Keras R-CNN: library for cell detection in biological images using deep neural networks

Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 21; číslo 1; s. 300 - 7
Hlavní autori: Hung, Jane, Goodman, Allen, Ravel, Deepali, Lopes, Stefanie C. P., Rangel, Gabriel W., Nery, Odailton A., Malleret, Benoit, Nosten, Francois, Lacerda, Marcus V. G., Ferreira, Marcelo U., Rénia, Laurent, Duraisingh, Manoj T., Costa, Fabio T. M., Marti, Matthias, Carpenter, Anne E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 11.07.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. Results We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool’s simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Conclusions Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
AbstractList Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. Results We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( Conclusions Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection. Keywords: Deep learning, Keras, Convolutional networks, Malaria, Object detection
Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. Results We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow (https://github.com/broadinstitute/keras-rcnn). We demonstrate the command line tool’s simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Conclusions Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow (https://github.com/broadinstitute/keras-rcnn). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. Results We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool’s simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Conclusions Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis.BACKGROUNDA common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis.We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance.RESULTSWe created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance.Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.CONCLUSIONSKeras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
Abstract Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. Results We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool’s simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. Conclusions Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.
ArticleNumber 300
Audience Academic
Author Hung, Jane
Ravel, Deepali
Ferreira, Marcelo U.
Rénia, Laurent
Lopes, Stefanie C. P.
Duraisingh, Manoj T.
Lacerda, Marcus V. G.
Goodman, Allen
Malleret, Benoit
Rangel, Gabriel W.
Costa, Fabio T. M.
Nery, Odailton A.
Nosten, Francois
Marti, Matthias
Carpenter, Anne E.
Author_xml – sequence: 1
  givenname: Jane
  surname: Hung
  fullname: Hung, Jane
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology, The Broad Institute
– sequence: 2
  givenname: Allen
  surname: Goodman
  fullname: Goodman, Allen
  organization: The Broad Institute
– sequence: 3
  givenname: Deepali
  surname: Ravel
  fullname: Ravel, Deepali
  organization: Harvard T.H.Chan School of Public Health
– sequence: 4
  givenname: Stefanie C. P.
  surname: Lopes
  fullname: Lopes, Stefanie C. P.
  organization: Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária
– sequence: 5
  givenname: Gabriel W.
  surname: Rangel
  fullname: Rangel, Gabriel W.
  organization: Harvard T.H.Chan School of Public Health
– sequence: 6
  givenname: Odailton A.
  surname: Nery
  fullname: Nery, Odailton A.
  organization: Universidade de São Paulo
– sequence: 7
  givenname: Benoit
  surname: Malleret
  fullname: Malleret, Benoit
  organization: Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Immunology Network (SIgN), Agency for Science Research & Technology
– sequence: 8
  givenname: Francois
  surname: Nosten
  fullname: Nosten, Francois
  organization: Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Centre for Tropical Medicine and Global Health, Nuffield
– sequence: 9
  givenname: Marcus V. G.
  surname: Lacerda
  fullname: Lacerda, Marcus V. G.
  organization: Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária
– sequence: 10
  givenname: Marcelo U.
  surname: Ferreira
  fullname: Ferreira, Marcelo U.
  organization: Universidade de São Paulo
– sequence: 11
  givenname: Laurent
  surname: Rénia
  fullname: Rénia, Laurent
  organization: Singapore Immunology Network (SIgN), Agency for Science Research & Technology
– sequence: 12
  givenname: Manoj T.
  surname: Duraisingh
  fullname: Duraisingh, Manoj T.
  organization: Harvard T.H.Chan School of Public Health
– sequence: 13
  givenname: Fabio T. M.
  surname: Costa
  fullname: Costa, Fabio T. M.
  organization: Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
– sequence: 14
  givenname: Matthias
  surname: Marti
  fullname: Marti, Matthias
  organization: Harvard T.H.Chan School of Public Health, Wellcome Centre for Integrative Parasitology Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow
– sequence: 15
  givenname: Anne E.
  orcidid: 0000-0003-1555-8261
  surname: Carpenter
  fullname: Carpenter, Anne E.
  email: anne@broadinstitute.org
  organization: The Broad Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32652926$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wB1igSGxgkeJHHMcskKoRjxFVkUolltaN4wQPGXtqJzD999zptLRToSqLRPZ3TnyPz2G254O3WfaSkmNK6-pdoqwWqiCMFIRXXBTrJ9kBLSUtGCVi7973fnaY0oIQKmsinmX7nFWCKVYdZD--2ggpPy9mZ2fv88E1EeJV3oWYGzsMeWtHa0YXfO583rgwhN4ZGHK3hN6mfErO9wjZVe7tFHHD2_FPiL_S8-xpB0OyL27eR9nFp48Xsy_F6bfP89nJaWEkkWPR2s4Y00mQAmhV1hwkNMAbIZuqgRbapi47aixUqmYdMJzAKKi5EVKqRvCjbL61bQMs9CriueKVDuD09UKIvYY4OjNYrYCUoJRtDVWlbNtGkUoQJQgoxkTVodeHrddqapaIWT_iRDumuzve_dR9-K0lF1xyhQZvbgxiuJxsGvXSpU2M4G2YkmYl44KWeB-Ivn6ALsIUPSa1ofDamFD8juoBB3C-C_hfszHVJxWntUKKIXX8Hwqf1i6dwcp0Dtd3BG93BMiMdj32MKWk59_Pd9lX90P5l8ZtgxCot4CJIaVoO23cCJvK4CncoCnRm7LqbVk1llVfl1WvUcoeSG_dHxXxrSgh7Hsb75J7RPUXOA76rg
CitedBy_id crossref_primary_10_1109_TCBB_2021_3138189
crossref_primary_10_1016_j_trac_2025_118282
crossref_primary_10_3390_cancers15143649
crossref_primary_10_3389_fcimb_2022_900878
crossref_primary_10_1016_j_actbio_2025_03_013
crossref_primary_10_3390_electronics13163174
crossref_primary_10_1109_JBHI_2021_3101886
crossref_primary_10_1016_j_heliyon_2024_e41137
crossref_primary_10_1016_j_csbj_2020_08_018
crossref_primary_10_3389_fimmu_2024_1397475
crossref_primary_10_1016_j_compbiomed_2021_104257
crossref_primary_10_1242_jcs_262139
crossref_primary_10_1016_j_sna_2024_116123
crossref_primary_10_1007_s11517_025_03429_4
crossref_primary_10_1039_D2NR01277D
crossref_primary_10_3390_microorganisms11041071
crossref_primary_10_1016_j_compag_2023_107702
crossref_primary_10_1007_s10068_023_01507_7
crossref_primary_10_1007_s11676_021_01423_8
crossref_primary_10_3389_fcimb_2022_882995
crossref_primary_10_1017_S2633903X21000015
crossref_primary_10_1117_1_JEI_31_4_043018
crossref_primary_10_1016_j_crmeth_2023_100516
crossref_primary_10_1016_j_bspc_2023_104985
crossref_primary_10_1016_j_compbiomed_2025_109706
crossref_primary_10_1177_11779322241272387
crossref_primary_10_3390_agronomy14071593
crossref_primary_10_1016_j_bspc_2023_105034
crossref_primary_10_3390_genes16091005
crossref_primary_10_1016_j_compbiolchem_2025_108421
crossref_primary_10_1016_j_bspc_2022_104518
crossref_primary_10_1109_JBHI_2024_3417229
crossref_primary_10_1111_cmi_13349
crossref_primary_10_1109_ACCESS_2021_3071297
crossref_primary_10_1016_j_csbj_2024_07_012
crossref_primary_10_1038_s42256_022_00472_w
crossref_primary_10_1007_s10238_023_01145_7
crossref_primary_10_1371_journal_pcbi_1008630
crossref_primary_10_3389_fbioe_2022_998298
crossref_primary_10_1021_acs_jchemed_2c00631
crossref_primary_10_3390_s21237786
Cites_doi 10.1109/CVPRW.2017.112
10.1109/ISBI.2011.5872394
10.1038/nmeth.3971
10.1016/j.cels.2017.05.012
10.1101/335216
10.1111/j.1365-2818.2011.03502.x
10.1038/nmeth.2083
10.1038/s41592-019-0612-7
10.1101/580605
10.1109/TPAMI.2018.2844175
10.1109/ICCV.2015.169
10.1093/bioinformatics/btw390
10.1038/nmeth.2073
10.1109/CVPR.2017.106
10.1371/journal.pone.0080999
10.1101/099796
10.1371/journal.pbio.2005970
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-03635-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database



MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 7
ExternalDocumentID oai_doaj_org_article_9a04a99edc1947ddb90650950a92256f
PMC7353739
A631892592
32652926
10_1186_s12859_020_03635_x
Genre Journal Article
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
  grantid: R01 GM089652; MIRA R35 GM122547
  funderid: http://dx.doi.org/10.13039/100000009
– fundername: Howard Hughes Medical Institute
  grantid: Gilliam Fellowship for Advanced Study
  funderid: http://dx.doi.org/10.13039/100000011
– fundername: Royal Society
  grantid: Wolfson Merit
– fundername: National Science Foundation
  grantid: DGE1144152
  funderid: http://dx.doi.org/10.13039/501100008982
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2017/18611-7
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: research fellowship; research fellowship; research fellowship
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Burroughs Wellcome Fund
  grantid: career development award
  funderid: http://dx.doi.org/10.13039/100000861
– fundername: Foundation for the National Institutes of Health
  grantid: MIRA R35 GM122547
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2017/18611-7
– fundername: Burroughs Wellcome Fund
  grantid: career development award
– fundername: NIGMS NIH HHS
  grantid: R01 GM089652
– fundername: National Science Foundation
  grantid: DGE1144152
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: research fellowship
– fundername: Howard Hughes Medical Institute
  grantid: Gilliam Fellowship for Advanced Study
– fundername: NIGMS NIH HHS
  grantid: R35 GM122547
– fundername: ;
  grantid: Wolfson Merit
– fundername: ;
  grantid: research fellowship; research fellowship; research fellowship
– fundername: ;
  grantid: R01 GM089652; MIRA R35 GM122547
– fundername: ;
  grantid: Gilliam Fellowship for Advanced Study
– fundername: ;
  grantid: 2017/18611-7
– fundername: ;
  grantid: career development award
– fundername: ;
  grantid: DGE1144152
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c707t-defcccf7a75a16483a7aba3b57b6badadb84f1cea6982fa2017c9a83c5779b53
IEDL.DBID RSV
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552664800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:51:51 EDT 2025
Tue Nov 04 02:01:07 EST 2025
Thu Sep 04 18:01:27 EDT 2025
Tue Oct 07 05:21:05 EDT 2025
Tue Nov 11 10:45:05 EST 2025
Tue Nov 04 17:12:43 EST 2025
Thu Nov 13 14:21:35 EST 2025
Thu Apr 03 06:53:57 EDT 2025
Sat Nov 29 05:40:07 EST 2025
Tue Nov 18 21:23:56 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Keras
Malaria
Convolutional networks
Object detection
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c707t-defcccf7a75a16483a7aba3b57b6badadb84f1cea6982fa2017c9a83c5779b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1555-8261
OpenAccessLink https://link.springer.com/10.1186/s12859-020-03635-x
PMID 32652926
PQID 2424712593
PQPubID 44065
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_9a04a99edc1947ddb90650950a92256f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7353739
proquest_miscellaneous_2423514105
proquest_journals_2424712593
gale_infotracmisc_A631892592
gale_infotracacademiconefile_A631892592
gale_incontextgauss_ISR_A631892592
pubmed_primary_32652926
crossref_citationtrail_10_1186_s12859_020_03635_x
crossref_primary_10_1186_s12859_020_03635_x
springer_journals_10_1186_s12859_020_03635_x
PublicationCentury 2000
PublicationDate 2020-07-11
PublicationDateYYYYMMDD 2020-07-11
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 3635_CR3
3635_CR12
AE Carpenter (3635_CR13) 2012; 9
3635_CR21
3635_CR11
3635_CR7
3635_CR16
3635_CR8
3635_CR5
3635_CR6
L Shamir (3635_CR10) 2011; 243
3635_CR20
SM Gustafsdottir (3635_CR15) 2013; 8
L Haghverdi (3635_CR19) 2016; 13
V Ljosa (3635_CR14) 2012; 9
C McQuin (3635_CR17) 2018; 16
F Piccinini (3635_CR4) 2017; 4
3635_CR9
3635_CR18
C Sommer (3635_CR2) 2011
D Dao (3635_CR1) 2016; 32
References_xml – ident: 3635_CR18
  doi: 10.1109/CVPRW.2017.112
– ident: 3635_CR7
– start-page: 230
  volume-title: Biomedical imaging: from Nano to Macro, 2011 IEEE International Symposium on
  year: 2011
  ident: 3635_CR2
  doi: 10.1109/ISBI.2011.5872394
– volume: 13
  start-page: 845
  issue: 10
  year: 2016
  ident: 3635_CR19
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3971
– volume: 4
  start-page: 651
  issue: 6
  year: 2017
  ident: 3635_CR4
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.05.012
– ident: 3635_CR16
  doi: 10.1101/335216
– volume: 243
  start-page: 284
  issue: 3
  year: 2011
  ident: 3635_CR10
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2011.03502.x
– volume: 9
  start-page: 637
  issue: 7
  year: 2012
  ident: 3635_CR14
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2083
– ident: 3635_CR5
  doi: 10.1038/s41592-019-0612-7
– ident: 3635_CR12
– ident: 3635_CR8
  doi: 10.1101/580605
– ident: 3635_CR21
  doi: 10.1109/TPAMI.2018.2844175
– ident: 3635_CR9
  doi: 10.1109/ICCV.2015.169
– ident: 3635_CR11
– volume: 32
  start-page: 3210
  issue: 20
  year: 2016
  ident: 3635_CR1
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw390
– volume: 9
  start-page: 666
  issue: 7
  year: 2012
  ident: 3635_CR13
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2073
– ident: 3635_CR20
  doi: 10.1109/CVPR.2017.106
– ident: 3635_CR6
– volume: 8
  start-page: e80999
  issue: 12
  year: 2013
  ident: 3635_CR15
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080999
– ident: 3635_CR3
  doi: 10.1101/099796
– volume: 16
  start-page: e2005970
  issue: 7
  year: 2018
  ident: 3635_CR17
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2005970
SSID ssj0017805
Score 2.5526116
Snippet Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location,...
A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of...
Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location,...
Abstract Background A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 300
SubjectTerms Accuracy
Algorithms
Annotations
Applications programming
Artificial neural networks
Bioinformatics
Biological effects
Biomedical and Life Sciences
Cell cycle
Cell Nucleus
Classification
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Convolutional networks
Datasets
Deep Learning
Drug screening
Experts
Fluorescence
Genotype & phenotype
Humans
Image analysis
Image detection
Image processing
Image Processing, Computer-Assisted - methods
Keras
Libraries
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Malaria
Microarrays
Neural networks
Object detection
Object recognition
Parasites
Phenotypes
Plasmodium vivax - growth & development
Software
Vector-borne diseases
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIX1PJMW5BBSBzAarJO4phbqahAoBUqlejNmvjRrgTZarNbtf-eGSdZmiLgwjUeS_bMePxNPP7M2EsJGPjBB-G1diJXLhdAOY-GmuizggYXLf1ZTafVyYn-cu2pL6oJ6-iBO8XtaUhz0No7i-m2cq7WkfStSEGjK5aBoi-iniGZ6s8PiKl_uCJTlXttRjxtglIlOrgsxOVoG4ps_b_H5Gub0s2CyRunpnEzOtxk93oUyfe70W-xW765z-5070pePWDfPvkFtPxIHEynb3n_o4YjPOX0n547v4wFWA2fNbxjYSJT8dkPDC4tp1L4UxTy55zYLrGh6WrF24fs-PD98cEH0b-gIKxK1VI4H6y1QYEqAPOiSoKCGmRdqLqswYGrqzxk1kOpq0kABAPKaqikLZTSdSEfsY1m3vgnjINKnQyo_QxC7kurEZYg9oFUB1lj2pawbNCnsT27OD1y8d3ELKMqTWcDgzYw0QbmMmGv133OO26Nv0q_IzOtJYkXO35AbzG9t5h_eUvCXpCRDTFfNFRacwqrtjUfvx6Z_RLDm8ZsEOfyqhcKc5yDhf6mAmqCyLJGkrsjSVyadtw8-JLpQ0Nr6D6OQlipZcKer5upJ5W7NX6-ijJ0wwKxb8Ied663njfi7WKiJ2XC1MgpR4oZtzSzs0gcrmQhldQJezO4769h_Vnx2_9D8Tvs7iQuPyWybJdtLBcr_5TdthfLWbt4FhfvT99FReE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9ggMQL34PCQAEh8QDRrs21aXhBY2ICDZ3QmMTeIjdNjpOgPa53aPz32GnuRofYC6-NI9Wx49ix8zNjzyWg4QfnhdO6FmNVjwVQzKOhIvgsr6EOkv6oJpPy5ER_ihduXSyrXNvEYKjr1tId-S49Y1B4Gmv5Zv5DUNcoyq7GFhqX2ZU0y1LS80MlNlkEwutfP5Qpi90uJbQ2QQETpS9zcTo4jAJm_9-W-Y-j6XzZ5LncaTiSDm7-LzO32I3ojPK9Xntus0uuucOu9e0pf91lXw7dAjp-JPYnk9c83vdw9HI5Xffz2i1DHVfDZw3vwZxI4nz2HW1Ux6mifopEbs4JNBMHmr7kvLvHjg_eHe-_F7ERg7BqpJaidt5a6xWoHDC8KiUoqEBWuaqKCmqoq3LsU-ug0GXmAX0KZTWU0uZK6SqX22yraRv3gHFQo1r6utIp-LErrEbvBl0oGGkvK4z-EpauBWJsBCmnXhnfTAhWysL0QjQoRBOEaE4T9nIzZ95DdFxI_ZbkvKEkeO3woV1MTdytRsNoDFqjqFON-ov_G5AG8xFotH-FT9gz0hJDABoNVehMYdV15sPnI7NXoJXUKFrk5UUk8i3yYCE-eMCVIMytAeXOgBJ3uB0Or7XIRAvTmTMVStjTzTDNpKq5xrWrQEMPNdCFTtj9Xnc3fKPbnmc6KxKmBlo9WJjhSDP7GvDHlcylkjphr9b6f_Zb_174hxdz8Yhdz8LOVCJNd9jWcrFyj9lV-3M56xZPwr7-DYwsVDY
  priority: 102
  providerName: ProQuest
Title Keras R-CNN: library for cell detection in biological images using deep neural networks
URI https://link.springer.com/article/10.1186/s12859-020-03635-x
https://www.ncbi.nlm.nih.gov/pubmed/32652926
https://www.proquest.com/docview/2424712593
https://www.proquest.com/docview/2423514105
https://pubmed.ncbi.nlm.nih.gov/PMC7353739
https://doaj.org/article/9a04a99edc1947ddb90650950a92256f
Volume 21
WOSCitedRecordID wos000552664800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ) (Open Access)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgA4kXvj8CozIIiQewSOomjnnbpk1MgyrqJii8WBfHKZUgnZoWwX_PnZMUMj4kePFD7izF5_P5zr77mbEnEtDwgyuF07oQI1WMBFDMoyEn-KxSQ-Fn-rUaj9PpVGdtUVjdZbt3V5LeUvtlnSYv6oiw1gSFO3T5GAv0HLdxu0tpOU5O3m7uDgilvyuP-W2_3hbkkfp_tcc_bUjnkyXP3Zj6jejw2v8N4Tq72jqefLfRlBvsgqtussvNU5TfbrF3x24JNZ-I_fH4JW_Pdjh6tJyO9nnhVj5nq-LzijfATTS7fP4Z7VHNKXt-hkzujBNAJhKqJr28vs1ODw9O91-J9tEFYVWoVqJwpbW2VKBiwFAqlaAgB5nHKk9yKKDI01EZWQeJTocloP-grIZU2lgpncfyDtuqFpW7xziosJBlkesIypFLrEZPBt0lCHUpc4z0AhZ102BsC0hO72J8Mj4wSRPTyMugvIyXl_kasGebPmcNHMdfufdodjecBKXtPyyWM9OuTKMhHIHWOMGRRl3F__WognEIGm1dUgbsMemGIbCMirJxZrCua3N0MjG7CVpEjQEkjuVpy1QucAwW2uIGlATha_U4d3qcuJptn9ypoGmtSW2ohEehJ6plwB5tyNSTMuQqt1h7HirKQHc5YHcbjd2MG130eKiHScBUT5d7gulTqvlHjzWuZCyV1AF73mn0j9_6s-Dv_xv7A3Zl6BeFElG0w7ZWy7V7yC7ZL6t5vRywi2qqfJsO2PbewTibDPzRCbbHSgwoXTfDNos_ID07epO9H3iL8B1FMFRM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL70eggEEgDmB183SMhFApVF1tWaGyUnuzJo6zrATZZbML7Y_iPzLjJFtSRG89cI0nUmx_M-OJZ75h7FkIaPjBFsIqlYtI5pEAinkUZESfVSjI3U7vyeEwPTxUn9bYr7YWhtIqW5voDHU-NfSPfJPKGCR6YxW-nX0X1DWKblfbFho1LAb2-CeGbNWb_nvc3-dBsPNhtL0rmq4CwsieXIjcFsaYQoKMAWOFNAQJGYRZLLMkgxzyLI0K31hIVBoUgA5SGgVpaGIpVUZNItDiX4jCVBJV_0CK1aUFtQdo63LSZLPyiRxOUHxGt6WxOOr4Ptci4G9H8IcnPJ2leeqq1nnAnWv_2dpdZ1ebozbfqnXjBluz5U12qW6-eXyLHQzsHCq-L7aHw9e8-ZvF8QzP6TKD53bhstRKPil5TVVFeOaTb2iBK071AmMUsjNOlKA4UNYJ9dVtNjqPSd1h6-W0tPcYB9nLwyLPlA9FZBOj8OyGB0ToqSLMMLb1mN_uvzYNBTt1AvmqXSiWJrrGjEbMaIcZfeSxl6t3ZjUByZnS7whWK0kiD3cPpvOxbmyRVtCLQClElq9QO_F7HY9i3AOF1j0pPPaUQKmJHqSk_KMxLKtK9z_v660EfYBCJOFcXjRCxRTnYKAp58CVIEaxjuRGRxLtl-kOt6DVjf2s9AliPfZkNUxvUk5gaadLJ0NlKBggeOxurSqreWNQEgcqSDwmO0rUWZjuSDn54tjVZRiHMlQee9Wq28ln_Xvh7589i8fs8u7o457e6w8HD9iVwBkFKXx_g60v5kv7kF00PxaTav7ImRTO9Dmr4W-GPrQ0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQOcQL9xEoYBASDxB1s07imLdSWFG1WlVtBX2zJo69XalkV5ssgn_PjHPQlENCvMZjyZ7LM_HMZ8ZeCkDHD9aFVqkijGURh0A5j4Kc4LOcgsJLel9Op9nJiTo418Xvq927K8mmp4FQmsp6a1m4xsSzdKuKCHctpNSHLiKTEKPIyzE9GkT5-tGn_h6BEPu7VpnfzhscRx61_1fffO5wulg4eeH21B9Kk5v_v51b7EYbkPLtRoNus0u2vMOuNk9Ufr_LPu_ZFVT8MNyZTt_y9p8Px0iX0y9_Xtja13KVfF7yBtCJpM7nX9BPVZyq6mdIZJecgDNxoGzKzqt77Hjy4XjnY9g-xhAaOZJ1WFhnjHESZAKYYmUCJOQg8kTmaQ4FFHkWu8hYSFU2doBxhTQKMmESKVWeiPtso1yU9iHjIEeFcEWuInCxTY3CCAfDKBgpJ3LMAAMWdSLRpgUqp_cyzrRPWLJUN_zSyC_t-aW_Bex1P2fZwHT8lfodSbqnJIht_2GxmunWYrWCUQxKobAjhTqM6_Vog8kIFPrA1AXsBemJJhCNkqp0ZrCuKr17dKi3U_SUChNL3MurlsgtcA8G2qYH5AThbg0oNweUaOVmONypo269TKWptUdihKpEwJ73wzSTKudKu1h7GmrWwDA6YA8a7e33jaF7MlbjNGByoNcDxgxHyvmpxyCXIhFSqIC96bT757L-zPhH_0b-jF07eD_R-7vTvcfs-tjbhwyjaJNt1Ku1fcKumK_1vFo99Ub_A1DWVz8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Keras+R-CNN%3A+library+for+cell+detection+in+biological+images+using+deep+neural+networks&rft.jtitle=BMC+bioinformatics&rft.au=Hung%2C+Jane&rft.au=Goodman%2C+Allen&rft.au=Ravel%2C+Deepali&rft.au=Lopes%2C+Stefanie+C.+P&rft.date=2020-07-11&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-03635-x&rft.externalDocID=A631892592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon