Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network

Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 20; číslo 1; s. 444 - 18
Hlavní autoři: Guo, Yang, Zhong, Zhiman, Yang, Chen, Hu, Jiangfeng, Jiang, Yaling, Liang, Zizhen, Gao, Hui, Liu, Jianxiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 28.08.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network ( Epi-GTBN ). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. Results We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. Conclusions The presented methodology ( Epi-GTBN ) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
AbstractList Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
Abstract Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. Results We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. Conclusions The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. Results We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. Conclusions The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses. Keywords: Epistasis, Genetic algorithm, Tabu, Bayesian network
Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network ( Epi-GTBN ). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. Results We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. Conclusions The presented methodology ( Epi-GTBN ) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm.BACKGROUNDMining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm.We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets.RESULTSWe compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets.The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.CONCLUSIONSThe presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical model which can express the relationship between genetic loci and phenotype. Until now, it has been widely used into epistasis mining in many research work. However, this method has two disadvantages: low learning efficiency and easy to fall into local optimum. Genetic algorithm has the excellence of rapid global search and avoiding falling into local optimum. It is scalable and easy to integrate with other algorithms. This work proposes an epistasis mining approach based on genetic tabu algorithm and Bayesian network (Epi-GTBN). It uses genetic algorithm into the heuristic search strategy of Bayesian network. The individual structure can be evolved through the genetic operations of selection, crossover and mutation. It can help to find the optimal network structure, and then further to mine the epistasis loci effectively. In order to enhance the diversity of the population and obtain a more effective global optimal solution, we use the tabu search strategy into the operations of crossover and mutation in genetic algorithm. It can help to accelerate the convergence of the algorithm. Results We compared Epi-GTBN with other recent algorithms using both simulated and real datasets. The experimental results demonstrate that our method has much better epistasis detection accuracy in the case of not affecting the efficiency for different datasets. Conclusions The presented methodology (Epi-GTBN) is an effective method for epistasis detection, and it can be seen as an interesting addition to the arsenal used in complex traits analyses.
ArticleNumber 444
Audience Academic
Author Liu, Jianxiao
Yang, Chen
Jiang, Yaling
Hu, Jiangfeng
Liang, Zizhen
Gao, Hui
Zhong, Zhiman
Guo, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Guo
  fullname: Guo, Yang
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 2
  givenname: Zhiman
  surname: Zhong
  fullname: Zhong, Zhiman
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 3
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 4
  givenname: Jiangfeng
  surname: Hu
  fullname: Hu, Jiangfeng
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 5
  givenname: Yaling
  surname: Jiang
  fullname: Jiang, Yaling
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 6
  givenname: Zizhen
  surname: Liang
  fullname: Liang, Zizhen
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 7
  givenname: Hui
  surname: Gao
  fullname: Gao, Hui
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
– sequence: 8
  givenname: Jianxiao
  surname: Liu
  fullname: Liu, Jianxiao
  email: liujianxiao321@163.com
  organization: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31455207$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkeJHYjsskNqqlJEqkGDYYt04dsYlsYOdAO2vx8OUtlMB8iKW851z7aOzn-0473SWPcXoEGPBXkVMRFUXCNcFRYQUVw-yPVxyXBCMqp07-91sP8YLhDAXqHqU7VJcVhVBfC_7cjra4mx5_P51Di6HcQwe1Cr3JtejjRNEG_PBOuu6vIGo29y7vNNOT1blS2jmHPrOBzuthqRv82O41NEmp0T88OHr4-yhgT7qJ9ffg-zz29Plybvi_MPZ4uTovFAc0akwAoTBRBMwNRcKM0URoiVlQjHeCo0bzWpWVoZoBq2hqGnSYxqKKKeGi4YeZIuNb-vhQo7BDhAupQcrfx_40EkI6c69llXJQBNUU0pUWbdCECg1wiSNK5umRcnrzcZrnJtBt0q7KUC_Zbr9x9mV7Px3yTgmvK6TwYtrg-C_zTpOcrBR6b4Hp_0cJSECixIxtEaf30Mv_BxciipRNeG84oTfUh2kB1hnfJqr1qbyqKo5wwIRlqjDv1BptXqwKjXH2HS-JXi5JUjMpH9OHcwxysWnj9vss7uh3KTxp0kJwBtABR9j0OYGwUiu2yo3bZWprXLdVnmVNPyeRtkJJuvXudr-v0qyUcY0xXU63Ob2b9EvTvr6nA
CitedBy_id crossref_primary_10_1111_pbi_14405
crossref_primary_10_1007_s41965_025_00205_z
crossref_primary_10_1109_TCBB_2021_3092719
crossref_primary_10_1109_TPDS_2021_3060322
crossref_primary_10_1007_s12539_024_00621_2
crossref_primary_10_1093_g3journal_jkad118
crossref_primary_10_1016_j_future_2021_09_028
crossref_primary_10_1007_s40747_022_00813_7
crossref_primary_10_3389_fgene_2021_801261
crossref_primary_10_1016_j_jpdc_2024_104989
crossref_primary_10_1016_j_seppur_2025_133943
crossref_primary_10_1371_journal_pone_0263390
crossref_primary_10_3390_genes14051059
crossref_primary_10_1155_humu_7656300
crossref_primary_10_3390_genes12081160
crossref_primary_10_1155_2022_7843990
crossref_primary_10_3390_genes12020191
crossref_primary_10_1007_s12559_021_09891_0
crossref_primary_10_3233_IDA_226818
Cites_doi 10.1371/journal.pcbi.1003627
10.1186/s13040-016-0093-5
10.1155/2017/5024867
10.1186/s12859-016-1084-8
10.1038/ng2110
10.1136/amiajnl-2012-001525
10.1093/bioinformatics/btn652
10.1371/journal.pone.0150669
10.1093/bioinformatics/btu702
10.1186/s13040-015-0077-x
10.1155/2015/639367
10.1186/1471-2105-12-89
10.1093/bioinformatics/btx163
10.1038/sj.ejhg.5201921
10.1186/s13637-016-0046-9
10.1016/j.epsr.2004.01.016
10.1186/s13040-016-0094-4
10.1093/biostatistics/kxm010
10.1371/journal.pgen.1000464
10.1093/bioinformatics/btw424
10.1016/j.ajhg.2010.07.021
10.1093/bioinformatics/btp622
10.1016/0305-0548(93)E0023-M
10.1016/j.dsp.2013.08.007
10.1093/bioinformatics/btx339
10.1093/bioinformatics/btu261
10.1186/s13040-017-0143-7
10.1186/s12859-017-1488-0
10.1145/1401890.1401988
10.1126/science.1109557
10.1186/1471-2105-10-S1-S65
10.1002/gepi.20272
10.1109/TCBB.2013.27
10.1371/journal.pgen.1005965
10.1002/gepi.21889
10.1086/321276
10.1093/bioinformatics/btv504
10.1186/1756-0500-3-117
10.18637/jss.v035.i03
10.1186/1756-0381-5-16
