Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models

Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 22; číslo 1; s. 112 - 17
Hlavní autori: Abdurahman, Fetulhak, Fante, Kinde Anlay, Aliy, Mohammed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 08.03.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
AbstractList Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Keywords: Malaria, Plasmodium falciparum, Thick blood smear, Deep learning, Object detection, YOLOV3, YOLOV4, Feature map
Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides.BACKGROUNDManual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides.YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively.RESULTSYOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively.The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.CONCLUSIONSThe experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.
ArticleNumber 112
Audience Academic
Author Aliy, Mohammed
Fante, Kinde Anlay
Abdurahman, Fetulhak
Author_xml – sequence: 1
  givenname: Fetulhak
  orcidid: 0000-0002-5670-0319
  surname: Abdurahman
  fullname: Abdurahman, Fetulhak
  email: afetulhak@yahoo.com
  organization: Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University
– sequence: 2
  givenname: Kinde Anlay
  surname: Fante
  fullname: Fante, Kinde Anlay
  organization: Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University
– sequence: 3
  givenname: Mohammed
  surname: Aliy
  fullname: Aliy, Mohammed
  organization: School of Biomedical Engineering, Jimma Institute of Technology, Jimma University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33685401$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tH-iiCLppF071sixvCiH0MTAl0Bd0JWTpytHUY00ku7T_vnJm0mRCCQZbXH3nWD4-x8XBEAYoiucEnxIixZtEqKyaElNSYo6ZKPmj4ojwmpSU4OrgzvqwOE5phTGpJa6eFIeMCVlxTI6K1Sfd6-g12uiokx8BWRjBjD4MyA9ovPTmJ2r7ECxKa9ARrb2JIZmw8Qb5te4goSn5oUPrYL3zYNGPi-XFd4b0sFvyeQv69LR47HSf4NnueVJ8e__u6_nHcnnxYXF-tixNjeuxFMRaSqgD21bccNEIDPluHG0ZrQ0jTEsOuDYguausZi2VbW1FjR0TDbPspFhsfW3QK7WJ-ZTxjwraq-tBiJ3ScfSmB2Ua0E5z27SV5pTxpiWcOIc5lYTlUfZ6u_XaTO0arIFhjLrfM93fGfyl6sIvVTdMVnI2eLUziOFqgjSqtU8G-l4PEKakKG8yKaQgGX15D12FKQ45KkUrTAUmgolbqtP5A_zgQn6vmU3VmagqyjklM3X6HypfFvIPzDVyPs_3BK_3BJkZ4ffY6SkltfjyeZ99cTeUf2nctCoDcgvMVUkRnDJ-1HOn8il8rwhWc4HVtsAqF1hdF1jNedF70hv3B0VsK0oZHjqIt8k9oPoLpoX_ZQ
CitedBy_id crossref_primary_10_1002_admt_202101053
crossref_primary_10_3390_agronomy11122440
crossref_primary_10_1016_j_procbio_2024_06_029
crossref_primary_10_1080_21681163_2022_2111715
crossref_primary_10_3390_microorganisms12061051
crossref_primary_10_3390_electronics13163174
crossref_primary_10_3390_info15030166
crossref_primary_10_1007_s11517_024_03090_3
crossref_primary_10_1016_j_heliyon_2024_e41137
crossref_primary_10_1016_j_bspc_2022_103931
crossref_primary_10_1371_journal_pone_0275195
crossref_primary_10_3390_fi14030088
crossref_primary_10_1007_s11760_024_03788_9
crossref_primary_10_3390_informatics9040076
crossref_primary_10_3390_diagnostics11111994
crossref_primary_10_3390_jimaging8030066
crossref_primary_10_1109_ACCESS_2024_3393410
crossref_primary_10_3389_fbinf_2025_1628724
crossref_primary_10_3390_diagnostics13030511
crossref_primary_10_3390_app14188402
crossref_primary_10_3390_tropicalmed9090190
crossref_primary_10_1017_eds_2025_15
crossref_primary_10_3390_diagnostics11091664
crossref_primary_10_1016_j_aquaculture_2023_740418
crossref_primary_10_3389_fmicb_2023_1240936
crossref_primary_10_3390_app14020607
crossref_primary_10_1016_j_compbiomed_2025_109704
crossref_primary_10_1007_s40747_024_01406_2
crossref_primary_10_1093_ofid_ofad469
crossref_primary_10_1038_s41598_025_87979_5
crossref_primary_10_1364_PRJ_428425
crossref_primary_10_3389_fmicb_2022_1006659
crossref_primary_10_1016_j_mimet_2022_106630
crossref_primary_10_7717_peerj_cs_1744
crossref_primary_10_1097_PRS_0000000000010603
crossref_primary_10_1088_1742_6596_2121_1_012041
crossref_primary_10_1139_facets_2022_0206
crossref_primary_10_3389_fcimb_2025_1615993
crossref_primary_10_1186_s13071_024_06215_7
crossref_primary_10_1016_j_smallrumres_2024_107275
crossref_primary_10_1049_ccs2_12082
crossref_primary_10_1109_LSENS_2024_3373882
crossref_primary_10_3389_fpls_2022_911473
crossref_primary_10_1016_j_prp_2023_154362
crossref_primary_10_1177_20552076251321540
crossref_primary_10_1128_spectrum_01440_23
crossref_primary_10_1002_mp_16218
crossref_primary_10_1016_j_engappai_2024_108529
crossref_primary_10_1007_s40192_025_00406_5
crossref_primary_10_1128_jcm_00986_22
crossref_primary_10_1016_j_csbj_2022_02_005
crossref_primary_10_1088_1742_6596_2622_1_012011
crossref_primary_10_1016_j_artmed_2025_103114
crossref_primary_10_1371_journal_pntd_0012614
crossref_primary_10_1155_crog_9403522
crossref_primary_10_3390_vetsci12090812
crossref_primary_10_1109_ACCESS_2022_3208270
crossref_primary_10_1016_j_bspc_2024_106289
crossref_primary_10_3389_frai_2022_510483
crossref_primary_10_32604_cmc_2022_018946
crossref_primary_10_1007_s11042_024_19062_6
crossref_primary_10_1016_j_aquaculture_2022_738790
crossref_primary_10_1016_j_tice_2024_102677
crossref_primary_10_3390_diagnostics14070690
crossref_primary_10_1186_s13071_024_06503_2
crossref_primary_10_1186_s12879_024_09428_4
Cites_doi 10.1109/JBHI.2019.2939121
10.1002/jbio.201700003
10.1016/j.mehy.2019.109472
10.1109/ICASSP.2019.8683021
10.1007/s00521-017-2937-4
10.1109/I-SMAC.2018.8653705
10.1186/1475-2875-5-118
10.1016/j.cviu.2009.08.003
10.1109/CVPRW.2017.112
10.1007/978-3-030-31332-6_24
10.1016/j.optcom.2015.03.064
10.1186/s12936-018-2493-0
10.1007/978-3-030-01421-6_14
10.1007/s10278-019-00284-2
10.1007/s11517-006-0044-2
10.1109/CVPR.2017.690
10.1109/IECBES.2012.r6498073
10.3390/s18020513
10.1109/ACCESS.2019.2921027
10.1109/CVPR.2016.91
10.1186/1475-2875-10-364
10.5772/intechopen.72426
10.1007/s11042-019-7162-y
10.3174/ajnr.A5742
10.1117/1.JMI.5.4.044506
10.1016/j.procs.2016.07.024
10.1109/ACCESS.2017.2705642
10.1007/978-3-030-04212-7_40
10.1371/journal.pone.0163045
10.3390/diagnostics9030072
10.1016/j.compeleceng.2019.08.004
10.1007/978-3-030-04239-4_33
10.1007/978-3-319-10602-1_48
10.1109/BIBM.2016.7822567
10.1186/1471-2105-13-S17-S18
10.1109/CVPR42600.2020.01079
10.1117/12.2549701
10.1016/j.micron.2012.11.002
10.1109/CVPR.2009.5206848
10.7717/peerj.4568
10.1109/TPAMI.2016.2577031
10.1109/BHI.2017.7897215
10.1007/978-3-319-46448-0_2
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-021-04036-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 17
ExternalDocumentID oai_doaj_org_article_c9eafa4d9b5a42349b141ff0428135a4
PMC7938584
A655244216
33685401
10_1186_s12859_021_04036_4
Genre Journal Article
GeographicLocations Ethiopia
Africa
GeographicLocations_xml – name: Ethiopia
– name: Africa
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c707t-61dd212fedb54c46960e469cf2b327c313a84e07ce84f5da3b28b7d670f3693d3
IEDL.DBID RSV
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626671900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:26 EDT 2025
Tue Nov 04 01:57:08 EST 2025
Thu Oct 02 11:52:51 EDT 2025
Mon Oct 06 18:35:06 EDT 2025
Tue Nov 11 10:12:20 EST 2025
Tue Nov 04 18:00:25 EST 2025
Thu Nov 13 14:46:26 EST 2025
Mon Jul 21 06:01:54 EDT 2025
Tue Nov 18 21:11:07 EST 2025
Sat Nov 29 05:40:09 EST 2025
Sat Sep 06 07:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Thick blood smear
Deep learning
Malaria
Object detection
YOLOV3
YOLOV4
Feature map
Plasmodium falciparum
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c707t-61dd212fedb54c46960e469cf2b327c313a84e07ce84f5da3b28b7d670f3693d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5670-0319
OpenAccessLink https://link.springer.com/10.1186/s12859-021-04036-4
PMID 33685401
PQID 2502601636
PQPubID 44065
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_c9eafa4d9b5a42349b141ff0428135a4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938584
proquest_miscellaneous_2499386861
proquest_journals_2502601636
gale_infotracmisc_A655244216
gale_infotracacademiconefile_A655244216
gale_incontextgauss_ISR_A655244216
pubmed_primary_33685401
crossref_citationtrail_10_1186_s12859_021_04036_4
crossref_primary_10_1186_s12859_021_04036_4
springer_journals_10_1186_s12859_021_04036_4
PublicationCentury 2000
PublicationDate 2021-03-08
PublicationDateYYYYMMDD 2021-03-08
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 4036_CR38
4036_CR39
4036_CR34
4036_CR30
4036_CR32
4036_CR33
GP Gopakumar (4036_CR19) 2018; 11
S Kaewkamnerd (4036_CR4) 2012; 13
M Liu (4036_CR31) 2019; 7
4036_CR28
4036_CR29
4036_CR23
4036_CR25
4036_CR26
W Liu (4036_CR48) 2016
M El-Melegy (4036_CR35) 2019
AE Kutlu Hüseyin (4036_CR42) 2020; 135
W Liu (4036_CR36) 2018
W Tang (4036_CR37) 2018
4036_CR17
TF Boray (4036_CR9) 2010; 114
4036_CR56
NE Ross (4036_CR6) 2006; 44
4036_CR15
4036_CR52
4036_CR53
HS Park (4036_CR5) 2016; 11
4036_CR54
4036_CR1
4036_CR50
DK Das (4036_CR13) 2013; 45
4036_CR51
F Yang (4036_CR22) 2019
4036_CR8
PD Chang (4036_CR41) 2018; 39
A Loddo (4036_CR12) 2018; 18
T-Y Lin (4036_CR55) 2014
I Sirazitdinov (4036_CR40) 2019; 78
S Ren (4036_CR47) 2017; 39
Y Purwar (4036_CR14) 2011; 10
Y-C Lo (4036_CR43) 2018
PW David (4036_CR27) 2018
4036_CR49
F Yang (4036_CR24) 2019
SS Devi (4036_CR10) 2018; 29
4036_CR45
4036_CR46
M Poostchi (4036_CR3) 2018; 5
K Torres (4036_CR21) 2018; 17
4036_CR44
S Rajaraman (4036_CR18) 2018; 6
SS Devi (4036_CR11) 2019
W O’Meara (4036_CR2) 2006; 5
KR Vijayalakshmi (4036_CR20) 2019
M David (4036_CR7) 2015; 350
D Bibin (4036_CR16) 2017; 5
References_xml – ident: 4036_CR23
– year: 2019
  ident: 4036_CR22
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2939121
– volume: 11
  start-page: 3
  year: 2018
  ident: 4036_CR19
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201700003
– ident: 4036_CR56
– volume: 135
  start-page: 109472
  year: 2020
  ident: 4036_CR42
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2019.109472
– ident: 4036_CR39
  doi: 10.1109/ICASSP.2019.8683021
– volume: 29
  start-page: 217
  issue: 8
  year: 2018
  ident: 4036_CR10
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2937-4
– ident: 4036_CR33
  doi: 10.1109/I-SMAC.2018.8653705
– volume: 5
  start-page: 118
  year: 2006
  ident: 4036_CR2
  publication-title: Malar J
  doi: 10.1186/1475-2875-5-118
– volume: 114
  start-page: 21
  issue: 1
  year: 2010
  ident: 4036_CR9
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2009.08.003
– start-page: 275
  volume-title: Soft computing for problem solving
  year: 2019
  ident: 4036_CR11
– ident: 4036_CR46
  doi: 10.1109/CVPRW.2017.112
– start-page: 270
  volume-title: Pattern recognition and image analysis
  year: 2019
  ident: 4036_CR35
  doi: 10.1007/978-3-030-31332-6_24
– volume: 350
  start-page: 13
  year: 2015
  ident: 4036_CR7
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2015.03.064
– volume: 17
  start-page: 339
  issue: 1
  year: 2018
  ident: 4036_CR21
  publication-title: Malar J
  doi: 10.1186/s12936-018-2493-0
– start-page: 137
  volume-title: Artificial neural networks and machine learning–ICANN 2018
  year: 2018
  ident: 4036_CR37
  doi: 10.1007/978-3-030-01421-6_14
– ident: 4036_CR44
  doi: 10.1007/s10278-019-00284-2
– volume: 44
  start-page: 427
  issue: 5
  year: 2006
  ident: 4036_CR6
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-006-0044-2
– ident: 4036_CR52
  doi: 10.1109/CVPR.2017.690
– ident: 4036_CR15
  doi: 10.1109/IECBES.2012.r6498073
– ident: 4036_CR49
– ident: 4036_CR28
– volume: 18
  start-page: 02
  year: 2018
  ident: 4036_CR12
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s18020513
– volume: 7
  start-page: 75058
  year: 2019
  ident: 4036_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2921027
– ident: 4036_CR51
  doi: 10.1109/CVPR.2016.91
– ident: 4036_CR1
– volume: 10
  start-page: 364
  year: 2011
  ident: 4036_CR14
  publication-title: Malar J
  doi: 10.1186/1475-2875-10-364
– volume-title: Machine learning, chapter 8
  year: 2018
  ident: 4036_CR27
  doi: 10.5772/intechopen.72426
– year: 2019
  ident: 4036_CR20
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7162-y
– ident: 4036_CR38
– ident: 4036_CR34
– ident: 4036_CR30
– volume: 39
  start-page: 1609
  issue: 9
  year: 2018
  ident: 4036_CR41
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5742
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  ident: 4036_CR3
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.5.4.044506
– ident: 4036_CR50
– ident: 4036_CR8
  doi: 10.1016/j.procs.2016.07.024
– volume: 5
  start-page: 9099
  year: 2017
  ident: 4036_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2705642
– start-page: 454
  volume-title: Neural information processing
  year: 2018
  ident: 4036_CR36
  doi: 10.1007/978-3-030-04212-7_40
– volume: 11
  start-page: 1
  issue: 9
  year: 2016
  ident: 4036_CR5
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0163045
– ident: 4036_CR32
  doi: 10.3390/diagnostics9030072
– volume: 78
  start-page: 388
  year: 2019
  ident: 4036_CR40
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2019.08.004
– start-page: 369
  volume-title: Neural information processing
  year: 2018
  ident: 4036_CR43
  doi: 10.1007/978-3-030-04239-4_33
– start-page: 740
  volume-title: Computer Vision—ECCV 2014
  year: 2014
  ident: 4036_CR55
  doi: 10.1007/978-3-319-10602-1_48
– ident: 4036_CR25
  doi: 10.1109/BIBM.2016.7822567
– volume: 13
  start-page: 12
  year: 2012
  ident: 4036_CR4
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-13-S17-S18
– ident: 4036_CR53
  doi: 10.1109/CVPR42600.2020.01079
– ident: 4036_CR26
– ident: 4036_CR45
  doi: 10.1117/12.2549701
– volume: 45
  start-page: 97
  year: 2013
  ident: 4036_CR13
  publication-title: Micron
  doi: 10.1016/j.micron.2012.11.002
– ident: 4036_CR54
  doi: 10.1109/CVPR.2009.5206848
– year: 2019
  ident: 4036_CR24
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2939121
– volume: 6
  start-page: e4568
  year: 2018
  ident: 4036_CR18
  publication-title: PeerJ
  doi: 10.7717/peerj.4568
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 4036_CR47
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 4036_CR17
  doi: 10.1109/BHI.2017.7897215
– start-page: 21
  volume-title: Computer vision–ECCV 2016
  year: 2016
  ident: 4036_CR48
  doi: 10.1007/978-3-319-46448-0_2
– ident: 4036_CR29
SSID ssj0017805
Score 2.6303146
Snippet Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the...
Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks...
Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the...
Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the...
Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms Algorithms
Animals
Bioinformatics
Biomedical and Life Sciences
Blood
Cameras
Classification
Cluster analysis
Clustering
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer-aided medical diagnosis
Datasets
Deep learning
Developing countries
Diagnosis
Diagnostic Tests, Routine
Image processing
LDCs
Life Sciences
Low income groups
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Malaria
Malaria - blood
Malaria - diagnosis
Medical examination
Medical imaging
Methods
Microarrays
Microscope and microscopy
Microscopy
Model accuracy
Object detection
Object recognition
Parasites
Performance evaluation
Plasmodium falciparum
Research Article
Smartphones
Support vector machines
Thick blood smear
Vector quantization
Vector-borne diseases
YOLOV3
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yKPgi3q2uEkXwQcs2TZqkj6u4KOiueGN9Cmkuu1VPj2zPEfz3zqTtcbuivvhSSjOFdmYymSFfviHkoQ6N5a5SuWWlzQWXLK99FXPesDrA7AtlcKnZhNrf14eH9ZtTrb4QEzbQAw-K23F1sNEKXzeVhaVf1A0TLEZM9RmHRxh9IeuZiqlx_wCZ-qcjMlru9Ax52nKEI4DTcpmL2TKU2Pp_j8mnFqWzgMkzu6ZpMdq7TC6NWSTdHb7-CjkXuqvkwtBX8sc18vm1hYK1tRSJvXF7mPqwSpirjrYdRYj7F5og67RfgKvTBcLy8IBK62i7gBDTUwTEH9HF0rcRslT66eDVwUdObTfeCpp66PTXyYe95--fvcjHpgq5U4VaQanoPSxXMfimEg6KY1kEuLpYNrxUjjNutQiFckGLWHnLm1I3yktVRC5r7vkNstUtu3CLUF7FaG0hROmsqCFLD8w7qT0Kaii8MsImHRs3Mo5j44uvJlUeWprBLgbsYpJdjMjI48073wa-jb9KP0XTbSSRKzs9AA8yoweZf3lQRh6g4Q2yYXQItzmy6743L9-9NbuyqiD_KZnMyKNRKC7hH5wdTy-AJpBAaya5PZOE6ermw5N_mTFc9Aby0ETtxmH4_mYY30QIXBeWa5CB2pRrqSXLyM3BHTf_zbGNAFTKGVEzR50pZj7StceJTBzis4YkNCNPJpf-9Vl_Vvzt_6H4O-RimaYkzwu9TbZWJ-twl5x331dtf3IvTeifmTZLHA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkEFIHCBqHDuOc0IFUYGAFvFSOVmOH9sUNimbXST-PTPe7JYU0QuXVRSPpbXnHY-_IeSR8rXhtihTw3KTCi5ZWrkipLxmlQft87m3sdlEubur9ver98MHt34oq1zZxGioXWfxG_kWuOqIfsXls6MfKXaNwtPVoYXGWXKO5TlDOX9TputTBMTrX12UUXKrZ4jWlmJRAogul6kYOaOI2f-3Zf7DNZ0smzxxdhpd0s7l_13MFXJpCEbp9lJ6rpIzvr1GLizbU_66Tg7fGch7G0MRHxynUufnsXSrpU1LsVL-G42V77SfgsbQKVb34T2XxtJmCpaqp1hXP6HTzjUBgl36de_t3hdOTTs8Chpb8fQ3yOedl59evEqH3gypLbNyDhmnc-D1gnd1ISzk2DLz8GtDXvO8tJxxo4TPSuuVCIUzvM5VXTpZZoHLijt-k2y0XetvE8qLEIzJhMitERUE-545K5VDQgX5W0LYiknaDsDl2D_ju44JjJJ6yVgNjNWRsVok5Ml6ztEStuNU6ufI-zUlQm7HF91sogcN1rbyJhjhqrowEIOKqmaChYA5J-PwKiEPUXI0gmq0WLUzMYu-168_ftDbsiggjMqZTMjjgSh0sAZrhksQsBOIwzWi3BxRgtbb8fBKsvRgdXp9LFYJebAexplYSdf6bgE0kOJyJZVkCbm1lOf1ujl2I4CEOyHlSNJHGzMeaZuDiEkOZl5BLJuQpyudOP5b_974O6ev4i65mEdt5WmmNsnGfLbw98h5-3Pe9LP7Udd_AyaUWMM
  priority: 102
  providerName: ProQuest
Title Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
URI https://link.springer.com/article/10.1186/s12859-021-04036-4
https://www.ncbi.nlm.nih.gov/pubmed/33685401
https://www.proquest.com/docview/2502601636
https://www.proquest.com/docview/2499386861
https://pubmed.ncbi.nlm.nih.gov/PMC7938584
https://doaj.org/article/c9eafa4d9b5a42349b141ff0428135a4
Volume 22
WOSCitedRecordID wos000626671900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfH8ERmUQEg8QEceO7TxuaBMTrKs6mLa9WI5jlwBNUdMi8d9zdpNCxocEL1aVO0v15e58F59_h9BTaQtNTSZiTVIdM8pJnJeZi2lBcgvWZ1NrQrMJMRzK09N81F4Ka7pq9-5IMnjqYNaSv2yIx1qLfUkBKB7lMdtAW7DdSW-O4-OT9dmBR-nvrsf8dl5vCwpI_b_64582pIvFkhdOTMNGtH_9_5ZwA11rA0-8s9KUm-iSrW-hK6tWlN9uo4-HGnLcSmOPBe5PlHFpF6FMq8ZVjX1V_CccqtxxMwXrwFNfyefvtFQGV1PwSg32NfQTPJ2VlYPAFp8dvT06oVjX7U-GQ9ud5g56v7_37tXruO3DEBuRiAVkl2UJO5yzZZExA_k0TyyMxqUFTYWhhGrJbCKMlcxlpaZFKgtRcpE4ynNa0rtos57V9j7CNHNO64Sx1GiWQ2BvSWm4LD2jhFwtQqR7Ncq0IOW-V8ZnFZIVydVKhgpkqIIMFYvQ8_WcLyuIjr9y7_o3vub08NrhwWw-Ua21KpNb7TQr8yLTEG-yvCCMOOfzS0LhUYSeeH1RHkCj9hU6E71sGnVwPFY7PMsgZEoJj9CzlsnNYA1GtxceQBIec6vHud3jBAs3fXKnlqr1MI2C0DWgwVEgP16T_UxfNVfb2RJ4IJ2lkktOInRvpcXrdVPfeQCS6wiJnn73BNOn1NWHgD8OLl1C3BqhF52W__hbfxb8g39jf4iupsFQaJzIbbS5mC_tI3TZfF1UzXyANsSpCKMcoK3dveFoPAifU2B8I-KBL-EdwTjKzoE-OjgcnQ2Cl_gOEuJYHA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCAQB4gax46THBAqj6pVty2CgpaTcWynBNhsaXZB_VP8Rma8yZYU0VsPXFareLKyvTPfeJKZ-Qh5mLlCc5OkoWaxDgWXLMxtUoa8YLkD63OxM55sIt3ayobD_M0C-dXVwmBaZYeJHqjt2OAz8mVw1b77FZfP976HyBqFb1c7Co2ZWmy4g58QsjXP1l_B__sojldf77xcC1tWgdCkUTqBWMlawOvS2SIRBqJDGTn4NGVc8Dg1nHGdCRelxmWiTKzmRZwVqZVpVHKZc8vhd0-R04DjKaaQpcN5gMeQH6ArzMnkcsOwO1yISRBgKlyGouf8PEfA357gD1d4NE3zyLta7wJXL_5vm3eJXGgP23RlZh2XyYKrr5CzM_rNg6vky6aGuL7SFPuf41SpdROfmlbTqqZYCfCV-sx-2oxg9nSE2YtYx1MZWo0AiRuKdQO7dDS2VQmHefpxe7D9gVNdt18F9VRDzTXy_kQWep0s1uPa3SSUJ2WpdSREbLTIIZhxzBqZWRTMID4NCOuUQpm2MTvyg3xTPkDLpJopkgJFUl6RlAjIk_k9e7O2JMdKv0Bdm0tiS3F_Yby_q1qEUiZ3utTC5kWi4Ywt8oIJVpYYUzMOlwLyADVVYdOQGrOSdvW0adT6u7dqRSYJHBNjJgPyuBUqx7AGo9siD9gJ7DPWk1zqSQKqmf5wp8mqRdVGHapxQO7Ph_FOzBSs3XgKMhDC80xmkgXkxsx-5uvmyLYgIhhJe5bV25j-SF199j3XwY1lcFYPyNPOBg-n9e-Nv3X8Ku6Rc2s7mwM1WN_auE3Oxx4peBhlS2Rxsj91d8gZ82NSNft3Pc5Q8umkbfM3OPG1tA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKF-wgUMAiJhxI1jp3EeSxHRUXZVhSq8mQ5PpYAm602u0j8e2ac7NKUQ0K8rKJ4LK0nM_aM_M03hDyRrtLcZEWsWapjwXMWlzbzMa9Y6cD7XOpMaDZRjEby6KjcP1HFH9DuyyvJrqYBWZqa-eax9Z2Ly3yzZci7FiO8AIyQ57E4S84JbBqE-frB4eoeARn7l6Uyv503OI4Ca_-ve_OJw-k0cPLU7Wk4lLav_P9yrpLLfUBKtzoLukbOuOY6udC1qPx-g3x-qyH3rTVFjnC8aabWzQN8q6F1QxEt_4UG9DttJ-A1dIIIP6x1qQ2tJ7BbtRSx9WM6mdraQ8BLP-7t7h1yqpv-UdDQjqe9ST5sv3r_4nXc92eITZEUc8g6rYWTzztbZcJAnp0nDn6NTyueFoYzrqVwSWGcFD6zmleprAqbF4nnecktv0XWmmnj7hDKM--1ToRIjRYlBPyOWZNLi4IScriIsOVnUqYnL8ceGl9VSGJkrjodKtChCjpUIiIbqznHHXXHX6Wf49dfSSLtdngxnY1V78XKlE57LWxZZRriUFFWTDDvMe9kHF5F5DHajkJijQaRO2O9aFu1c_BObeVZBqFUyvKIPO2F_BTWYHRfCAGaQC6ugeT6QBI83wyHlyaq-p2nVRDSBpY4DsOPVsM4E9F0jZsuQAbSXC5zmbOI3O4serVujh0JIOmOSDGw9YFihiNN_SnwksNWLyGejcizpcX__Ft_VvzdfxN_SC7uv9xWuzujN_fIpTT4DI8TuU7W5rOFu0_Om2_zup09CBvBDzQPWw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malaria+parasite+detection+in+thick+blood+smear+microscopic+images+using+modified+YOLOV3+and+YOLOV4+models&rft.jtitle=BMC+bioinformatics&rft.au=Abdurahman%2C+Fetulhak&rft.au=Fante%2C+Kinde+Anlay&rft.au=Aliy%2C+Mohammed&rft.date=2021-03-08&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04036-4&rft.externalDocID=10_1186_s12859_021_04036_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon