SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data

Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations. Results We propose a novel computati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genome Biology Ročník 22; číslo 1; s. 37
Hlavní autoři: Davis, Eric M., Sun, Yu, Liu, Yanling, Kolekar, Pandurang, Shao, Ying, Szlachta, Karol, Mulder, Heather L., Ren, Dongren, Rice, Stephen V., Wang, Zhaoming, Nakitandwe, Joy, Gout, Alexander M., Shaner, Bridget, Hall, Salina, Robison, Leslie L., Pounds, Stanley, Klco, Jeffery M., Easton, John, Ma, Xiaotu
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 25.01.2021
Springer Nature B.V
BMC
Témata:
ISSN:1474-760X, 1474-7596, 1474-760X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations. Results We propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket. Conclusions Our study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.
AbstractList Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations. Results We propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket. Conclusions Our study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.
Abstract Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations. Results We propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket. Conclusions Our study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.
There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations.BACKGROUNDThere is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations.We propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket.RESULTSWe propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket.Our study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.CONCLUSIONSOur study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.
BACKGROUND: There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations. RESULTS: We propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket. CONCLUSIONS: Our study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.
There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation sequencing applications aimed at discovering the genetic makeup of heterogeneous cellular populations. We propose a novel computational method, SequencErr, to address this challenge by measuring the base correspondence between overlapping regions in forward and reverse reads. An analysis of 3777 public datasets from 75 research institutions in 18 countries revealed the sequencer error rate to be ~ 10 per million (pm) and 1.4% of sequencers and 2.7% of flow cells have error rates > 100 pm. At the flow cell level, error rates are elevated in the bottom surfaces and > 90% of HiSeq and NovaSeq flow cells have at least one outlier error-prone tile. By sequencing a common DNA library on different sequencers, we demonstrate that sequencers with high error rates have reduced overall sequencing accuracy, and removal of outlier error-prone tiles improves sequencing accuracy. We demonstrate that SequencErr can reveal novel insights relative to the popular quality control method FastQC and achieve a 10-fold lower error rate than popular error correction methods including Lighter and Musket. Our study reveals novel insights into the nature of DNA sequencing errors incurred on DNA sequencers. Our method can be used to assess, calibrate, and monitor sequencer accuracy, and to computationally suppress sequencer errors in existing datasets.
ArticleNumber 37
Author Ren, Dongren
Shaner, Bridget
Robison, Leslie L.
Shao, Ying
Liu, Yanling
Pounds, Stanley
Gout, Alexander M.
Ma, Xiaotu
Rice, Stephen V.
Nakitandwe, Joy
Easton, John
Sun, Yu
Davis, Eric M.
Szlachta, Karol
Hall, Salina
Klco, Jeffery M.
Wang, Zhaoming
Mulder, Heather L.
Kolekar, Pandurang
Author_xml – sequence: 1
  givenname: Eric M.
  surname: Davis
  fullname: Davis, Eric M.
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 2
  givenname: Yu
  surname: Sun
  fullname: Sun, Yu
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital, Department of Computer Science, University of Memphis
– sequence: 3
  givenname: Yanling
  surname: Liu
  fullname: Liu, Yanling
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 4
  givenname: Pandurang
  surname: Kolekar
  fullname: Kolekar, Pandurang
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 5
  givenname: Ying
  surname: Shao
  fullname: Shao, Ying
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 6
  givenname: Karol
  surname: Szlachta
  fullname: Szlachta, Karol
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 7
  givenname: Heather L.
  surname: Mulder
  fullname: Mulder, Heather L.
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 8
  givenname: Dongren
  surname: Ren
  fullname: Ren, Dongren
– sequence: 9
  givenname: Stephen V.
  surname: Rice
  fullname: Rice, Stephen V.
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 10
  givenname: Zhaoming
  surname: Wang
  fullname: Wang, Zhaoming
  organization: Department of Epidemiology & Cancer Control, St. Jude Children’s Research Hospital
– sequence: 11
  givenname: Joy
  surname: Nakitandwe
  fullname: Nakitandwe, Joy
  organization: Department of Pathology, St. Jude Children’s Research Hospital
– sequence: 12
  givenname: Alexander M.
  surname: Gout
  fullname: Gout, Alexander M.
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 13
  givenname: Bridget
  surname: Shaner
  fullname: Shaner, Bridget
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 14
  givenname: Salina
  surname: Hall
  fullname: Hall, Salina
  organization: Discovery Life Sciences
– sequence: 15
  givenname: Leslie L.
  surname: Robison
  fullname: Robison, Leslie L.
  organization: Department of Epidemiology & Cancer Control, St. Jude Children’s Research Hospital
– sequence: 16
  givenname: Stanley
  surname: Pounds
  fullname: Pounds, Stanley
  organization: Department of Biostatistics, St. Jude Children’s Research Hospital
– sequence: 17
  givenname: Jeffery M.
  surname: Klco
  fullname: Klco, Jeffery M.
  organization: Department of Pathology, St. Jude Children’s Research Hospital
– sequence: 18
  givenname: John
  surname: Easton
  fullname: Easton, John
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
– sequence: 19
  givenname: Xiaotu
  orcidid: 0000-0002-6233-2145
  surname: Ma
  fullname: Ma, Xiaotu
  email: Xiaotu.Ma@stjude.org
  organization: Department of Computational Biology, St. Jude Children’s Research Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33487172$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URB_wB1igSGzYBPxKbLNAQlWBSpVYABKsLNu5GTzK2MFOEPx7nEkH2i7KIs7rO0fXPucUHYUYAKGnBL8kRLavMmG4UTWmuFy04TV9gE4IF7wWLf56dOP5GJ3mvMWYKE7bR-iYMS4FEfQEffsEP2YI7iKl19UOTJ6TD5vKhK7K8zgmyHl5zysFqYKUYsqVD1WAX1O9gQDJTD6GA7PgnZnMY_SwN0OGJ9f3M_Tl3cXn8w_11cf3l-dvr2onsJxqsIxKaQnpLGlbaXhPWtErBg4wEcCgJb1wQEGwxnXMMKmM4AaUY5YXITtDl6tvF81Wj8nvTPqto_F6_yGmjTZp8m4AbbntrMMgjOUcjJHMWsU4Z6zjjDZ98Xqzeo2z3UHnIEzJDLdMb_8J_rvexJ9aSKpKFsXgxbVBiuU08qR3PjsYBhMgzlnThpToOJHN_1EusShBtbigz--g2zinUE61UIpQ1ZS1UM9uDv936kPYBZAr4FLMOUGvnZ_22ZW9-EETrJde6bVXuvRK73ulFym9Iz243ytiqyiPS6kg_Rv7HtUfpuThIQ
CitedBy_id crossref_primary_10_1097_IM9_0000000000000134
crossref_primary_10_1016_j_compbiomed_2025_111079
crossref_primary_10_3390_foods11233777
crossref_primary_10_1038_s41588_023_01376_0
crossref_primary_10_3390_ijms25179270
crossref_primary_10_1186_s12864_024_10137_0
crossref_primary_10_48130_vegres_0025_0021
crossref_primary_10_1016_j_crmeth_2021_100106
crossref_primary_10_1186_s13059_023_02922_z
crossref_primary_10_1038_s41467_023_37438_4
crossref_primary_10_1038_s41598_024_60524_6
crossref_primary_10_1016_j_ijbiomac_2024_136424
crossref_primary_10_3390_pharmaceutics17030295
crossref_primary_10_1016_j_apsb_2025_03_005
crossref_primary_10_1016_j_freeradbiomed_2025_06_027
crossref_primary_10_1016_j_ijbiomac_2025_146740
crossref_primary_10_3390_ijms251910818
crossref_primary_10_3390_microorganisms10101882
crossref_primary_10_3389_fgene_2023_1144221
crossref_primary_10_1016_j_cbd_2024_101379
crossref_primary_10_1002_qub2_99
crossref_primary_10_3390_genes15060787
crossref_primary_10_1186_s40364_023_00449_w
crossref_primary_10_1158_1078_0432_CCR_24_1063
crossref_primary_10_2147_IDR_S491858
crossref_primary_10_3389_fgene_2024_1365285
crossref_primary_10_3390_ijms25010657
crossref_primary_10_48130_mpb_0025_0001
crossref_primary_10_1007_s00122_025_04999_5
crossref_primary_10_1016_j_tig_2021_08_007
crossref_primary_10_1038_s41598_025_15221_3
crossref_primary_10_1186_s12870_024_05291_2
crossref_primary_10_3390_cancers13071591
Cites_doi 10.1101/gr.8.3.186
10.1186/s13059-014-0509-9
10.1186/s12864-015-2194-9
10.1186/s12864-015-1263-4
10.1126/science.1186802
10.1038/srep24607
10.1093/bioinformatics/bts690
10.1038/nrg.2017.117
10.1038/s41591-019-0652-7
10.1038/nmeth.1492
10.5281/zenodo.4312180
10.1186/s13059-020-01988-3
10.1111/j.1755-0998.2011.03024.x
10.1186/s12859-017-1469-3
10.1146/annurev-anchem-062012-092628
10.1038/nature08658
10.1371/journal.pone.0169774
10.1093/genetics/156.1.297
10.1093/nar/gks918
10.1158/1541-7786.MCR-18-0620
10.1182/blood.2019002220
10.1093/bioinformatics/btp324
10.1038/nrg.2016.49
10.1186/s13059-019-1659-6
10.1038/s41587-019-0171-6
10.5281/zenodo.4313906
10.1186/s12885-019-6313-x
10.1200/JCO.2018.77.8589
10.1126/science.aar3247
10.7554/eLife.03300
ContentType Journal Article
Copyright The Author(s) 2021
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-020-02254-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Sciences
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
AGRICOLA
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 37
ExternalDocumentID oai_doaj_org_article_b4bdbc0e7ab44eaa83bb934433d4325f
PMC7829059
33487172
10_1186_s13059_020_02254_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: P30CA021765
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: Fund for Innovation in Cancer Informatics
– fundername: American Lebanese Syrian Associated Charities
  funderid: http://dx.doi.org/10.13039/100012524
– fundername: NIH HHS
  grantid: P30CA021765
– fundername: ;
– fundername: ;
  grantid: P30CA021765
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
AFFHD
CITATION
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c708t-eb3288b11db1668a4f167f93ece017e3e61f7ce2e735cd3a389a74ae9c3b488b3
IEDL.DBID DOA
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610871000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1474-7596
IngestDate Fri Oct 03 12:51:42 EDT 2025
Tue Nov 04 02:05:43 EST 2025
Thu Sep 04 17:20:17 EDT 2025
Sun Nov 09 12:43:48 EST 2025
Tue Oct 14 12:41:10 EDT 2025
Thu Jan 02 22:55:37 EST 2025
Sat Nov 29 04:55:56 EST 2025
Tue Nov 18 22:04:53 EST 2025
Sat Sep 06 07:17:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Error suppression
Sequencer/instrument error
DNA sequencing
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c708t-eb3288b11db1668a4f167f93ece017e3e61f7ce2e735cd3a389a74ae9c3b488b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6233-2145
OpenAccessLink https://doaj.org/article/b4bdbc0e7ab44eaa83bb934433d4325f
PMID 33487172
PQID 2491295491
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_b4bdbc0e7ab44eaa83bb934433d4325f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7829059
proquest_miscellaneous_2511184185
proquest_miscellaneous_2480733460
proquest_journals_2491295491
pubmed_primary_33487172
crossref_citationtrail_10_1186_s13059_020_02254_2
crossref_primary_10_1186_s13059_020_02254_2
springer_journals_10_1186_s13059_020_02254_2
PublicationCentury 2000
PublicationDate 2021-01-25
PublicationDateYYYYMMDD 2021-01-25
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2021
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References X Ma (2254_CR8) 2019; 20
L Song (2254_CR20) 2014; 15
H Li (2254_CR28) 2009; 25
B Li (2254_CR9) 2020; 135
MW Nachman (2254_CR12) 2000; 156
2254_CR27
L Pan (2254_CR18) 2015; 16
P Razavi (2254_CR4) 2019; 25
DW Craig (2254_CR26) 2016; 6
K Mitchell (2254_CR22) 2020; 21
S Goodwin (2254_CR6) 2016; 17
Y Liu (2254_CR21) 2013; 29
R D'Amore (2254_CR14) 2016; 17
S Chen (2254_CR17) 2017; 18
JC Roach (2254_CR13) 2010; 328
V Potapov (2254_CR11) 2017; 12
2254_CR7
DM Fowler (2254_CR16) 2010; 7
S., A (2254_CR19) 2010
JJ Salk (2254_CR2) 2018; 19
ED Pleasance (2254_CR25) 2010; 463
2254_CR15
A Wilm (2254_CR29) 2012; 40
B Ewing (2254_CR23) 1998; 8
2254_CR31
2254_CR30
JD Cohen (2254_CR3) 2018; 359
2254_CR10
DJ Craig (2254_CR24) 2019; 19
P Rugbjerg (2254_CR1) 2019; 37
TC Glenn (2254_CR5) 2011; 11
References_xml – volume: 8
  start-page: 186
  year: 1998
  ident: 2254_CR23
  publication-title: Genome Res
  doi: 10.1101/gr.8.3.186
– volume: 15
  start-page: 509
  year: 2014
  ident: 2254_CR20
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0509-9
– volume: 17
  start-page: 55
  year: 2016
  ident: 2254_CR14
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2194-9
– volume: 16
  start-page: 83
  year: 2015
  ident: 2254_CR18
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1263-4
– volume: 328
  start-page: 636
  year: 2010
  ident: 2254_CR13
  publication-title: Science
  doi: 10.1126/science.1186802
– volume: 6
  start-page: 24607
  year: 2016
  ident: 2254_CR26
  publication-title: Sci Rep
  doi: 10.1038/srep24607
– volume: 29
  start-page: 308
  year: 2013
  ident: 2254_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts690
– volume: 19
  start-page: 269
  year: 2018
  ident: 2254_CR2
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2017.117
– volume: 25
  start-page: 1928
  year: 2019
  ident: 2254_CR4
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0652-7
– volume: 7
  start-page: 741
  year: 2010
  ident: 2254_CR16
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1492
– ident: 2254_CR30
  doi: 10.5281/zenodo.4312180
– volume: 21
  start-page: 71
  year: 2020
  ident: 2254_CR22
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-01988-3
– volume: 11
  start-page: 759
  year: 2011
  ident: 2254_CR5
  publication-title: Mol Ecol Resour
  doi: 10.1111/j.1755-0998.2011.03024.x
– volume: 18
  start-page: 80
  year: 2017
  ident: 2254_CR17
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1469-3
– ident: 2254_CR7
  doi: 10.1146/annurev-anchem-062012-092628
– volume: 463
  start-page: 191
  year: 2010
  ident: 2254_CR25
  publication-title: Nature
  doi: 10.1038/nature08658
– volume: 12
  year: 2017
  ident: 2254_CR11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169774
– volume: 156
  start-page: 297
  year: 2000
  ident: 2254_CR12
  publication-title: Genetics
  doi: 10.1093/genetics/156.1.297
– volume: 40
  start-page: 11189
  year: 2012
  ident: 2254_CR29
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks918
– ident: 2254_CR10
  doi: 10.1158/1541-7786.MCR-18-0620
– volume: 135
  start-page: 41
  year: 2020
  ident: 2254_CR9
  publication-title: Blood
  doi: 10.1182/blood.2019002220
– volume: 25
  start-page: 1754
  year: 2009
  ident: 2254_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 17
  start-page: 333
  year: 2016
  ident: 2254_CR6
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.49
– volume: 20
  start-page: 50
  year: 2019
  ident: 2254_CR8
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1659-6
– volume: 37
  start-page: 869
  year: 2019
  ident: 2254_CR1
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0171-6
– ident: 2254_CR31
  doi: 10.5281/zenodo.4313906
– volume: 19
  start-page: 1081
  year: 2019
  ident: 2254_CR24
  publication-title: BMC Cancer
  doi: 10.1186/s12885-019-6313-x
– ident: 2254_CR27
  doi: 10.1200/JCO.2018.77.8589
– volume-title: FastQC: a quality control tool for high throughput sequence data
  year: 2010
  ident: 2254_CR19
– volume: 359
  start-page: 926
  year: 2018
  ident: 2254_CR3
  publication-title: Science
  doi: 10.1126/science.aar3247
– ident: 2254_CR15
  doi: 10.7554/eLife.03300
SSID ssj0019426
ssj0017866
Score 2.511164
Snippet Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for...
There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for next-generation...
Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for...
BACKGROUND: There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for...
Abstract Background There is currently no method to precisely measure the errors that occur in the sequencing instrument/sequencer, which is critical for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms Accuracy
Algorithms
Animal Genetics and Genomics
Bioinformatics
Biomedical and Life Sciences
Calibration
Computer applications
data collection
Datasets
Deoxyribonucleic acid
DNA
DNA libraries
DNA sequencing
Error suppression
Evolutionary Biology
Gene Library
genome
High-Throughput Nucleotide Sequencing - methods
Human Genetics
Humans
Life Sciences
Microbial Genetics and Genomics
Models, Genetic
Mutation
Next-generation sequencing
Nucleotide sequence
Plant Genetics and Genomics
Quality control
SARS-CoV-2
Sequence Analysis, DNA - methods
Sequencer/instrument error
SummonAdditionalLinks – databaseName: Biological Sciences
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9QwDI5gAYkL70dhQUXiBtU2zbNcEKBdcUCrlXhoOUVJ6y4jQWdoZ5D499jpYzU85sKxjVslsePY8Rebsac1oF5sQGWGB5lJAI9rDtBVEaXQwAtvY_2UT-_M8bE9PS1PxgO3foRVTjoxKup6WdEZ-QG6CTzGpPjL1feMqkZRdHUsoXGRXaIsCUWE7p3MUQRjyVYZH0pZDFeNCICoSj3doLH6oEdFrsqMPCnc0pTMiq1dKibz_5sF-ieQ8rdoatykjq7_7_BusGujeZq-GuTpJrsA7S12ZShY-fM2-_x-QF4fdt2L9Fs8XsR-pL6t036zGjC1-Dzhs7sUum7Z9emiTVtysc9ikmuShYmGyAmleod9PDr88OZtNhZnyCqT23WGTnhhbeC8Dlxr62XDtWlKARXgxIMAzRtTQQFGqKoWHg0jb6SHshIBlUYQd9leu2zhPkutMkF7NPWDquOJVIO_DTqAtKB9XiaMT8xw1Zi5nApofHXRg7HaDQx0yEAXGeiKhD2bv1kNeTt2Ur8mHs-UlHM7vlh2Z25cwi7IUIcqB-ODlOC9FSGUQkohaikK1SRsf2KtGxVB7875mrAnczMuYYrL-BaWG6KxVDpT6nwHDRrG6IyjdZWwe4PQzb2ly9ToleMozJY4bg1nu6VdfImpxA3F0RXO8PNJcM-7_u_perB7pA_Z1YKQPznPCrXP9tbdBh6xy9WP9aLvHscl-gu-4kCz
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0EItSFwoz5LSoiBxg4g4fqY3ilpxQBWiUJWTZSeTdqWSrZxdpP59x86jWloqwTHxxHLG8_SMZwh5WwPKxQZEpqjjGQewyHOArgormQRaWB37pxx_UYeH-uSk_DpcCuvGbPcxJBkldWRrLT90KG1FmQV3B_WO4BkK3nVUdzo0bPh2dDzFDkpUOuP1mFu_W1FBsVL_beblzSzJP0KlUQMdbPzf2h-TR4PFmX7sSeQJuQftU_Kg70F5-Yz8POqTqfe9301_xRNDnDm1bZ12y4s-TRafx5Rrn4L3c9-lszZtg9d8GutWh-0dYQJ4SDx9Tn4c7H__9Dkb-i1klcr1IkO_utDaUVo7KqW2vKFSNSWDCpBvgYGkjaqgAMVEVTOLto5V3EJZMYdywLEXZK2dt_CSpFooJy1a707U8ZCpwWmddMA1SJuXCaHjFphqKEYeemKcm-iUaGl6lBlEmYkoM0VC3k3fXPSlOO6E3gs7O0GGMtrxxdyfmoErjeOudlUOyjrOwVrNnCsZ54zVnBWiScj2SBdm4O3OoMNKY3SUJuTNNIxcGUIttoX5MsDo0A2Ty_wOGLR10b9Ggykhmz2pTasN96PR0ca_UCtEuPI7qyPt7CxWB1chNC4Qw-9HUrxe-t_RtfVv4K_IwyIk9-Q0K8Q2WVv4JeyQ-9XvxazzryM_XgF83DHt
  priority: 102
  providerName: Springer Nature
Title SequencErr: measuring and suppressing sequencer errors in next-generation sequencing data
URI https://link.springer.com/article/10.1186/s13059-020-02254-2
https://www.ncbi.nlm.nih.gov/pubmed/33487172
https://www.proquest.com/docview/2491295491
https://www.proquest.com/docview/2480733460
https://www.proquest.com/docview/2511184185
https://pubmed.ncbi.nlm.nih.gov/PMC7829059
https://doaj.org/article/b4bdbc0e7ab44eaa83bb934433d4325f
Volume 22
WOSCitedRecordID wos000610871000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Sciences
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Kvgifp7Vc6ngm5ZrmjQfvrmyh4Iu5U6PPV9C0k51QbtHuyv43ztJ29X143zxpZB2WtLJTDK_zGSGkCcV4LxYQ55I6njCASzqHCBUYZoJoJlVoX7K6Rs5n6vFQhc_lfryMWF9euCecYeOu8qVKUjrOAdrFXNOM84ZqzjL8trPvqnUI5ga_AcaF57xiIwShx3O1LlOPFTCNSvnSbazDIVs_X8yMX-PlPzFXRpWoaOb5MZgPsYv-m7fIpeguU2u9QUlv90hZyd9ZPSsbZ_HX8L2H34mtk0Vd5vzPuYV22P8dBtD267aLl42ceMh8MeQhNqP1UjjyX0U6V3y_mj27uWrZCiekJQyVesEQXKmlKO0clQIZXlNhaw1gxJQCYGBoLUsIQPJ8rJiFg0XK7kFXTKHSu3YPbLXrBq4T2KVSycsmuIur8KOUY2fdcIBVyBsqiNCR16acsgs7gtcfDYBYShhev4b5L8J_DdZRJ5u3znv82pcSD31Q7Sl9Dmxww2UFDNIivmXpETkYBxgMyhqZxB90uDqpBF5vH2MKub9JraB1cbTKF_akov0Aho0XBEso_UTkf1eZra99YedETXjX8gdadr5nd0nzfJTSPUtvZ87Rw4_G-XuR9f_zq4H_4NdD8n1zMfvpDTJ8gOyt2438IhcLb-ul107IZflQoarmpAr09m8OJ4EFZz46NkC7xWv3xZn2DqefvDXk9Pv4Ak3NA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuF8CA4IETxCtjh3bQUKIy6ZV66pJjGl7MnZyMipBWpIWtD_Fb8R2kk7l0rc98JjmNIqdz-fi8_kcgKc5Wr1YYBIJYljEELVdc2hDFZpSjiTW0vdPORyK0UgeHaX7a_CzOwvjaJWdTvSKOp9kbo9804YJxOekyOvpt8h1jXLZ1a6FRgOLXTz9YUO2-tXgvf2-z-J4e-vg3U7UdhWIMtGXs8hGj7GUhpDcEM6lZgXhokgpZmjRiRQ5KUSGMQqaZDnV1qJrwTSmGTUW7Yba516AdebA3oP1_cHe_vEibyGk847ai5TFzeEmR3lMUt6d2ZF8s7amI0kjF7tZI5qwKF6yi759wN983j-pm7_lb71Z3L72v03odbjaOuDhm2bF3IA1LG_CpaYl5-ktOP7QcMu3qupl-NVvoNpxh7rMw3o-bVjD9rpjoFchVtWkqsNxGZZuE-HEl_F2aO9knLjj4d6Gj-cyrjvQKycl3oNQJsJwbYMZk-R-z62wjzXcIJPIdT8NgHQfX2VtbXbXIuSL8jGa5KoBjLKAUR4wKg7g-eI_06YyyUrptw5TC0lXVdz_MKlOVKuklGEmN1kfhTaModaSGpNSxijNGY2TIoCNDkqqVXW1OsNRAE8Wt62ScpknXeJk7mSkaw7KeH-FjHX9iXS1lAK424B88bbuuLiwrnYAYgn-S8NZvlOOP_ti6cIxBRI7wy-6hXL26v-ervurR_oYLu8c7A3VcDDafQBXYsdz6pMoTjagN6vm-BAuZt9n47p61CqIED6d9xL6Bd1voCE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_Q-BAvjK-xsgFF4g2qNU2apHsbsBOI6TRpMI2nKGndcRLLndo7JP57nPQDDsYkxGMbp20cO_GvdmxCXlSA62INeSKp5QkHMKhzgFCFFUwAzYwK9VNOj-R0qs7OiuNfTvGHaPfBJdmdafBZmtxyb1HVnYorsdfiypsXiYc-uAflPMFF-Dr3gfQer5-cjn6EAjeg4ajMpf3WtqOQtf8yU_PPiMnf3KZhN5ps_v847pI7vSUaH3Sic49cA3ef3OxqU35_QD6fdEHWh02zH1-EP4n4lti4Km5Xiy58Fq-HUOwmhqaZN208c7HzaPo85LP20z7QeHIfkPqQfJocfnzzLunrMCSlTNUyQbydKWUprSwVQhleUyHrgkEJqM_AQNBalpCBZHlZMYM2kJHcQFEyi-uDZVtkw80dbJNY5dIKg1a9zavw86nGx1phgSsQJi0iQofp0GWfpNzXyviqA1hRQncs08gyHVims4i8HPssuhQdV1K_9rM8Uvr02uHGvDnXvbZqy21lyxSksZyDMYpZWzDOGas4y_I6IruDjOhe51uNQJYGrymNyPOxGbXVu2CMg_nK0yhfJZOL9AoatIERd6MhFZFHndiNX-vPTSMAx1HINYFcG856i5t9CVnDpXeZ58jhV4NY_vz0v7Pr8b-RPyO3jt9O9NH76Ycdcjvz8T8pTbJ8l2wsmxU8ITfKb8tZ2zwNavoDxLQ9tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SequencErr%3A+measuring+and+suppressing+sequencer+errors+in+next-generation+sequencing+data&rft.jtitle=Genome+biology&rft.au=Davis%2C+Eric+M&rft.au=Sun%2C+Yu&rft.au=Liu%2C+Yanling&rft.au=Kolekar%2C+Pandurang&rft.date=2021-01-25&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=22&rft.issue=1&rft.spage=37&rft_id=info:doi/10.1186%2Fs13059-020-02254-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon