pyActigraphy: Open-source python package for actigraphy data visualization and analysis

Over the past 40 years, actigraphy has been used to study rest-activity patterns in circadian rhythm and sleep research. Furthermore, considering its simplicity of use, there is a growing interest in the analysis of large population-based samples, using actigraphy. Here, we introduce pyActigraphy ,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 17; číslo 10; s. e1009514
Hlavní autoři: Hammad, Grégory, Reyt, Mathilde, Beliy, Nikita, Baillet, Marion, Deantoni, Michele, Lesoinne, Alexia, Muto, Vincenzo, Schmidt, Christina
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 19.10.2021
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Over the past 40 years, actigraphy has been used to study rest-activity patterns in circadian rhythm and sleep research. Furthermore, considering its simplicity of use, there is a growing interest in the analysis of large population-based samples, using actigraphy. Here, we introduce pyActigraphy , a comprehensive toolbox for data visualization and analysis including multiple sleep detection algorithms and rest-activity rhythm variables. This open-source python package implements methods to read multiple data formats, quantify various properties of rest-activity rhythms, visualize sleep agendas, automatically detect rest periods and perform more advanced signal processing analyses. The development of this package aims to pave the way towards the establishment of a comprehensive open-source software suite, supported by a community of both developers and researchers, that would provide all the necessary tools for in-depth and large scale actigraphy data analyses.
Bibliografie:new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
COGNAP
info:eu-repo/grantAgreement/EC/H2020/757763
scopus-id:2-s2.0-85117522932
The authors have declared that no competing interests exist.
ISSN:1553-7358
1553-734X
1553-7358
DOI:10.1371/journal.pcbi.1009514