_CR26
– volume: 167
  start-page: 555
  year: 2010
  ident: BFmp2015198_CR9
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2009.09070932
– reference: 24080092 - Diabetes Metab. 2013 Oct;39(5):389-96
– reference: 23380715 - Biol Psychiatry. 2013 Jul 1;74(1):7-14
– reference: 10379723 - J Nerv Ment Dis. 1999 Jun;187(6):360-8
– reference: 14609887 - Arch Gen Psychiatry. 2003 Nov;60(11):1117-22
– reference: 21555156 - J Affect Disord. 2011 Sep;133(1-2):137-49
– reference: 8279933 - Arch Gen Psychiatry. 1994 Jan;51(1):8-19
– reference: 25066141 - Psychol Med. 2014 Nov;44(15):3289-302
– reference: 22076477 - Breast Cancer Res Treat. 2012 May;133(1):1-10
– reference: 23234603 - BMC Med Res Methodol. 2012 Dec 13;12:185
– reference: 23444299 - Behav Sci Law. 2013 Jan-Feb;31(1):55-73
– reference: 23210727 - BMC Med. 2012 Dec 04;10:156
– reference: 22815247 - Depress Anxiety. 2012 Oct;29(10):855-64
– reference: 19952321 - JAMA. 2009 Dec 2;302(21):2345-52
– reference: 23909694 - Acta Psychiatr Scand Suppl. 2013;(444):24-30
– reference: 21208417 - Trials. 2011 Jan 05;12:4
– reference: 22292447 - Curr Med Res Opin. 2012 Mar;28(3):325-34
– reference: 21602829 - Mol Psychiatry. 2011 Jun;16(6):604-19
– reference: 20589507 - Eur Arch Psychiatry Clin Neurosci. 2011 Feb;261(1):21-7
– reference: 24782322 - Cochrane Database Syst Rev. 2014 Apr 29;(4):MR000034
– reference: 17910531 - Stat Appl Genet Mol Biol. 2007;6:Article25
– reference: 22214198 - BMC Med Res Methodol. 2012 Jan 03;12:2
– reference: 18190676 - Acta Psychiatr Scand. 2008 Mar;117(3):185-91
– reference: 25391559 - BMC Health Serv Res. 2014 Nov 14;14:519
– reference: 17466334 - J Psychiatr Res. 2008 Apr;42(5):408-15
– reference: 23288666 - Depress Anxiety. 2013 Jul;30(7):624-30
– reference: 21999241 - Aust N Z J Psychiatry. 2011 Nov;45(11):993-1001
– reference: 20360315 - Am J Psychiatry. 2010 May;167(5):555-64
– reference: 15990522 - J Psychiatr Pract. 2001 May;7(3):185-208
– reference: 24210628 - J Affect Disord. 2014 Feb;155:35-41
– reference: 22628003 - BMJ. 2012 May 24;344:e3318
– reference: 24425049 - Depress Anxiety. 2014 Sep;31(9):765-77
– reference: 24304255 - Am J Manag Care. 2013 Sep;19(9):725-32
– reference: 22681173 - Curr Pharm Des. 2012;18(36):5976-89
– reference: 24535915 - Stat Med. 2014 Jun 30;33(14):2480-520
– reference: 17355728 - Curr Med Res Opin. 2007 Mar;23(3):467-75
– reference: 16254746 - Law Hum Behav. 2005 Oct;29(5):615-20
– reference: 21489717 - Int J Radiat Oncol Biol Phys. 2012 Apr 1;82(5):1738-43
– reference: 20496347 - Biom J. 2010 Jun;52(3):417-35
– reference: 1637252 - Arch Gen Psychiatry. 1992 Aug;49(8):624-9
– reference: 20843873 - Am J Psychiatry. 2010 Dec;167(12):1445-55
– reference: 24425710 - Circ Cardiovasc Qual Outcomes. 2014 Jan;7(1):163-9
– reference: 20808728 - J Stat Softw. 2010;33(1):1-22
SSID ssj0014765
Score 2.594938
Snippet Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. Although efforts to use symptom profiles or biomarkers to...