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-019-3022-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



PubMed

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 18
ExternalDocumentID oai_doaj_org_article_546ae209332c49d882a4e0123434bbd0
PMC6712799
A597618026
31455207
10_1186_s12859_019_3022_z
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
EJD
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c703t-f8a8f12e2af978c16c30034368c67d8e1be69645f2e6adf30bb001b30373f78b3
IEDL.DBID DOA
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483348400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:41:37 EDT 2025
Tue Nov 04 01:43:23 EST 2025
Sun Nov 09 11:58:17 EST 2025
Mon Oct 06 18:30:18 EDT 2025
Tue Nov 11 10:16:15 EST 2025
Tue Nov 04 18:00:50 EST 2025
Thu Nov 13 15:12:32 EST 2025
Thu Apr 03 06:54:38 EDT 2025
Tue Nov 18 22:22:07 EST 2025
Sat Nov 29 05:40:04 EST 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Epistasis
Genetic algorithm
Bayesian network
Tabu
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-f8a8f12e2af978c16c30034368c67d8e1be69645f2e6adf30bb001b30373f78b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/546ae209332c49d882a4e0123434bbd0
PMID 31455207
PQID 2292775727
PQPubID 44065
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_546ae209332c49d882a4e0123434bbd0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6712799
proquest_miscellaneous_2281840609
proquest_journals_2292775727
gale_infotracmisc_A597618026
gale_infotracacademiconefile_A597618026
gale_incontextgauss_ISR_A597618026
pubmed_primary_31455207
crossref_primary_10_1186_s12859_019_3022_z
crossref_citationtrail_10_1186_s12859_019_3022_z
springer_journals_10_1186_s12859_019_3022_z
PublicationCentury 2000
PublicationDate 2019-08-28
PublicationDateYYYYMMDD 2019-08-28
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References X Wan (3022_CR18) 2010; 26
3022_CR5
C Yang (3022_CR17) 2009; 25
R Jiang (3022_CR42) 2009; 10
W Tang (3022_CR43) 2009; 5
CZ Dong (3022_CR11) 2008; 16
3022_CR38
Q Zhang (3022_CR24) 2014; 10
X Jiang (3022_CR15) 2011; 12
X Jiang (3022_CR19) 2015; 39
3022_CR37
SH Tuo (3022_CR41) 2016; 11
F Zhang (3022_CR3) 2016; 12
Xiong Li (3022_CR14) 2017; 33
R Colak (3022_CR10) 2016; 32
F Glover (3022_CR33) 1995; 22
Y Jin (3022_CR32) 2016; 2016
R Li (3022_CR45) 2016; 9
W Yu (3022_CR7) 2016; 32
Y Zhang (3022_CR9) 2007; 39
MS Kwon (3022_CR13) 2014; 7
M Scutari (3022_CR35) 2010; 35
J Li (3022_CR22) 2016; 9
DJ Shin (3022_CR34) 2004; 71
R De (3022_CR4) 2015; 8
T Hu (3022_CR12) 2013; 20
J Shang (3022_CR40) 2014; 24
MD Ritchie (3022_CR6) 2001; 69
Z Zeng (3022_CR16) 2016; 17
V Stanislas (3022_CR2) 2017; 18
RJ Urbanowicz (3022_CR36) 2012; 5
X Wan (3022_CR21) 2010; 87
J Shang (3022_CR26) 2015; 2015
Y Arkin (3022_CR20) 2014; 30
Y Wang (3022_CR27) 2010; 3
PJ Jing (3022_CR28) 2015; 31
FF Sherif (3022_CR31) 2015; 2015
RJ Klein (3022_CR39) 2005; 308
CH Yang (3022_CR25) 2013; 10
MY Park (3022_CR1) 2008; 9
Y Sun (3022_CR29) 2017; 10
B Han (3022_CR44) 2012; 6
SH Chen (3022_CR23) 2008; 32
CH Yang (3022_CR8) 2017; 33
L Yuan (3022_CR30) 2017; 2017
References_xml – volume: 10
  issue: 6
  year: 2014
  ident: 3022_CR24
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003627
– volume: 9
  start-page: 14
  issue: 1
  year: 2016
  ident: 3022_CR22
  publication-title: Biodata Mining
  doi: 10.1186/s13040-016-0093-5
– volume: 2017
  start-page: 1
  issue: 1
  year: 2017
  ident: 3022_CR30
  publication-title: Complexity.
  doi: 10.1155/2017/5024867
– ident: 3022_CR37
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 3022_CR16
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1084-8
– volume: 39
  start-page: 1167
  issue: 9
  year: 2007
  ident: 3022_CR9
  publication-title: Nat Genet
  doi: 10.1038/ng2110
– volume: 20
  start-page: 630
  issue: 4
  year: 2013
  ident: 3022_CR12
  publication-title: J Am Med Inform Assoc Jamia
  doi: 10.1136/amiajnl-2012-001525
– volume: 25
  start-page: 504
  issue: 4
  year: 2009
  ident: 3022_CR17
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btn652
– volume: 11
  issue: 3
  year: 2016
  ident: 3022_CR41
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150669
– volume: 31
  start-page: 634
  issue: 5
  year: 2015
  ident: 3022_CR28
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu702
– volume: 8
  start-page: 45
  issue: 1
  year: 2015
  ident: 3022_CR4
  publication-title: Biodata Mining
  doi: 10.1186/s13040-015-0077-x
– ident: 3022_CR38
– volume: 2015
  start-page: 8
  year: 2015
  ident: 3022_CR31
  publication-title: Adv Bioinforma
  doi: 10.1155/2015/639367
– volume: 12
  start-page: 89
  issue: 1
  year: 2011
  ident: 3022_CR15
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-89
– volume: 33
  start-page: 2354
  issue: 15
  year: 2017
  ident: 3022_CR8
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btx163
– volume: 16
  start-page: 229
  year: 2008
  ident: 3022_CR11
  publication-title: Eur J Hum Genet
  doi: 10.1038/sj.ejhg.5201921
– volume: 2016
  start-page: 12
  issue: 1
  year: 2016
  ident: 3022_CR32
  publication-title: Eurasip J Bioinform Syst Biol
  doi: 10.1186/s13637-016-0046-9
– volume: 71
  start-page: 145
  issue: 2
  year: 2004
  ident: 3022_CR34
  publication-title: Electr Pow Syst Res
  doi: 10.1016/j.epsr.2004.01.016
– volume: 9
  start-page: 18
  issue: 1
  year: 2016
  ident: 3022_CR45
  publication-title: BioData Mining
  doi: 10.1186/s13040-016-0094-4
– volume: 9
  start-page: 30
  issue: 1
  year: 2008
  ident: 3022_CR1
  publication-title: Biostatistics.
  doi: 10.1093/biostatistics/kxm010
– volume: 5
  issue: 5
  year: 2009
  ident: 3022_CR43
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000464
– volume: 32
  start-page: i605
  issue: 17
  year: 2016
  ident: 3022_CR7
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btw424
– volume: 87
  start-page: 325
  issue: 3
  year: 2010
  ident: 3022_CR21
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.07.021
– volume: 2015
  start-page: 524821
  year: 2015
  ident: 3022_CR26
  publication-title: Biomed Res Int
– volume: 26
  start-page: 30
  issue: 1
  year: 2010
  ident: 3022_CR18
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btp622
– volume: 22
  start-page: 111
  issue: 1
  year: 1995
  ident: 3022_CR33
  publication-title: Comput Oper Res
  doi: 10.1016/0305-0548(93)E0023-M
– volume: 24
  start-page: 1
  issue: 1
  year: 2014
  ident: 3022_CR40
  publication-title: Digital Signal Process
  doi: 10.1016/j.dsp.2013.08.007
– volume: 33
  start-page: 2829
  issue: 18
  year: 2017
  ident: 3022_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx339
– volume: 30
  start-page: i19
  issue: 12
  year: 2014
  ident: 3022_CR20
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu261
– volume: 10
  start-page: 23
  issue: 1
  year: 2017
  ident: 3022_CR29
  publication-title: Biodata Mining
  doi: 10.1186/s13040-017-0143-7
– volume: 18
  start-page: 54
  issue: 1
  year: 2017
  ident: 3022_CR2
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1488-0
– ident: 3022_CR5
  doi: 10.1145/1401890.1401988
– volume: 7
  start-page: S6
  issue: Suppl 1
  year: 2014
  ident: 3022_CR13
  publication-title: BMC Med Genet
– volume: 308
  start-page: 385
  issue: 5720
  year: 2005
  ident: 3022_CR39
  publication-title: Science.
  doi: 10.1126/science.1109557
– volume: 10
  start-page: 0
  issue: s1
  year: 2009
  ident: 3022_CR42
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S1-S65
– volume: 32
  start-page: 152
  issue: 2
  year: 2008
  ident: 3022_CR23
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20272
– volume: 10
  start-page: 361
  issue: 2
  year: 2013
  ident: 3022_CR25
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2013.27
– volume: 12
  issue: 4
  year: 2016
  ident: 3022_CR3
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005965
– volume: 39
  start-page: 173
  issue: 3
  year: 2015
  ident: 3022_CR19
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21889
– volume: 69
  start-page: 138
  issue: 1
  year: 2001
  ident: 3022_CR6
  publication-title: Am J Hum Genet
  doi: 10.1086/321276
– volume: 32
  start-page: 203
  issue: 2
  year: 2016
  ident: 3022_CR10
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv504
– volume: 3
  start-page: 117
  issue: 1
  year: 2010
  ident: 3022_CR27
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-3-117
– volume: 35
  start-page: 1
  issue: 3
  year: 2010
  ident: 3022_CR35
  publication-title: J Stat Softw
  doi: 10.18637/jss.v035.i03
– volume: 5
  start-page: 16
  issue: 1
  year: 2012
  ident: 3022_CR36
  publication-title: Biodata Mining
  doi: 10.1186/1756-0381-5-16
– volume: 6
  start-page: 1
  issue: 3
  year: 2012
  ident: 3022_CR44
  publication-title: BMC Syst Biol
SSID ssj0017805
Score 2.4370167
Snippet Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a...
Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a graphical...
Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network (BN) is a...
Abstract Background Mining epistatic loci which affects specific phenotypic traits is an important research issue in the field of biology. Bayesian network...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 444
SubjectTerms Algorithms
Bayesian analysis
Bayesian network
Bioinformatics
Biological evolution
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer simulation
Crossovers
Datasets
Epistasis
Gene loci
Genetic algorithm
Genetic algorithms
Genetic research
Life Sciences
Machine learning
Methodology
Methodology Article
Microarrays
Mining
Mutation
Networks analysis
Optimization
Phenotypes
Search methods
Tabu
Tabu search
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgA4kXvscKAxmEhASK5jiu4_CCVtQBEqqmUdCesBzb6SptSde0SNtfz13idmSIvfBan9va9-2zf0fIa8WM4D7OIrB0SSSME1HOcxtBMOCZcd6Jplzw42s6Gqmjo-wgHLjV4VrlyiY2htpVFs_IdznPeJr2wd1-mJ1F2DUKq6uhhcZNsolIZSDnm4Ph6OBwXUdAxP5Qy4yV3K1jxGuD9Bnr_ZCFXXS8UQPa_7dp_sM3Xb03eaV42vik_Xv_u5r75G6IRuleKz4PyA1fPiS32_6U54_Iz-FsGn0aD0bvqSnpCn6cVgX1M4w762lNT5sOExS9oaNVSUEg8V0kHZt8Sc3JBH51cXwK8x0dmHOPbzZp2d49f0y-7w_HHz9HoSFDZMEwLKJCGVXE3HNTQPJpY2kTxLdJpLIydcrHuZeZFP2Ce2lckbAcY7IcvGSaFKnKky2yUVal3yaUOcEMU96aPsREhchlkSgM14xRcd_LHmErxmgb0MqxacaJbrIWJXXLSw281MhLfdEjb9dTZi1Ux3XEA-T2mhBRtpsPqvlEB6XVfSGN53jmw63IHCQjRngMQkUi8tyxHnmFsqIRR6PEizoTs6xr_eXbod6DRE0iuh6s5E0gKipYgTXh3QPsA0JvdSh3OpSg6LY7vJIlHQxNrS8FqUderodxJl6eK321RBqFebxkWY88aSV4ve4Egeo5g9lpR7Y7G9MdKafHDQy5TGOeZvCd71ZacPm3_rnvT69fxDNyh6N2MjDfaodsLOZL_5zcsr8W03r-Imj3b4_-VYc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature - Connect here FIRST to enable access
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEA96KvjF96N6ShRBUMqlaZqmfruVOxVkEW897pMhTdK9wl27bHeFu7_emT5Wez5AvzYzSzOd587kF0JeKGYE91EWgqeLQ2GcCHOe2xCSAc-M80607YLDj-l0qo6Osk_9Oe5mmHYfWpKtp27NWsmdJkKsNSh9sVcPFdT5ZXIlQbAZLNEPDjetAwTp79uXv2UbBaAWp_9Xb_xTOLo4KnmhX9qGof2b_7WBW-RGn3XS3U5NbpNLvrpDrnX3UJ7dJV_3FmX4bjaZvqGmogPMOK0L6heYXzZlQ0_bmyQoRj1H64qC4uH5Rzoz-Zqak3m9LFfHp8Dv6MSceTybSatuxvwe-bK_N3v7PuwvXggtOIBVWCijioh7bgooMm0kbYw4NrFUVqZO-Sj3MpMiKbiXxhUxyzH3yiEapnGRqjy-T7aquvIPCWVOMMOUtyaB3KcQuSxihWmZMSpKvAwIG76Gtj0qOV6OcaLb6kRJ3YlNg9g0ik2fB-TVhmXRQXL8jXiCn3hDiGja7YN6Ode9cepESOM5_rfDrcgcFB1GeEw2RSzy3LGAPEcF0YiXUeFAztysm0Z_OPisd6Egk4iiBzt52RMVNezAmv58A8gBIbZGlNsjSjBoO14e9FD3DqXRnGc8TRPINgPybLOMnDgkV_l6jTQK63XJsoA86NR2s-8YAek5A-50pNAjwYxXqvK4hRuXacTTDH7z9aDWP17rj3J_9E_Uj8l1jnbBwGurbbK1Wq79E3LVfluVzfJpa9_fAWlkSno
  priority: 102
  providerName: Springer Nature
Title Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network
URI https://link.springer.com/article/10.1186/s12859-019-3022-z
https://www.ncbi.nlm.nih.gov/pubmed/31455207
https://www.proquest.com/docview/2292775727
https://www.proquest.com/docview/2281840609
https://pubmed.ncbi.nlm.nih.gov/PMC6712799
https://doaj.org/article/546ae209332c49d882a4e0123434bbd0
Volume 20
WOSCitedRecordID wos000483348400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQL4pvAqAxCQgJFSxzHdnhbUQcTUEVdmcoesJzE2SJtSdW0SNtfz12SlmUIeOHFUuJzFN-d7Tvd-XeEvFKe4cz6kQs7XeByk3E3YUnqgjFgPZPZjDfhgsPPcjxWs1kUXyr1hTlhLTxwy7idkAtjGfrdLOVRBgah4RYNAR7wJMkab92T0dqZ6uIHiNTfxTB9JXZqH3HawG3GOD94Xxe9U6gB6_99S750Jl3Nl7wSNG3Oor275E5nRNLd9ufvkWu2vE9utWUlzx-Q76N54X6YDsfvqCnpGjWcVjm1czQX66KmZ01hCIqHWEarkoIe4XVGOjXJiprT42pRLE_OYHxGh-bc4lVLWrYp4w_J173R9P1Ht6uj4KawnpdurozKfWaZycFnTH2RBghLEwiVCpkp6ydWRIKHObPCZHngJWhKJXC4ySCXKgkeka2yKu0TQr2Me8ZTNjUhmDI5T0QeKLSyjFF-aIVDvDVfddqBjGOti1PdOBtK6FYUGkShURT6wiFvNkPmLcLG34iHKKwNIYJjNy9AZXSnMvpfKuOQlyhqjfAXJebXHJtVXev9g4neBf9KICgezOR1R5RXMIPUdNcVgA-ImNWj3O5RwvpM-91rjdLd_lBrxiImZQjGo0NebLpxJOa8lbZaIY1C91t4kUMetwq4mXeA-PKg9w6RPdXsMabfUxYnDXq4kD6TEXzz7VqJf_3WH_n-9H_w_Rm5zXAJerA3q22ytVys7HNyM_2xLOrFgFyXM9m0akBuDEfjeDJoFjW0n6Q7wKzcGNo4PIL-eP9L_A2eJgeHPwGxzU3i
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90thgEEgJFA0x3EdBwmhFTZWrVQTFLQnjOM4W6UtKUsL6n4Uv5FzcunIEHvbA6_xcZTjnKt9_B1CnipmBHd-5IGlCzxhEuHFPLYeBAOOmcQlojwu-DIIh0O1sxNtL5FfzV0YLKtsbGJpqJPc4h75KucRD8MuuNs3k-8edo3C09WmhUYlFltu_hNStuJ1_x3832ecb6yP3m56dVcBz4J0T71UGZX63HGTQgZlfWkDBGkJpLIyTJTzYycjKbopd9IkacBiDCxiMPVhkIYqDuC958h5CCM4K0sFtxenFtgfoD459ZVcLXxEh4NkHasLIOc7avm-skXA347gD094skrzxFFt6QE3rv5va3eNXKljbbpWKcd1suSyG-Ri1X1zfpN8XZ-Mvfej3vAVNRltwNVpnlI3wai6GBf0oOyfQdHXJzTPKKgb3vqkIxPPqNnfBS6newcwP6E9M3d4I5VmVWX9LfL5TJi7TZazPHN3CWWJYIYpZ00XIr5UxDINFAajxii_62SHsEYQtK2x2LElyL4uczIldSU7GmRHo-zoow55sZgyqYBITiPuoXQtCBFDvHyQH-7q2iTprpDGcdzR4lZECaRaRjgMsUUg4jhhHfIEZVMjSkiGZUi7ZlYUuv_po16DNFQidiBw8rwmSnPgwJr6VgesAwKLtShXWpRgxmx7uJFdXZvRQh8Lboc8XgzjTCwNzFw-QxqFuxSSRR1yp9KYBd8BwvBzBrPDli61FqY9ko33SpB1Gfo8jOCdLxutO_6sf677vdOZeEQubY4-DPSgP9y6Ty5ztAwMHJVaIcvTw5l7QC7YH9NxcfiwtCuUfDtrZfwNbxSwOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgwMQL34PCAIOQkEDRHMd1HN5WWGFiqqatTHvCcmK7q7QlVdMibX89d_koZHxIiNf4roovd-e73vl3hLxSzAjuwiQATxcFwlgRpDzNAggGHDPWWVGVC4724tFIHR8n-82c07Ltdm9LkvWdBkRpyhdbM-trE1dyqwwRdw3SYKzbQzZ1cZVcE5DIYE_XweHRqoyAgP1NKfO3bJ3DqMLs_9Uz_3Q0XW6bvFQ7rY6k4e3_3swdcquJRul2rT53yRWX3yM36vmU5_fJ153ZNPg4HozeUZPTFn6cFp66Gcad5bSkZ9WECYqnoaVFTkEh8V4kHZt0Sc3ppJhPFydnwG_pwJw7vLNJ87r3_AH5MtwZv_8UNAMZggwcwyLwyigfcseNh-QzC2UWIb5NJFUmY6tcmDqZSNH33EljfcRSjMlSOCXjyMcqjTbIWl7k7hGhzApmmHKZ6UNM5EUqfaQwXDNGhX0ne4S1X0ZnDVo5Ds041VXWoqSuxaZBbBrFpi965M2KZVZDdfyNeICfe0WIKNvVg2I-0Y3R6r6QxnH8z4dnIrGQjBjhMAgVkUhTy3rkJSqLRhyNHBt1JmZZlnr38EBvQ6ImEV0PdvK6IfIF7CAzzb0HkANCb3UoNzuUYOhZd7nVSd04mlJznvA47kMU2iMvVsvIic1zuSuWSKMwj5cs6ZGHtQqv9h0hUD1nwB13lLsjmO5KPj2pYMhlHPI4gd9826r4j9f6o9wf_xP1c7K-_2Go93ZHn5-QmxxNhIFjV5tkbTFfuqfkevZtMS3nzyqz_w6ar1ZC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epi-GTBN%3A+an+approach+of+epistasis+mining+based+on+genetic+Tabu+algorithm+and+Bayesian+network&rft.jtitle=BMC+bioinformatics&rft.au=Guo%2C+Yang&rft.au=Zhong%2C+Zhiman&rft.au=Yang%2C+Chen&rft.au=Hu%2C+Jiangfeng&rft.date=2019-08-28&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3022-z&rft.externalDocID=A597618026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon