Increased DNA methylation variability in type 1 diabetes across three immune effector cell types

The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 7; no. 1; pp. 13555 - 11
Main Authors: Paul, Dirk S., Teschendorff, Andrew E., Dang, Mary A.N., Lowe, Robert, Hawa, Mohammed I., Ecker, Simone, Beyan, Huriya, Cunningham, Stephanie, Fouts, Alexandra R., Ramelius, Anita, Burden, Frances, Farrow, Samantha, Rowlston, Sophia, Rehnstrom, Karola, Frontini, Mattia, Downes, Kate, Busche, Stephan, Cheung, Warren A., Ge, Bing, Simon, Marie-Michelle, Bujold, David, Kwan, Tony, Bourque, Guillaume, Datta, Avik, Lowy, Ernesto, Clarke, Laura, Flicek, Paul, Libertini, Emanuele, Heath, Simon, Gut, Marta, Gut, Ivo G, Ouwehand, Willem H., Pastinen, Tomi, Soranzo, Nicole, Hofer, Sabine E., Karges, Beate, Meissner, Thomas, Boehm, Bernhard O., Cilio, Corrado, Elding Larsson, Helena, Lernmark, Åke, Steck, Andrea K., Rakyan, Vardhman K., Beck, Stephan, Leslie, R. David
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.11.2016
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The incidence of type 1 diabetes (T1D) has substantially increased over the past decade, suggesting a role for non-genetic factors such as epigenetic mechanisms in disease development. Here we present an epigenome-wide association study across 406,365 CpGs in 52 monozygotic twin pairs discordant for T1D in three immune effector cell types. We observe a substantial enrichment of differentially variable CpG positions (DVPs) in T1D twins when compared with their healthy co-twins and when compared with healthy, unrelated individuals. These T1D-associated DVPs are found to be temporally stable and enriched at gene regulatory elements. Integration with cell type-specific gene regulatory circuits highlight pathways involved in immune cell metabolism and the cell cycle, including mTOR signalling. Evidence from cord blood of newborns who progress to overt T1D suggests that the DVPs likely emerge after birth. Our findings, based on 772 methylomes, implicate epigenetic changes that could contribute to disease pathogenesis in T1D. The incidence of type 1 diabetes is increasing, potentially implicating non-genetic factors. Here the authors conduct an epigenome-wide association study in disease-discordant twins and find increased DNA methylation variability at genes associated with immune cell metabolism and the cell cycle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms13555