Heterogeneity of major depressive disorder (MDD) illness course complicates clinical decision-making. While efforts to use symptom profiles or biomarkers to...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1366
SubjectTerms 692/699/476
Adolescent
Adult
Algorithms
Behavioral Sciences
Biological Psychology
Biomarkers
Clinical decision making
Cluster analysis
Comorbidity
Consent
Decision making
Depression (Mood disorder)
Depressive Disorder, Major - diagnosis
Diagnosis
Diagnostic and Statistical Manual of Mental Disorders
Disease Progression
Female
Forecasting - methods
Health care policy
Human subjects
Humans
Interviews
Learning algorithms
Logistic Models
Logistic regression
Longitudinal Studies
Machine Learning
Male
Medical schools
Medicine
Medicine & Public Health
Mental depression
Mental disorders
Mental health
Middle Aged
Neurosciences
original-article
Pharmacotherapy
Polls & surveys
Prognosis
Prospective Studies
Psychiatry
Public health
R&D
Regression analysis
Research & development
Risk factors
Self Report
Severe acute respiratory syndrome
Severity of Illness Index
Suicide
Surveys and Questionnaires
Title Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
URI https://link.springer.com/article/10.1038/mp.2015.198
https://www.ncbi.nlm.nih.gov/pubmed/26728563
https://www.proquest.com/docview/1820590076
https://www.proquest.com/docview/2645764688
https://www.proquest.com/docview/1821791953
https://www.proquest.com/docview/1827919283
https://pubmed.ncbi.nlm.nih.gov/PMC4935654
Volume 21
WOSCitedRecordID wos000384127000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1476-5578
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014765
  issn: 1359-4184
  databaseCode: M7P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1476-5578
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014765
  issn: 1359-4184
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-5578
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014765
  issn: 1359-4184
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-5578
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0014765
  issn: 1359-4184
  databaseCode: M2M
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZN0kKg9JG-3KZBhZRCQY1fevhU0pLQS5alpLA3Y8tSkrJrO7tOoPf-8M7YshtvQy69GNYaay1rJH2jGX1DyL4FDJor3zJf5pLFAJlZogLN_Fz6OrKhjbluk03IyUTNZsnUbbitXFhlPye2E3VRadwjP0CiccxwKcXn-pJh1ij0rroUGhtkC5nKQM-3vhxNpt8HP0Is22SSQcTR36lid0LPj9TBAtkqA_4JrO7RmrQ-M99YmtbDJtd8p-2SdPz4fxvzhDxyYJQedtrzlNwz5Q550KWn_LVDHnZ7erQ7qvSM_D5FSo7yjGZ00cZgGuaSTsCt-Rn8QXO-oE1F6yW6fxoK4JLWuCG3apE5zcqCwkpsMGEerSzU8rNa0j4Y99rQwnGBUjz1QnGFRRQMz8wtc96N5-TH8dHp12_MZXFgGtBLw2ziR3GWAyxNctAMgJNaRjrKwbLTxldJ5ltf-0Zzk4kozANlpShyDoaz1bxQInpBNsuqNK8IlSbUCVh0EnkDg5hDpWCNFqERPLRFoD3yse_HVDuKc8y0MU9bV3uk0kWdYqen0Oke2R-E647Z43axD6gQKY53qEtn7tgCvBEyZ6WHscDTzWBFemR3JAnjVI-Le11I3TyxSv8qwq3FgFbBHoyFgtd4NxRjxRgaV5rqqq0CKWYTHt0pgyIAJT3yslPioc2hkKHiAkrkSL0HASQgH5eUF-ctEXkMLRM89sj7fiDcaNm_n_L13V_gDdkGSdFFSu6SzWZ5Zd6S-_q6uVgt98iGnMn2qvbcKIdfJ-EJXuX0DynSW58
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTxQxEJ_gocHE-IGop6g1gZiYrOxHu-0-GIMKgYAXYs6Et3W32wLmbve8WzC8-_f4NzqzHyd3Et548PU6O2l70-lvOl8AaxYxaKpc67gylQ5HyOxEytOOm0pXB9a3XOiq2YTs9dThYXSwAL_bXBgKq2x1YqWos0LTG_kGFRqnDpcyfD_64VDXKPKuti00arHYM-c_0WSbvNv9hP_vuu9vb_U_7jhNVwFH421aOjZyA56kCJOiFGeK8EbLQAcpWhrauCpKXOtq12hhkjDwU09ZGWapQEPOapGpMEC-N2CRB6hiOrD4Yat38GXqt-Cyal7pBYL8q4o3GYFuoDaGVB3TE2_Ryp-5A-dvggtX4XyY5pyvtroCt-_9b5t3H-42YJtt1qfjASyYfBlu1e03z5fhTv1myepUrIfwq08lR_IjlrBhFWNqnKapBv40OMIFlcdDVhZsNCb3VskQPLMRPThOKsuDJXnGEGkYagjICotcvhdj1gYbnxmWNbVOGWX1MEIQhPLxm4F1Gu_NCny9li15BJ28yM0TYNL4OkKLVVJdRI8LZIrWduabUPg283QX3rRyE-umhDt1EhnEVShBoOLhKCYhi1HIurA2JR7VlUsuJ3tNAhiTPkNeOmnSMnBGVBks3uQhZW-jldyF1RlK1EN6driVvbjRg5P4r-BdOoxoHO1dHiqcxqvpMDGm0L_cFKcVCyqhG4ngShoiQajchcf1oZmu2Q-lr0SII3LmOE0JqMD67Eh-clwVWue4slDwLqy3B-_Cyv7dyqdX78BLWNrpf96P93d7e8_gNn4V1lGhq9Apx6fmOdzUZ-XJZPyi0SoMvl33WfwDFIu0Sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAhUS4lFegQKL1AoJycSvffiAUEWJqIqiHoqUm7HXu30osU3iFvXOr-LXMeNHaELVWw9cs-PR7mZmdmZ35huATYs-aKpc67gylU6ILrMTKU87bipdHVjfhlzXzSbkcKhGo2h_BX53tTCUVtnZxNpQZ4WmO_I-AY1Th0sp-rZNi9jfGXwsfzjUQYpeWrt2Go2I7Jnznxi-zT7s7uB_veX7g88Hn744bYcBR-PJWjk2coMwSdFlilKcNbo6WgY6SDHq0MZVUeJaV7tGc5OIwE89ZaXIUo5BndU8UyJAvjfgJkEKko7J0TzY80JZt7H0Ak4vrSpsawPdQPUnhJPp8fcY7y-chstnwoVDcTlhc-nVtj4MB_f_5218APdaF5xtNzrzEFZMvg63m6ac5-twt7nJZE2B1iP4dUBAJPkhS9ikzjw1TttqA38aH-KCqqMJqwpWTunRq2LoUrOSriFndTzCkjxj6H8YahPICotcToop61KQzwzLWgRURrU-jPwK8v3xm7F12jedx_DtWrbkCazmRW6eAZPG1xHGsZLQEr2QI1OMwTPfCO7bzNM9eNfJUKxbYHfqLzKO6wSDQMWTMiaBi1HgerA5Jy4bPJPLyd6SMMZk5ZCXTtpiDZwR4YXF26Ggmm6MnXuwsUCJ1kkvDndyGLfWcRb_FcJLh9FHxyg4FAqn8WY-TIwpITA3xWnNgoB1Ix5cSUMk6ED34GmjQPM1-0L6igsckQuqNScg2PXFkfz4qIZfD3Flgoc92OqU8MLK_t3K51fvwGtYQwWMv-4O917AHfxINKmiG7BaTU_NS7ilz6rj2fRVbV4YfL9uRfwDgMi7oA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+a+machine-learning+algorithm+to+predict+the+persistence+and+severity+of+major+depressive+disorder+from+baseline+self-reports&rft.jtitle=Molecular+psychiatry&rft.au=Kessler%2C+R+C&rft.au=Van+Loo%2C+H+M&rft.au=Wardenaar%2C+K+J&rft.au=Bossarte%2C+R+M&rft.date=2016-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1359-4184&rft.eissn=1476-5578&rft.volume=21&rft.issue=10&rft.spage=1366&rft_id=info:doi/10.1038%2Fmp.2015.198&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4186475171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4184&client=summon