Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models
Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 22; číslo 1; s. 112 - 17 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
08.03.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides.
Results
YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively.
Conclusions
The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. |
|---|---|
| AbstractList | Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Keywords: Malaria, Plasmodium falciparum, Thick blood smear, Deep learning, Object detection, YOLOV3, YOLOV4, Feature map Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides.BACKGROUNDManual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides.YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively.RESULTSYOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively.The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.CONCLUSIONSThe experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists’ diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. Results YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. Conclusions The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas. |
| ArticleNumber | 112 |
| Audience | Academic |
| Author | Aliy, Mohammed Fante, Kinde Anlay Abdurahman, Fetulhak |
| Author_xml | – sequence: 1 givenname: Fetulhak orcidid: 0000-0002-5670-0319 surname: Abdurahman fullname: Abdurahman, Fetulhak email: afetulhak@yahoo.com organization: Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University – sequence: 2 givenname: Kinde Anlay surname: Fante fullname: Fante, Kinde Anlay organization: Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University – sequence: 3 givenname: Mohammed surname: Aliy fullname: Aliy, Mohammed organization: School of Biomedical Engineering, Jimma Institute of Technology, Jimma University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33685401$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktr3DAUhU1JaR7tH-iiCLppF071sixvCiH0MTAl0Bd0JWTpytHUY00ku7T_vnJm0mRCCQZbXH3nWD4-x8XBEAYoiucEnxIixZtEqKyaElNSYo6ZKPmj4ojwmpSU4OrgzvqwOE5phTGpJa6eFIeMCVlxTI6K1Sfd6-g12uiokx8BWRjBjD4MyA9ovPTmJ2r7ECxKa9ARrb2JIZmw8Qb5te4goSn5oUPrYL3zYNGPi-XFd4b0sFvyeQv69LR47HSf4NnueVJ8e__u6_nHcnnxYXF-tixNjeuxFMRaSqgD21bccNEIDPluHG0ZrQ0jTEsOuDYguausZi2VbW1FjR0TDbPspFhsfW3QK7WJ-ZTxjwraq-tBiJ3ScfSmB2Ua0E5z27SV5pTxpiWcOIc5lYTlUfZ6u_XaTO0arIFhjLrfM93fGfyl6sIvVTdMVnI2eLUziOFqgjSqtU8G-l4PEKakKG8yKaQgGX15D12FKQ45KkUrTAUmgolbqtP5A_zgQn6vmU3VmagqyjklM3X6HypfFvIPzDVyPs_3BK_3BJkZ4ffY6SkltfjyeZ99cTeUf2nctCoDcgvMVUkRnDJ-1HOn8il8rwhWc4HVtsAqF1hdF1jNedF70hv3B0VsK0oZHjqIt8k9oPoLpoX_ZQ |
| CitedBy_id | crossref_primary_10_1002_admt_202101053 crossref_primary_10_3390_agronomy11122440 crossref_primary_10_1016_j_procbio_2024_06_029 crossref_primary_10_1080_21681163_2022_2111715 crossref_primary_10_3390_microorganisms12061051 crossref_primary_10_3390_electronics13163174 crossref_primary_10_3390_info15030166 crossref_primary_10_1007_s11517_024_03090_3 crossref_primary_10_1016_j_heliyon_2024_e41137 crossref_primary_10_1016_j_bspc_2022_103931 crossref_primary_10_1371_journal_pone_0275195 crossref_primary_10_3390_fi14030088 crossref_primary_10_1007_s11760_024_03788_9 crossref_primary_10_3390_informatics9040076 crossref_primary_10_3390_diagnostics11111994 crossref_primary_10_3390_jimaging8030066 crossref_primary_10_1109_ACCESS_2024_3393410 crossref_primary_10_3389_fbinf_2025_1628724 crossref_primary_10_3390_diagnostics13030511 crossref_primary_10_3390_app14188402 crossref_primary_10_3390_tropicalmed9090190 crossref_primary_10_1017_eds_2025_15 crossref_primary_10_3390_diagnostics11091664 crossref_primary_10_1016_j_aquaculture_2023_740418 crossref_primary_10_3389_fmicb_2023_1240936 crossref_primary_10_3390_app14020607 crossref_primary_10_1016_j_compbiomed_2025_109704 crossref_primary_10_1007_s40747_024_01406_2 crossref_primary_10_1093_ofid_ofad469 crossref_primary_10_1038_s41598_025_87979_5 crossref_primary_10_1364_PRJ_428425 crossref_primary_10_3389_fmicb_2022_1006659 crossref_primary_10_1016_j_mimet_2022_106630 crossref_primary_10_7717_peerj_cs_1744 crossref_primary_10_1097_PRS_0000000000010603 crossref_primary_10_1088_1742_6596_2121_1_012041 crossref_primary_10_1139_facets_2022_0206 crossref_primary_10_3389_fcimb_2025_1615993 crossref_primary_10_1186_s13071_024_06215_7 crossref_primary_10_1016_j_smallrumres_2024_107275 crossref_primary_10_1049_ccs2_12082 crossref_primary_10_1109_LSENS_2024_3373882 crossref_primary_10_3389_fpls_2022_911473 crossref_primary_10_1016_j_prp_2023_154362 crossref_primary_10_1177_20552076251321540 crossref_primary_10_1128_spectrum_01440_23 crossref_primary_10_1002_mp_16218 crossref_primary_10_1016_j_engappai_2024_108529 crossref_primary_10_1007_s40192_025_00406_5 crossref_primary_10_1128_jcm_00986_22 crossref_primary_10_1016_j_csbj_2022_02_005 crossref_primary_10_1088_1742_6596_2622_1_012011 crossref_primary_10_1016_j_artmed_2025_103114 crossref_primary_10_1371_journal_pntd_0012614 crossref_primary_10_1155_crog_9403522 crossref_primary_10_3390_vetsci12090812 crossref_primary_10_1109_ACCESS_2022_3208270 crossref_primary_10_1016_j_bspc_2024_106289 crossref_primary_10_3389_frai_2022_510483 crossref_primary_10_32604_cmc_2022_018946 crossref_primary_10_1007_s11042_024_19062_6 crossref_primary_10_1016_j_aquaculture_2022_738790 crossref_primary_10_1016_j_tice_2024_102677 crossref_primary_10_3390_diagnostics14070690 crossref_primary_10_1186_s13071_024_06503_2 crossref_primary_10_1186_s12879_024_09428_4 |
| Cites_doi | 10.1109/JBHI.2019.2939121 10.1002/jbio.201700003 10.1016/j.mehy.2019.109472 10.1109/ICASSP.2019.8683021 10.1007/s00521-017-2937-4 10.1109/I-SMAC.2018.8653705 10.1186/1475-2875-5-118 10.1016/j.cviu.2009.08.003 10.1109/CVPRW.2017.112 10.1007/978-3-030-31332-6_24 10.1016/j.optcom.2015.03.064 10.1186/s12936-018-2493-0 10.1007/978-3-030-01421-6_14 10.1007/s10278-019-00284-2 10.1007/s11517-006-0044-2 10.1109/CVPR.2017.690 10.1109/IECBES.2012.r6498073 10.3390/s18020513 10.1109/ACCESS.2019.2921027 10.1109/CVPR.2016.91 10.1186/1475-2875-10-364 10.5772/intechopen.72426 10.1007/s11042-019-7162-y 10.3174/ajnr.A5742 10.1117/1.JMI.5.4.044506 10.1016/j.procs.2016.07.024 10.1109/ACCESS.2017.2705642 10.1007/978-3-030-04212-7_40 10.1371/journal.pone.0163045 10.3390/diagnostics9030072 10.1016/j.compeleceng.2019.08.004 10.1007/978-3-030-04239-4_33 10.1007/978-3-319-10602-1_48 10.1109/BIBM.2016.7822567 10.1186/1471-2105-13-S17-S18 10.1109/CVPR42600.2020.01079 10.1117/12.2549701 10.1016/j.micron.2012.11.002 10.1109/CVPR.2009.5206848 10.7717/peerj.4568 10.1109/TPAMI.2016.2577031 10.1109/BHI.2017.7897215 10.1007/978-3-319-46448-0_2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-021-04036-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_c9eafa4d9b5a42349b141ff0428135a4 PMC7938584 A655244216 33685401 10_1186_s12859_021_04036_4 |
| Genre | Journal Article |
| GeographicLocations | Ethiopia Africa |
| GeographicLocations_xml | – name: Ethiopia – name: Africa |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c707t-61dd212fedb54c46960e469cf2b327c313a84e07ce84f5da3b28b7d670f3693d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 83 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626671900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:50:26 EDT 2025 Tue Nov 04 01:57:08 EST 2025 Thu Oct 02 11:52:51 EDT 2025 Mon Oct 06 18:35:06 EDT 2025 Tue Nov 11 10:12:20 EST 2025 Tue Nov 04 18:00:25 EST 2025 Thu Nov 13 14:46:26 EST 2025 Mon Jul 21 06:01:54 EDT 2025 Tue Nov 18 21:11:07 EST 2025 Sat Nov 29 05:40:09 EST 2025 Sat Sep 06 07:27:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Thick blood smear Deep learning Malaria Object detection YOLOV3 YOLOV4 Feature map Plasmodium falciparum |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c707t-61dd212fedb54c46960e469cf2b327c313a84e07ce84f5da3b28b7d670f3693d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5670-0319 |
| OpenAccessLink | https://link.springer.com/10.1186/s12859-021-04036-4 |
| PMID | 33685401 |
| PQID | 2502601636 |
| PQPubID | 44065 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c9eafa4d9b5a42349b141ff0428135a4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938584 proquest_miscellaneous_2499386861 proquest_journals_2502601636 gale_infotracmisc_A655244216 gale_infotracacademiconefile_A655244216 gale_incontextgauss_ISR_A655244216 pubmed_primary_33685401 crossref_citationtrail_10_1186_s12859_021_04036_4 crossref_primary_10_1186_s12859_021_04036_4 springer_journals_10_1186_s12859_021_04036_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-08 |
| PublicationDateYYYYMMDD | 2021-03-08 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | 4036_CR38 4036_CR39 4036_CR34 4036_CR30 4036_CR32 4036_CR33 GP Gopakumar (4036_CR19) 2018; 11 S Kaewkamnerd (4036_CR4) 2012; 13 M Liu (4036_CR31) 2019; 7 4036_CR28 4036_CR29 4036_CR23 4036_CR25 4036_CR26 W Liu (4036_CR48) 2016 M El-Melegy (4036_CR35) 2019 AE Kutlu Hüseyin (4036_CR42) 2020; 135 W Liu (4036_CR36) 2018 W Tang (4036_CR37) 2018 4036_CR17 TF Boray (4036_CR9) 2010; 114 4036_CR56 NE Ross (4036_CR6) 2006; 44 4036_CR15 4036_CR52 4036_CR53 HS Park (4036_CR5) 2016; 11 4036_CR54 4036_CR1 4036_CR50 DK Das (4036_CR13) 2013; 45 4036_CR51 F Yang (4036_CR22) 2019 4036_CR8 PD Chang (4036_CR41) 2018; 39 A Loddo (4036_CR12) 2018; 18 T-Y Lin (4036_CR55) 2014 I Sirazitdinov (4036_CR40) 2019; 78 S Ren (4036_CR47) 2017; 39 Y Purwar (4036_CR14) 2011; 10 Y-C Lo (4036_CR43) 2018 PW David (4036_CR27) 2018 4036_CR49 F Yang (4036_CR24) 2019 SS Devi (4036_CR10) 2018; 29 4036_CR45 4036_CR46 M Poostchi (4036_CR3) 2018; 5 K Torres (4036_CR21) 2018; 17 4036_CR44 S Rajaraman (4036_CR18) 2018; 6 SS Devi (4036_CR11) 2019 W O’Meara (4036_CR2) 2006; 5 KR Vijayalakshmi (4036_CR20) 2019 M David (4036_CR7) 2015; 350 D Bibin (4036_CR16) 2017; 5 |
| References_xml | – ident: 4036_CR23 – year: 2019 ident: 4036_CR22 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2939121 – volume: 11 start-page: 3 year: 2018 ident: 4036_CR19 publication-title: J Biophotonics doi: 10.1002/jbio.201700003 – ident: 4036_CR56 – volume: 135 start-page: 109472 year: 2020 ident: 4036_CR42 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2019.109472 – ident: 4036_CR39 doi: 10.1109/ICASSP.2019.8683021 – volume: 29 start-page: 217 issue: 8 year: 2018 ident: 4036_CR10 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2937-4 – ident: 4036_CR33 doi: 10.1109/I-SMAC.2018.8653705 – volume: 5 start-page: 118 year: 2006 ident: 4036_CR2 publication-title: Malar J doi: 10.1186/1475-2875-5-118 – volume: 114 start-page: 21 issue: 1 year: 2010 ident: 4036_CR9 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2009.08.003 – start-page: 275 volume-title: Soft computing for problem solving year: 2019 ident: 4036_CR11 – ident: 4036_CR46 doi: 10.1109/CVPRW.2017.112 – start-page: 270 volume-title: Pattern recognition and image analysis year: 2019 ident: 4036_CR35 doi: 10.1007/978-3-030-31332-6_24 – volume: 350 start-page: 13 year: 2015 ident: 4036_CR7 publication-title: Opt Commun doi: 10.1016/j.optcom.2015.03.064 – volume: 17 start-page: 339 issue: 1 year: 2018 ident: 4036_CR21 publication-title: Malar J doi: 10.1186/s12936-018-2493-0 – start-page: 137 volume-title: Artificial neural networks and machine learning–ICANN 2018 year: 2018 ident: 4036_CR37 doi: 10.1007/978-3-030-01421-6_14 – ident: 4036_CR44 doi: 10.1007/s10278-019-00284-2 – volume: 44 start-page: 427 issue: 5 year: 2006 ident: 4036_CR6 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-006-0044-2 – ident: 4036_CR52 doi: 10.1109/CVPR.2017.690 – ident: 4036_CR15 doi: 10.1109/IECBES.2012.r6498073 – ident: 4036_CR49 – ident: 4036_CR28 – volume: 18 start-page: 02 year: 2018 ident: 4036_CR12 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s18020513 – volume: 7 start-page: 75058 year: 2019 ident: 4036_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2921027 – ident: 4036_CR51 doi: 10.1109/CVPR.2016.91 – ident: 4036_CR1 – volume: 10 start-page: 364 year: 2011 ident: 4036_CR14 publication-title: Malar J doi: 10.1186/1475-2875-10-364 – volume-title: Machine learning, chapter 8 year: 2018 ident: 4036_CR27 doi: 10.5772/intechopen.72426 – year: 2019 ident: 4036_CR20 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7162-y – ident: 4036_CR38 – ident: 4036_CR34 – ident: 4036_CR30 – volume: 39 start-page: 1609 issue: 9 year: 2018 ident: 4036_CR41 publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5742 – volume: 5 start-page: 1 issue: 4 year: 2018 ident: 4036_CR3 publication-title: J Med Imaging doi: 10.1117/1.JMI.5.4.044506 – ident: 4036_CR50 – ident: 4036_CR8 doi: 10.1016/j.procs.2016.07.024 – volume: 5 start-page: 9099 year: 2017 ident: 4036_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2705642 – start-page: 454 volume-title: Neural information processing year: 2018 ident: 4036_CR36 doi: 10.1007/978-3-030-04212-7_40 – volume: 11 start-page: 1 issue: 9 year: 2016 ident: 4036_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0163045 – ident: 4036_CR32 doi: 10.3390/diagnostics9030072 – volume: 78 start-page: 388 year: 2019 ident: 4036_CR40 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2019.08.004 – start-page: 369 volume-title: Neural information processing year: 2018 ident: 4036_CR43 doi: 10.1007/978-3-030-04239-4_33 – start-page: 740 volume-title: Computer Vision—ECCV 2014 year: 2014 ident: 4036_CR55 doi: 10.1007/978-3-319-10602-1_48 – ident: 4036_CR25 doi: 10.1109/BIBM.2016.7822567 – volume: 13 start-page: 12 year: 2012 ident: 4036_CR4 publication-title: BMC Bioinform doi: 10.1186/1471-2105-13-S17-S18 – ident: 4036_CR53 doi: 10.1109/CVPR42600.2020.01079 – ident: 4036_CR26 – ident: 4036_CR45 doi: 10.1117/12.2549701 – volume: 45 start-page: 97 year: 2013 ident: 4036_CR13 publication-title: Micron doi: 10.1016/j.micron.2012.11.002 – ident: 4036_CR54 doi: 10.1109/CVPR.2009.5206848 – year: 2019 ident: 4036_CR24 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2939121 – volume: 6 start-page: e4568 year: 2018 ident: 4036_CR18 publication-title: PeerJ doi: 10.7717/peerj.4568 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 4036_CR47 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 4036_CR17 doi: 10.1109/BHI.2017.7897215 – start-page: 21 volume-title: Computer vision–ECCV 2016 year: 2016 ident: 4036_CR48 doi: 10.1007/978-3-319-46448-0_2 – ident: 4036_CR29 |
| SSID | ssj0017805 |
| Score | 2.6303146 |
| Snippet | Background
Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the... Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks... Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the... Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis. One of the... Abstract Background Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the “gold standard” for malaria diagnosis.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 112 |
| SubjectTerms | Algorithms Animals Bioinformatics Biomedical and Life Sciences Blood Cameras Classification Cluster analysis Clustering Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer-aided medical diagnosis Datasets Deep learning Developing countries Diagnosis Diagnostic Tests, Routine Image processing LDCs Life Sciences Low income groups Machine learning Machine Learning and Artificial Intelligence in Bioinformatics Malaria Malaria - blood Malaria - diagnosis Medical examination Medical imaging Methods Microarrays Microscope and microscopy Microscopy Model accuracy Object detection Object recognition Parasites Performance evaluation Plasmodium falciparum Research Article Smartphones Support vector machines Thick blood smear Vector quantization Vector-borne diseases YOLOV3 |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yKPgi3q2uEkXwQcs2TZqkj6u4KOiueGN9Cmkuu1VPj2zPEfz3zqTtcbuivvhSSjOFdmYymSFfviHkoQ6N5a5SuWWlzQWXLK99FXPesDrA7AtlcKnZhNrf14eH9ZtTrb4QEzbQAw-K23F1sNEKXzeVhaVf1A0TLEZM9RmHRxh9IeuZiqlx_wCZ-qcjMlru9Ax52nKEI4DTcpmL2TKU2Pp_j8mnFqWzgMkzu6ZpMdq7TC6NWSTdHb7-CjkXuqvkwtBX8sc18vm1hYK1tRSJvXF7mPqwSpirjrYdRYj7F5og67RfgKvTBcLy8IBK62i7gBDTUwTEH9HF0rcRslT66eDVwUdObTfeCpp66PTXyYe95--fvcjHpgq5U4VaQanoPSxXMfimEg6KY1kEuLpYNrxUjjNutQiFckGLWHnLm1I3yktVRC5r7vkNstUtu3CLUF7FaG0hROmsqCFLD8w7qT0Kaii8MsImHRs3Mo5j44uvJlUeWprBLgbsYpJdjMjI48073wa-jb9KP0XTbSSRKzs9AA8yoweZf3lQRh6g4Q2yYXQItzmy6743L9-9NbuyqiD_KZnMyKNRKC7hH5wdTy-AJpBAaya5PZOE6ermw5N_mTFc9Aby0ETtxmH4_mYY30QIXBeWa5CB2pRrqSXLyM3BHTf_zbGNAFTKGVEzR50pZj7StceJTBzis4YkNCNPJpf-9Vl_Vvzt_6H4O-RimaYkzwu9TbZWJ-twl5x331dtf3IvTeifmTZLHA priority: 102 providerName: Directory of Open Access Journals – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkEFIHCBqHDuOc0IFUYGAFvFSOVmOH9sUNimbXST-PTPe7JYU0QuXVRSPpbXnHY-_IeSR8rXhtihTw3KTCi5ZWrkipLxmlQft87m3sdlEubur9ver98MHt34oq1zZxGioXWfxG_kWuOqIfsXls6MfKXaNwtPVoYXGWXKO5TlDOX9TputTBMTrX12UUXKrZ4jWlmJRAogul6kYOaOI2f-3Zf7DNZ0smzxxdhpd0s7l_13MFXJpCEbp9lJ6rpIzvr1GLizbU_66Tg7fGch7G0MRHxynUufnsXSrpU1LsVL-G42V77SfgsbQKVb34T2XxtJmCpaqp1hXP6HTzjUBgl36de_t3hdOTTs8Chpb8fQ3yOedl59evEqH3gypLbNyDhmnc-D1gnd1ISzk2DLz8GtDXvO8tJxxo4TPSuuVCIUzvM5VXTpZZoHLijt-k2y0XetvE8qLEIzJhMitERUE-545K5VDQgX5W0LYiknaDsDl2D_ju44JjJJ6yVgNjNWRsVok5Ml6ztEStuNU6ufI-zUlQm7HF91sogcN1rbyJhjhqrowEIOKqmaChYA5J-PwKiEPUXI0gmq0WLUzMYu-168_ftDbsiggjMqZTMjjgSh0sAZrhksQsBOIwzWi3BxRgtbb8fBKsvRgdXp9LFYJebAexplYSdf6bgE0kOJyJZVkCbm1lOf1ujl2I4CEOyHlSNJHGzMeaZuDiEkOZl5BLJuQpyudOP5b_974O6ev4i65mEdt5WmmNsnGfLbw98h5-3Pe9LP7Udd_AyaUWMM priority: 102 providerName: ProQuest |
| Title | Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models |
| URI | https://link.springer.com/article/10.1186/s12859-021-04036-4 https://www.ncbi.nlm.nih.gov/pubmed/33685401 https://www.proquest.com/docview/2502601636 https://www.proquest.com/docview/2499386861 https://pubmed.ncbi.nlm.nih.gov/PMC7938584 https://doaj.org/article/c9eafa4d9b5a42349b141ff0428135a4 |
| Volume | 22 |
| WOSCitedRecordID | wos000626671900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfH8ERmUQEg8QEceO7TxuaBMTrKs6mLa9WI5jlwBNUdMi8d9zdpNCxocEL1aVO0v15e58F59_h9BTaQtNTSZiTVIdM8pJnJeZi2lBcgvWZ1NrQrMJMRzK09N81F4Ka7pq9-5IMnjqYNaSv2yIx1qLfUkBKB7lMdtAW7DdSW-O4-OT9dmBR-nvrsf8dl5vCwpI_b_64582pIvFkhdOTMNGtH_9_5ZwA11rA0-8s9KUm-iSrW-hK6tWlN9uo4-HGnLcSmOPBe5PlHFpF6FMq8ZVjX1V_CccqtxxMwXrwFNfyefvtFQGV1PwSg32NfQTPJ2VlYPAFp8dvT06oVjX7U-GQ9ud5g56v7_37tXruO3DEBuRiAVkl2UJO5yzZZExA_k0TyyMxqUFTYWhhGrJbCKMlcxlpaZFKgtRcpE4ynNa0rtos57V9j7CNHNO64Sx1GiWQ2BvSWm4LD2jhFwtQqR7Ncq0IOW-V8ZnFZIVydVKhgpkqIIMFYvQ8_WcLyuIjr9y7_o3vub08NrhwWw-Ua21KpNb7TQr8yLTEG-yvCCMOOfzS0LhUYSeeH1RHkCj9hU6E71sGnVwPFY7PMsgZEoJj9CzlsnNYA1GtxceQBIec6vHud3jBAs3fXKnlqr1MI2C0DWgwVEgP16T_UxfNVfb2RJ4IJ2lkktOInRvpcXrdVPfeQCS6wiJnn73BNOn1NWHgD8OLl1C3BqhF52W__hbfxb8g39jf4iupsFQaJzIbbS5mC_tI3TZfF1UzXyANsSpCKMcoK3dveFoPAifU2B8I-KBL-EdwTjKzoE-OjgcnQ2Cl_gOEuJYHA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCAQB4gax46THBAqj6pVty2CgpaTcWynBNhsaXZB_VP8Rma8yZYU0VsPXFareLKyvTPfeJKZ-Qh5mLlCc5OkoWaxDgWXLMxtUoa8YLkD63OxM55sIt3ayobD_M0C-dXVwmBaZYeJHqjt2OAz8mVw1b77FZfP976HyBqFb1c7Co2ZWmy4g58QsjXP1l_B__sojldf77xcC1tWgdCkUTqBWMlawOvS2SIRBqJDGTn4NGVc8Dg1nHGdCRelxmWiTKzmRZwVqZVpVHKZc8vhd0-R04DjKaaQpcN5gMeQH6ArzMnkcsOwO1yISRBgKlyGouf8PEfA357gD1d4NE3zyLta7wJXL_5vm3eJXGgP23RlZh2XyYKrr5CzM_rNg6vky6aGuL7SFPuf41SpdROfmlbTqqZYCfCV-sx-2oxg9nSE2YtYx1MZWo0AiRuKdQO7dDS2VQmHefpxe7D9gVNdt18F9VRDzTXy_kQWep0s1uPa3SSUJ2WpdSREbLTIIZhxzBqZWRTMID4NCOuUQpm2MTvyg3xTPkDLpJopkgJFUl6RlAjIk_k9e7O2JMdKv0Bdm0tiS3F_Yby_q1qEUiZ3utTC5kWi4Ywt8oIJVpYYUzMOlwLyADVVYdOQGrOSdvW0adT6u7dqRSYJHBNjJgPyuBUqx7AGo9siD9gJ7DPWk1zqSQKqmf5wp8mqRdVGHapxQO7Ph_FOzBSs3XgKMhDC80xmkgXkxsx-5uvmyLYgIhhJe5bV25j-SF199j3XwY1lcFYPyNPOBg-n9e-Nv3X8Ku6Rc2s7mwM1WN_auE3Oxx4peBhlS2Rxsj91d8gZ82NSNft3Pc5Q8umkbfM3OPG1tA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKF-wgUMAiJhxI1jp3EeSxHRUXZVhSq8mQ5PpYAm602u0j8e2ac7NKUQ0K8rKJ4LK0nM_aM_M03hDyRrtLcZEWsWapjwXMWlzbzMa9Y6cD7XOpMaDZRjEby6KjcP1HFH9DuyyvJrqYBWZqa-eax9Z2Ly3yzZci7FiO8AIyQ57E4S84JbBqE-frB4eoeARn7l6Uyv503OI4Ca_-ve_OJw-k0cPLU7Wk4lLav_P9yrpLLfUBKtzoLukbOuOY6udC1qPx-g3x-qyH3rTVFjnC8aabWzQN8q6F1QxEt_4UG9DttJ-A1dIIIP6x1qQ2tJ7BbtRSx9WM6mdraQ8BLP-7t7h1yqpv-UdDQjqe9ST5sv3r_4nXc92eITZEUc8g6rYWTzztbZcJAnp0nDn6NTyueFoYzrqVwSWGcFD6zmleprAqbF4nnecktv0XWmmnj7hDKM--1ToRIjRYlBPyOWZNLi4IScriIsOVnUqYnL8ceGl9VSGJkrjodKtChCjpUIiIbqznHHXXHX6Wf49dfSSLtdngxnY1V78XKlE57LWxZZRriUFFWTDDvMe9kHF5F5DHajkJijQaRO2O9aFu1c_BObeVZBqFUyvKIPO2F_BTWYHRfCAGaQC6ugeT6QBI83wyHlyaq-p2nVRDSBpY4DsOPVsM4E9F0jZsuQAbSXC5zmbOI3O4serVujh0JIOmOSDGw9YFihiNN_SnwksNWLyGejcizpcX__Ft_VvzdfxN_SC7uv9xWuzujN_fIpTT4DI8TuU7W5rOFu0_Om2_zup09CBvBDzQPWw8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malaria+parasite+detection+in+thick+blood+smear+microscopic+images+using+modified+YOLOV3+and+YOLOV4+models&rft.jtitle=BMC+bioinformatics&rft.au=Abdurahman%2C+Fetulhak&rft.au=Fante%2C+Kinde+Anlay&rft.au=Aliy%2C+Mohammed&rft.date=2021-03-08&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04036-4&rft.externalDocID=10_1186_s12859_021_04036_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |