Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data

Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to autom...

Full description

Saved in:
Bibliographic Details
Published in:Genome Biology Vol. 23; no. 1; p. 49
Main Authors: Yu, Lijia, Cao, Yue, Yang, Jean Y. H., Yang, Pengyi
Format: Journal Article
Language:English
Published: London BioMed Central 08.02.2022
Springer Nature B.V
BMC
Subjects:
ISSN:1474-760X, 1474-7596, 1474-760X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods. Results We systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data. Conclusions We identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from ( https://github.com/PYangLab/scCCESS ).
AbstractList Abstract Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods. Results We systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data. Conclusions We identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from ( https://github.com/PYangLab/scCCESS ).
Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods. Results We systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data. Conclusions We identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from (https://github.com/PYangLab/scCCESS).
A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods.BACKGROUNDA key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods.We systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data.RESULTSWe systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data.We identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from ( https://github.com/PYangLab/scCCESS ).CONCLUSIONSWe identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from ( https://github.com/PYangLab/scCCESS ).
A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods. We systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data. We identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from ( https://github.com/PYangLab/scCCESS ).
Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for downstream analyses such as cell type identification. Various scRNA-seq data clustering algorithms have been specifically designed to automatically estimate the number of cell types through optimising the number of clusters in a dataset. The lack of benchmark studies, however, complicates the choice of the methods. Results We systematically benchmark a range of popular clustering algorithms on estimating the number of cell types in a variety of settings by sampling from the Tabula Muris data to create scRNA-seq datasets with a varying number of cell types, varying number of cells in each cell type, and different cell type proportions. The large number of datasets enables us to assess the performance of the algorithms, covering four broad categories of approaches, from various aspects using a panel of criteria. We further cross-compared the performance on datasets with high cell numbers using Tabula Muris and Tabula Sapiens data. Conclusions We identify the strengths and weaknesses of each method on multiple criteria including the deviation of estimation from the true number of cell types, variability of estimation, clustering concordance of cells to their predefined cell types, and running time and peak memory usage. We then summarise these results into a multi-aspect recommendation to the users. The proposed stability-based approach for estimating the number of cell types is implemented in an R package and is freely available from ( https://github.com/PYangLab/scCCESS ).
ArticleNumber 49
Author Yang, Pengyi
Yang, Jean Y. H.
Yu, Lijia
Cao, Yue
Author_xml – sequence: 1
  givenname: Lijia
  surname: Yu
  fullname: Yu, Lijia
  organization: School of Mathematics and Statistics, University of Sydney, Computational Systems Biology Group, Children’s Medical Research Institute, University of Sydney, Charles Perkins Centre, University of Sydney
– sequence: 2
  givenname: Yue
  surname: Cao
  fullname: Cao, Yue
  organization: School of Mathematics and Statistics, University of Sydney, Charles Perkins Centre, University of Sydney
– sequence: 3
  givenname: Jean Y. H.
  surname: Yang
  fullname: Yang, Jean Y. H.
  organization: School of Mathematics and Statistics, University of Sydney, Charles Perkins Centre, University of Sydney
– sequence: 4
  givenname: Pengyi
  orcidid: 0000-0003-1098-3138
  surname: Yang
  fullname: Yang, Pengyi
  email: pengyi.yang@sydney.edu.au
  organization: School of Mathematics and Statistics, University of Sydney, Computational Systems Biology Group, Children’s Medical Research Institute, University of Sydney, Charles Perkins Centre, University of Sydney
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35135612$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wB1igSGzYBPy2Z4NUKgqVKpAQSOwsx7mZyZDYg-0g9d_XmbTQdlGxiGPZ53y-vj7H6MAHDwi9JPgtIVq-S4RhsaoxpeWT8_gEHRGueK0k_nlwZ36IjlPaYkxWnMpn6JAJwoQk9Aj5D-DdZrTxV-_XlRumlCHOUzusQ-zzZkxV8BWk3I82zxt5A5WfxgZiFbrKwTBU-WoHqepiGKtUJAPU--VvX07rBL-ncsJsbG22z9HTzg4JXtz8T9CP84_fzz7Xl18_XZydXtZOYZ1rrQAL0CvcadE40VhqGQBnFFaACeWWrQRThDgprLBc2JZhJax2xcKAO3aCLhZuG-zW7GIpPl6ZYHuzXwhxbWzMvRvAiEbwTjUaSNNysFQrrZoOWkGxdqC6wnq_sHZTM0LrwOdoh3vQ-zu-35h1-GO0plRpWQBvbgAxlG6kbMY-zR2yHsKUDJVcayk10f8hpYowSeRMff1Aug1T9KWrRVWCUd6Y46J6dbf4v1XfJqAI9CJwMaQUoTOuz-Wlw3yXfjAEmzlsZgmbKWEz-7CZmU0fWG_pj5rYYkq7OWcQ_5X9iOsaaV7ngQ
CitedBy_id crossref_primary_10_1016_j_csbj_2025_03_033
crossref_primary_10_1016_j_ajog_2024_08_040
crossref_primary_10_1093_bib_bbac387
crossref_primary_10_1038_s41593_024_01806_0
crossref_primary_10_1109_JBHI_2024_3460761
crossref_primary_10_1007_s11227_025_07263_1
crossref_primary_10_1007_s00281_022_00972_2
crossref_primary_10_1101_gr_278439_123
crossref_primary_10_1186_s12864_022_09027_0
crossref_primary_10_3390_biology14030283
crossref_primary_10_1016_j_yjmcc_2024_04_016
crossref_primary_10_1038_s41467_025_59620_6
crossref_primary_10_3390_genes14030756
crossref_primary_10_1097_JS9_0000000000002628
crossref_primary_10_1002_glia_24633
crossref_primary_10_1016_j_compbiomed_2024_108351
crossref_primary_10_1186_s13059_024_03290_y
crossref_primary_10_3390_cells12151970
crossref_primary_10_1093_bib_bbae633
crossref_primary_10_1093_bib_bbad389
crossref_primary_10_1038_s42003_024_07001_y
crossref_primary_10_1016_j_compbiolchem_2025_108362
crossref_primary_10_1016_j_ajhg_2025_02_014
crossref_primary_10_1093_nargab_lqaf073
crossref_primary_10_1097_COH_0000000000000809
crossref_primary_10_1007_s00170_023_12101_w
crossref_primary_10_1016_j_compbiomed_2023_107414
crossref_primary_10_1038_s41522_025_00781_z
crossref_primary_10_1016_j_semcancer_2023_02_005
crossref_primary_10_1186_s13059_025_03719_y
crossref_primary_10_1038_s41467_025_58874_4
crossref_primary_10_1016_j_cels_2025_101294
crossref_primary_10_1016_j_csbj_2025_03_051
crossref_primary_10_1016_j_jcyt_2024_10_009
crossref_primary_10_1109_TCBBIO_2025_3534776
crossref_primary_10_1093_bib_bbad335
crossref_primary_10_1016_j_crmeth_2023_100547
crossref_primary_10_1016_j_compbiomed_2023_106939
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1016_j_cotox_2024_100477
crossref_primary_10_1038_s41587_024_02161_y
crossref_primary_10_1016_j_xgen_2024_100739
crossref_primary_10_1371_journal_pcbi_1012854
crossref_primary_10_1038_s41598_024_63492_z
crossref_primary_10_1186_s12864_025_11511_2
crossref_primary_10_1038_s41467_022_35752_x
crossref_primary_10_1093_nargab_lqae174
crossref_primary_10_1093_bib_bbae216
crossref_primary_10_1038_s41467_025_60702_8
crossref_primary_10_3389_fbinf_2025_1562410
crossref_primary_10_3390_cancers16071350
crossref_primary_10_1093_bib_bbae411
crossref_primary_10_1007_s10462_022_10357_4
crossref_primary_10_1016_j_isci_2025_112464
crossref_primary_10_1038_s41598_024_77630_0
crossref_primary_10_1186_s13059_024_03339_y
crossref_primary_10_1371_journal_pgen_1011505
crossref_primary_10_1371_journal_pone_0317987
crossref_primary_10_3390_cells12131808
crossref_primary_10_1103_wjcn_l4ms
crossref_primary_10_1186_s12859_024_05927_y
crossref_primary_10_1002_bies_202200084
crossref_primary_10_1016_j_csbj_2023_08_005
crossref_primary_10_1186_s40104_024_01063_y
crossref_primary_10_3389_fgene_2023_1166404
crossref_primary_10_1016_j_csbj_2024_11_038
crossref_primary_10_1007_s11831_025_10230_x
crossref_primary_10_1093_nar_gkac781
Cites_doi 10.1007/BF02100489
10.1186/s13059-016-0927-y
10.1088/1742-5468/2008/10/P10008
10.1186/s13059-017-1188-0
10.1101/gr.254557.119
10.1186/s12859-019-3179-5
10.1038/nmeth.4402
10.1038/nmeth.4236
10.1038/s41598-020-66848-3
10.1007/s11222-007-9033-z
10.1371/journal.pcbi.1006245
10.1093/bib/bby076
10.12688/f1000research.15666.2
10.1016/0377-0427(87)90125-7
10.1016/j.cell.2021.04.048
10.1126/science.aab1601
10.1093/nar/gkz826
10.1038/s41576-018-0088-9
10.1198/016214503000000666
10.1016/j.mam.2017.07.002
10.1038/s41467-020-18416-6
10.1038/nbt.2859
10.12688/f1000research.15809.1
10.1162/089976604773717621
10.1016/S0167-8655(99)00008-2
10.1038/nature14966
10.1093/bioinformatics/btw777
10.1080/03610927408827101
10.1111/1467-9868.00293
10.1016/j.ins.2017.02.010
10.15252/msb.20199389
10.1038/s41586-018-0590-4
10.1038/s41598-019-41695-z
10.1093/bioinformatics/btz704
10.1371/journal.pgen.0020190
10.1038/s42256-020-0217-y
10.1371/journal.pcbi.1004575
10.1038/s41586-019-0969-x
10.1038/nmeth.4207
10.1093/bioinformatics/btw227
10.1038/nmeth.4380
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-022-02622-0
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 49
ExternalDocumentID oai_doaj_org_article_5b54f7b8e1bd4ea28787bfed5208ce7f
PMC8822786
35135612
10_1186_s13059_022_02622_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council
  grantid: 1173469
  funderid: http://dx.doi.org/10.13039/501100000925
– fundername: ;
  grantid: 1173469
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c708t-87e05e890f85bc5ba2a3ee432e9e0124a3953711c65a5a45ad3075a8c8903e4c3
IEDL.DBID DOA
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752892000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-760X
1474-7596
IngestDate Fri Oct 03 12:50:45 EDT 2025
Tue Nov 04 02:01:22 EST 2025
Sun Nov 09 12:35:20 EST 2025
Sun Nov 09 11:42:31 EST 2025
Tue Oct 14 12:42:28 EDT 2025
Mon Jul 21 05:45:41 EDT 2025
Sat Nov 29 04:55:58 EST 2025
Tue Nov 18 22:04:53 EST 2025
Sat Sep 06 07:17:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c708t-87e05e890f85bc5ba2a3ee432e9e0124a3953711c65a5a45ad3075a8c8903e4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1098-3138
OpenAccessLink https://doaj.org/article/5b54f7b8e1bd4ea28787bfed5208ce7f
PMID 35135612
PQID 2630535140
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_5b54f7b8e1bd4ea28787bfed5208ce7f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8822786
proquest_miscellaneous_2648866818
proquest_miscellaneous_2627136166
proquest_journals_2630535140
pubmed_primary_35135612
crossref_citationtrail_10_1186_s13059_022_02622_0
crossref_primary_10_1186_s13059_022_02622_0
springer_journals_10_1186_s13059_022_02622_0
PublicationCentury 2000
PublicationDate 2022-02-08
PublicationDateYYYYMMDD 2022-02-08
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2022
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References T Calinski (2622_CR12) 1974; 3
R Tibshirani (2622_CR15) 2001; 63
Y Lin (2622_CR37) 2020; 16
TA Geddes (2622_CR33) 2019; 20
C Trapnell (2622_CR20) 2014; 32
A Peyvandipour (2622_CR36) 2020; 10
B Wang (2622_CR25) 2017; 14
N Patterson (2622_CR29) 2006; 2
CA Tracy (2622_CR28) 1994; 159
M Stoeckius (2622_CR39) 2017; 14
2622_CR45
VA Traag (2622_CR18) 2019; 9
2622_CR44
2622_CR47
R Kothari (2622_CR7) 1999; 20
P Lin (2622_CR11) 2017; 18
TS Andrews (2622_CR6) 2018; 59
M Guo (2622_CR16) 2015; 11
E Lord (2622_CR31) 2017; 393
S Freytag (2622_CR5) 2018; 7
D Grün (2622_CR14) 2015; 525
CR John (2622_CR26) 2020; 36
J Cao (2622_CR22) 2019; 566
CA Sugar (2622_CR8) 2003; 98
PJ Rousseeuw (2622_CR10) 1987; 20
U von Luxburg (2622_CR24) 2007; 17
2622_CR3
C Cheng (2622_CR9) 2019; 47
S Mohammadi (2622_CR19) 2020; 11
VY Kiselev (2622_CR27) 2017; 14
DJ McCarthy (2622_CR42) 2017; 33
A Duò (2622_CR4) 2018; 7
DA Cusanovich (2622_CR38) 2015; 348
NX Vinh (2622_CR46) 2010; 11
L Zappia (2622_CR43) 2018; 14
R Bacher (2622_CR1) 2016; 17
T Lange (2622_CR30) 2004; 16
2622_CR35
VY Kiselev (2622_CR2) 2019; 20
2622_CR17
S Wan (2622_CR13) 2020; 30
Y Cao (2622_CR41) 2020; 2
Y Hao (2622_CR23) 2021; 184
Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and processing, Library preparation and sequencing, Computational data analysis (2622_CR34) 2018; 562
J Ding (2622_CR32) 2016; 32
X Qiu (2622_CR21) 2017; 14
Y Yang (2622_CR40) 2018
References_xml – volume: 159
  start-page: 151
  year: 1994
  ident: 2622_CR28
  publication-title: Commun Math Phys.
  doi: 10.1007/BF02100489
– volume: 17
  start-page: 63
  year: 2016
  ident: 2622_CR1
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0927-y
– ident: 2622_CR17
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 18
  start-page: 59
  year: 2017
  ident: 2622_CR11
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1188-0
– volume: 30
  start-page: 205
  year: 2020
  ident: 2622_CR13
  publication-title: Genome Res.
  doi: 10.1101/gr.254557.119
– volume: 20
  start-page: 660
  year: 2019
  ident: 2622_CR33
  publication-title: BMC Bioinformatics.
  doi: 10.1186/s12859-019-3179-5
– volume: 14
  start-page: 979
  year: 2017
  ident: 2622_CR21
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.4402
– volume: 14
  start-page: 483
  year: 2017
  ident: 2622_CR27
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.4236
– volume: 10
  start-page: 12349
  year: 2020
  ident: 2622_CR36
  publication-title: Sci Rep.
  doi: 10.1038/s41598-020-66848-3
– volume: 17
  start-page: 395
  year: 2007
  ident: 2622_CR24
  publication-title: Stat Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 14
  year: 2018
  ident: 2622_CR43
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1006245
– ident: 2622_CR44
  doi: 10.1093/bib/bby076
– volume: 7
  start-page: 1141
  year: 2018
  ident: 2622_CR4
  publication-title: F1000Res.
  doi: 10.12688/f1000research.15666.2
– volume: 20
  start-page: 53
  year: 1987
  ident: 2622_CR10
  publication-title: J Comput Appl Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 184
  start-page: 3573
  year: 2021
  ident: 2622_CR23
  publication-title: Cell.
  doi: 10.1016/j.cell.2021.04.048
– ident: 2622_CR3
– volume: 348
  start-page: 910
  year: 2015
  ident: 2622_CR38
  publication-title: Science.
  doi: 10.1126/science.aab1601
– volume: 47
  year: 2019
  ident: 2622_CR9
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz826
– ident: 2622_CR45
– volume: 20
  start-page: 273
  year: 2019
  ident: 2622_CR2
  publication-title: Nat Rev Genet.
  doi: 10.1038/s41576-018-0088-9
– volume: 98
  start-page: 750
  year: 2003
  ident: 2622_CR8
  publication-title: J Am Stat Assoc.
  doi: 10.1198/016214503000000666
– ident: 2622_CR47
– ident: 2622_CR35
– volume: 59
  start-page: 114
  year: 2018
  ident: 2622_CR6
  publication-title: Mol Aspects Med.
  doi: 10.1016/j.mam.2017.07.002
– volume: 11
  start-page: 5399
  year: 2020
  ident: 2622_CR19
  publication-title: Nat Commun.
  doi: 10.1038/s41467-020-18416-6
– volume: 32
  start-page: 381
  year: 2014
  ident: 2622_CR20
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 11
  start-page: 2837
  year: 2010
  ident: 2622_CR46
  publication-title: J Mach Learn Res
– volume: 7
  start-page: 1297
  year: 2018
  ident: 2622_CR5
  publication-title: F1000Res.
  doi: 10.12688/f1000research.15809.1
– volume: 16
  start-page: 1299
  year: 2004
  ident: 2622_CR30
  publication-title: Neural Comput.
  doi: 10.1162/089976604773717621
– volume: 20
  start-page: 405
  year: 1999
  ident: 2622_CR7
  publication-title: Pattern Recognit Lett.
  doi: 10.1016/S0167-8655(99)00008-2
– volume: 525
  start-page: 251
  year: 2015
  ident: 2622_CR14
  publication-title: Nature.
  doi: 10.1038/nature14966
– volume: 33
  start-page: 1179
  year: 2017
  ident: 2622_CR42
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw777
– volume: 3
  start-page: 1
  year: 1974
  ident: 2622_CR12
  publication-title: Commun Stat Theory Methods.
  doi: 10.1080/03610927408827101
– volume: 63
  start-page: 411
  year: 2001
  ident: 2622_CR15
  publication-title: J R Stat Soc Series B Stat Methodol
  doi: 10.1111/1467-9868.00293
– volume: 393
  start-page: 29
  year: 2017
  ident: 2622_CR31
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.02.010
– volume: 16
  start-page: e9389
  year: 2020
  ident: 2622_CR37
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20199389
– volume: 562
  start-page: 367
  year: 2018
  ident: 2622_CR34
  publication-title: Nature.
  doi: 10.1038/s41586-018-0590-4
– volume: 9
  start-page: 5233
  year: 2019
  ident: 2622_CR18
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-41695-z
– volume: 36
  start-page: 1159
  year: 2020
  ident: 2622_CR26
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btz704
– volume: 2
  year: 2006
  ident: 2622_CR29
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020190
– volume: 2
  start-page: 500
  year: 2020
  ident: 2622_CR41
  publication-title: Nature Machine Intelligence
  doi: 10.1038/s42256-020-0217-y
– volume: 11
  year: 2015
  ident: 2622_CR16
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1004575
– volume: 566
  start-page: 496
  year: 2019
  ident: 2622_CR22
  publication-title: Nature.
  doi: 10.1038/s41586-019-0969-x
– volume: 14
  start-page: 414
  year: 2017
  ident: 2622_CR25
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.4207
– volume: 32
  start-page: 2567
  year: 2016
  ident: 2622_CR32
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw227
– start-page: 83
  volume-title: Big Data Min Anal
  year: 2018
  ident: 2622_CR40
– volume: 14
  start-page: 865
  year: 2017
  ident: 2622_CR39
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.4380
SSID ssj0019426
ssj0017866
Score 2.6371603
Snippet Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical...
A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical for...
Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical...
BACKGROUND: A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be critical...
Abstract Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately detect the number of cell types in the sample, which can be...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms Algorithms
Animal Genetics and Genomics
Benchmarking
Bioinformatics
Biomedical and Life Sciences
Cluster Analysis
Clustering
data collection
Datasets
Evolutionary Biology
Gene expression
Gene Expression Profiling - methods
genome
Heuristic
Human Genetics
Life Sciences
memory
Methods
Microbial Genetics and Genomics
Performance evaluation
Plant Genetics and Genomics
RNA
sequence analysis
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IICEhfe0EBBRuIGURO_c0ItouK0qhBIvVmO43QrbZOy2a3E3zPjOFstj71wiRK_ZGcenhmPZwh5B0JFKL1rcqe9zEWlQu4k4LIWjoF42vBWtDHZhJ7NzNlZdZoMbkNyq5x4YmTUTe_RRn7IFMdQJKAPfLz6kWPWKDxdTSk0bpM7GCWBRde9080pgjYoq6SPSrDxqhE6IMpKTTdojDocgJHLKkfHdlBJ8Lm1S8Vg_n-TQP90pPztNDVuUicP_3d5j8iDJJ7SoxGfHpNboXtC7o0JK38-Jd0xIPX80kUDO_WLNYZZwFe3OIfRVvPLgfYdxcgdKAlDBciXdMw6QvuW4jEBRavvQPFeC0VDxSLksfjr7ChPjt3YEV1Xn5HvJ5-_ffqSp4wNudeFWQFrDYUMpipaI2sva8ccD0FwFqoAO6FwvJJcl6VX0kknpGuAxUhnPHThQXj-nOx1fRf2CW0N99qXla4NE161jjvXMl4pz1ztpM5IOUHI-hTOHLNqLGxUa4yyI1QtQNVGqNoiI-83fa7GYB47Wx8j4DctMRB3LOiX5zbRtZW1FC3MMZR1I4ID_dPoug2NZIXxQbcZOZjgbRN3GOwNsDPydlMNdI2_23WhX2MbpkuuSqV2tQH2qxTIXBl5MWLiZrYwPMfMpxnRWzi6tZztmu5iHuOLg9LFgHQy8mHC5pup__t3vdy90lfkPhsJLC_MAdlbLdfhNbnrr1cXw_JNpNtf1mJHtA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0IICUi-8C4GCjMQNIhK_c2wRFacVKg_1Zk0cu7vSNkGb3Ur8PWMnWbRQKsEliuJx4oznaY9nCHmNRoUvHTQ5aCdzUSmfg0Ra1gIYmqcNDyKkYhN6NjNnZ9Wn8VBYP0W7T1uSSVIntjbqXY_SVlZ5jD5HvyFeb5JbqO5MLNhw-vnbdu-gQqUzHY-5st-OCkqZ-q8yL_-MkvxtqzRpoJN7_zf2--TuaHHSo4FEHpAbvn1I7gw1KH88Iu0x0un8AtKaOXXLTcycEG9hed6tFuv5RU-7lsZkHNG4xQY0GelQSIR2gcaVfxoXcnsaj6rQuPaw9Hl6fDo7ysdY7dgxRqM-Jl9PPnx5_zEfizDkThdmjdLSF9KbqghG1k7WwIB7LzjzlUflJoBXkuuydEqCBCGhQakhwTjswr1w_IDstV3rnxIaDHfalZWuDRNOBeAAgfFKOQY1SJ2RcpoX68YM5bFQxtImT8UoO-DRIh5twqMtMvJm2-f7kJ_jWujjON1byJhbOz3oVud2ZFUraykCjtGXdSM8oEtpdB18I1lhnNchI4cTsdiR4XvLFI-ZctBdzcirbTOyakQ3tL7bRBimS65Kpa6DQYmqFJpRGXky0N92tPh6HouZZkTvUObO7-y2tIt5ShmOfhTTBr_7dqLPX0P_O7qe_Rv4c7LPBhLPC3NI9tarjX9BbrvL9aJfvUxM-hPcnjke
  priority: 102
  providerName: Springer Nature
Title Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data
URI https://link.springer.com/article/10.1186/s13059-022-02622-0
https://www.ncbi.nlm.nih.gov/pubmed/35135612
https://www.proquest.com/docview/2630535140
https://www.proquest.com/docview/2627136166
https://www.proquest.com/docview/2648866818
https://pubmed.ncbi.nlm.nih.gov/PMC8822786
https://doaj.org/article/5b54f7b8e1bd4ea28787bfed5208ce7f
Volume 23
WOSCitedRecordID wos000752892000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017866
  issn: 1474-760X
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: M7P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RSV
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgAYkL4k1gqYzEDaJN7PiR4xbtCg5UUXmocLEc19lW6iaoaVfaf8-MkxTKY7lwsRI_UndmPJ5xJt8Q8hKMCp86O4-tciLOculjK0CWVWYZmKdzXmVVSDahJhM9m-XFT6m-MCasgwfuCHckSpFVqtQ-LeeZt2Dga1VWfi5Yop1XFWrfROWDM9W_P8hh4xk-kdHyqAVNLfIYI9fB58BybxsKaP1_MjF_j5T85XVp2IVO75I7vflIj7tp3yPXfH2f3OoSSl4-IPUYhG5xbsMBOHWrLcIg4KVdnTXr5WZx3tKmpoisgZYqNID9R7usILSpKB7jUzyVbSl-d0LxIGHl41A9nRzHfeA1DsTQ0ofk0-nJxzdv4z6jQuxUojeg-nwivM6TSovSidIyy73POPO5h50qszwXXKWpk8IKmwk7BxUgrHYwhPvM8UfkoG5q_4TQSnOnXJoDa1jmZGW5tRXjuXTMllaoiKQDgY3r4cYx68XKBLdDS9MxxQBTTGCKSSLyajfmWwe2cWXvMfJt1xOBskMFiI_pxcf8S3wicjhw3fSrtzVMcoS9Ad8zIi92zbDukNy29s0W-zDw72Uq5VV9QD1KCTZRRB53grSbLTyeY2bSiKg9Edv7O_st9XIR8L_BKWJKw---HoTxx9T_Tq6n_4Ncz8ht1q2iONGH5GCz3vrn5Ka72Czb9YhcVzMVSj0iN8Ynk2I6CutyhCG1BdQV794XX-BuOv6K5YfP3wGbtj6s
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFgQX3o9AASPBCaImfueAUAtUXbVdrVCRyik4jtOttE3KPkD9U_xGZvLYannsrQcuURLbke18M57xjGcIeQlChY-dzUOrnQxFonxoJWBZC8tAPM15IYo62YQeDMzRUTJcIz-7szDoVtnxxJpR55XDPfJNpjiGIgF94N3ZtxCzRqF1tUuh0cBiz5__AJVt-rb_Af7vK8Z2Ph6-3w3brAKh05GZAfn7SHqTRIWRmZOZZZZ7LzjziQduLSxPJNdx7JS00gppcyADaY2DJtwLx-G7V8i6QLD3yPqwfzD8srBbaIPSUfuQCNYcbkKXR5mo7syOUZtTWDpkEqIrPShBeF1aF-v0AX-Tef903fzNflsvizu3_rcJvU1utgI43Woo5g5Z8-Vdcq1JyXl-j5TbQLajU1ubEKgbzzGQBN7a8TH0fjY6ndKqpBibBGV9KAAJmjZ5VWhVUDSEUNzXnlI8uUNxK2bsw_r1p8FW2LquY0N0zr1PPl_KYB-QXlmV_hGhheFOuzjRmWHCqcJyawvGE-WYzazUAYk7RKSuDdiOeUPGaa24GZU2KEoBRWmNojQKyOtFm7MmXMnK2tsItEVNDDVev6gmx2nLuVKZSVFAH32c5cJb0LCNzgqfSxYZ53URkI0OX2nL_6bpBbgC8mJRDJwLp9uWvppjHaZjrmKlVtWBBUYpkCoD8rBB_qK38HmOuV0DopdoYmk4yyXlyaiOoA5qJQNSDcibjnouuv7v6Xq8eqTPyfXdw4P9dL8_2HtCbrCGuMPIbJDebDL3T8lV9312Mp08a7kGJV8vm65-AavdpKY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKF-wgUMBJvEDXxnccWWIFAq4pLfbMcx-6utE2qPZD498w42YWFUgnxEkXxOLEn4_GMPf6GkOdgVITSuyZ32stcVCrkToIsa-EYmKcNjyKmZBN6PDZHR9XhL6f4U7T7ekuyP9OAKE3tcu-0if0QN2pvAZpXVjlGooMPgdeL5JLAQHr01z993ewjVDABrY_KnFlvazpKqP1nmZp_Rkz-tm2aZqPRjf_vx01yfbBE6X4vOrfIhdDeJlf63JTf75D2AOR3cuLSWjr1sxUiKuCtmx138-lycrKgXUsRpAONXigAU5L2CUZoFynuCFBc4F1QPMJCcU1iFvL0-ON4Px9iuLEiRqneJV9Gbz6_epsPyRlyrwuzBC0aChlMVUQjay9rxxwPQXAWqgCTnnC8klyXpVfSSSeka0CbSGc8VOFBeH6P7LRdGx4QGg332peVrg0TXkXHnYuMV8ozVzupM1Ku_5H1A3I5JtCY2eTBGGV7Plrgo018tEVGXmzqnPa4HedSH-Cv31Ai5nZ60M2P7TCErayliNDGUNaNCA5cTaPrGBrJCuODjhnZXQuOHRTBwjLFEUEH3NiMPNsUwxBGdrs2dCukYbrkqlTqPBrQtEqBeZWR-70sbloLr-eY5DQjektKt7qzXdJOJwlKHPwrpg189-VaVn82_e_sevhv5E_J1cPXI_vh3fj9I3KN9dKeF2aX7Cznq_CYXPbfltPF_Ekauz8AOsBE5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+clustering+algorithms+on+estimating+the+number+of+cell+types+from+single-cell+RNA-sequencing+data&rft.jtitle=Genome+biology&rft.au=Lijia+Yu&rft.au=Yue+Cao&rft.au=Jean+Y.+H.+Yang&rft.au=Pengyi+Yang&rft.date=2022-02-08&rft.pub=BMC&rft.eissn=1474-760X&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1186%2Fs13059-022-02622-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b54f7b8e1bd4ea28787bfed5208ce7f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon