Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis

Single-cell multiomic analysis of the epigenome, transcriptome, and proteome allows for comprehensive characterization of the molecular circuitry that underpins cell identity and state. However, the holistic interpretation of such datasets presents a challenge given a paucity of approaches for syste...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genome Biology Ročník 25; číslo 1; s. 181
Hlavní autoři: Curion, Fabiola, Rich-Griffin, Charlotte, Agarwal, Devika, Ouologuem, Sarah, Rue-Albrecht, Kevin, May, Lilly, Garcia, Giulia E. L., Heumos, Lukas, Thomas, Tom, Lason, Wojciech, Sims, David, Theis, Fabian J., Dendrou, Calliope A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 08.07.2024
Springer Nature B.V
BMC
Témata:
ISSN:1474-760X, 1474-7596, 1474-760X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Single-cell multiomic analysis of the epigenome, transcriptome, and proteome allows for comprehensive characterization of the molecular circuitry that underpins cell identity and state. However, the holistic interpretation of such datasets presents a challenge given a paucity of approaches for systematic, joint evaluation of different modalities. Here, we present Panpipes, a set of computational workflows designed to automate multimodal single-cell and spatial transcriptomic analyses by incorporating widely-used Python-based tools to perform quality control, preprocessing, integration, clustering, and reference mapping at scale. Panpipes allows reliable and customizable analysis and evaluation of individual and integrated modalities, thereby empowering decision-making before downstream investigations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-024-03322-7