PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data

Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and he...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 21; no. 1; pp. 146 - 20
Main Authors: Lemsara, Amina, Ouadfel, Salima, Fröhlich, Holger
Format: Journal Article
Language:English
Published: London BioMed Central 16.04.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
AbstractList Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Abstract Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.BACKGROUNDRecent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.RESULTSWe propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.CONCLUSIONSOur suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Keywords: Deep learning, Patient clustering, Multi-omics
ArticleNumber 146
Audience Academic
Author Ouadfel, Salima
Lemsara, Amina
Fröhlich, Holger
Author_xml – sequence: 1
  givenname: Amina
  surname: Lemsara
  fullname: Lemsara, Amina
  organization: Computer Science Department, University of Constantine 2
– sequence: 2
  givenname: Salima
  surname: Ouadfel
  fullname: Ouadfel, Salima
  organization: Computer Science Department, University of Constantine 2
– sequence: 3
  givenname: Holger
  orcidid: 0000-0002-5328-1243
  surname: Fröhlich
  fullname: Fröhlich, Holger
  email: frohlich@bit.uni-bonn.de
  organization: University of Bonn, Bonn-Aachen, International Center for IT, Fraunhofer Institute for, Algorithms and Scientific, Computing (SCAI)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32299344$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkWI7fiQskKqqwEhFIB5ry4-bqUdJPLWdQv89TmdKOxWgLBzZ3znJPT6Hxd7oRyiK5xgdY9zwNxGThrUVIqiqKWcVeVQcYCpwRTBie_fe94vDGFcIYdEg9qTYrwlp25rSg6L7otLFp7O35TqvP9V1qVUEWw5Tn1w1eKv6Mq5ViFCqKXkYjbcQYtn5UJp-igmCG5el72a9gzFVPVxBv9X7wZlYWpXU0-Jxp_oIz7brUfHj_dn304_V-ecPi9OT88oIVKfKWgzGiNqyDgRn1CpELGgGoA23WiPKKQhNaMfbrhGZ0lRjrBE2TGvW1EfFYuNrvVrJdXCDCtfSKydvNnxYShWSMz1IRZjpjCGUIU45Vq1QuOacY2ZbJYTOXu82XutJD2BNni6ofsd092R0F3Lpr6TAHGM0_8yrrUHwlxPEJAcXDfS9GsFPUZK6xa2gdd1m9OUDdOWnMOaobigiKBXkjlqqPIAbO5-_a2ZTecKJqBkijcjU8V-o_FjI95Eb1Lm8vyN4vSPITIJfaammGOXi29dd9sX9UP6kcduoDIgNYIKPMUAnjUu5G37OyPUSIzl3V266K3N35dxdOU-HHyhvzf-nIRtNXM9FhHCX279FvwG7YP-2
CitedBy_id crossref_primary_10_1093_bib_bbae541
crossref_primary_10_1016_j_csbj_2022_11_050
crossref_primary_10_1016_j_heliyon_2023_e19441
crossref_primary_10_1016_j_jbi_2023_104512
crossref_primary_10_1016_j_labinv_2024_102184
crossref_primary_10_1016_j_ebiom_2025_105569
crossref_primary_10_1093_bib_bbac246
crossref_primary_10_1093_bib_bbab454
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_2174_1574893618666230227122331
crossref_primary_10_1186_s12859_023_05262_8
crossref_primary_10_1007_s00439_021_02417_6
crossref_primary_10_1049_cit2_12230
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_2174_1574893618666230519145545
crossref_primary_10_3389_fonc_2020_588221
crossref_primary_10_1016_j_csbj_2021_07_021
crossref_primary_10_1016_j_csbj_2024_04_053
crossref_primary_10_1002_ijc_33860
crossref_primary_10_1093_jamia_ocaa346
crossref_primary_10_1038_s42003_022_03579_3
crossref_primary_10_3390_ijms22062822
crossref_primary_10_1016_j_csbj_2022_12_028
crossref_primary_10_1016_j_bbadis_2024_167120
crossref_primary_10_1093_bib_bbab024
crossref_primary_10_1038_s41598_022_10441_3
crossref_primary_10_1182_blood_2023020912
crossref_primary_10_1109_ACCESS_2024_3462543
crossref_primary_10_1016_j_semcancer_2023_02_009
crossref_primary_10_1093_bib_bbab315
crossref_primary_10_1002_rai2_12171
crossref_primary_10_1186_s12967_024_05915_z
crossref_primary_10_1371_journal_pcbi_1009224
crossref_primary_10_1016_j_compbiomed_2022_106085
crossref_primary_10_1093_bib_bbae449
crossref_primary_10_1007_s13167_020_00221_2
crossref_primary_10_1016_j_bbcan_2021_188588
crossref_primary_10_1186_s13073_021_00968_x
crossref_primary_10_1109_TNB_2024_3456797
Cites_doi 10.1038/44565
10.1186/1471-2105-11-367
10.1155/2012/574768
10.1038/s41551-018-0304-0
10.1126/science.1127647
10.1038/nature11412
10.1093/jjco/hyt084
10.1023/A:1023949509487
10.1158/0008-5472.CAN-09-0587
10.3390/ijms140816365
10.1158/1535-7163.MCT-16-0465
10.1038/cddis.2017.440
10.3233/CBM-150489
10.1007/978-3-642-35289-8_26
10.1200/jco.2015.33.15_suppl.3547
10.1186/1471-2105-7-78
10.25080/Majora-8b375195-003
10.1101/377002
10.1186/1471-2407-12-292
10.18632/oncotarget.5735
10.1093/nar/gkn653
10.1093/bioinformatics/bts595
10.1093/bioinformatics/btm134
10.1038/35021093
10.1038/nrc2780
10.1080/10618600.2012.681250
10.1007/s12253-017-0268-5
10.1038/sigtrans.2017.40
10.1186/s12859-015-0680-3
10.1038/nmeth.2810
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.ccr.2006.11.023
10.1038/sj.bjc.6601741
10.1002/1097-0215(20000520)89:3<265::AID-IJC9>3.0.CO;2-N
10.3389/fendo.2015.00059
10.3390/cells8020146
10.1111/j.2517-6161.1996.tb02080.x
10.1016/0377-0427(87)90125-7
10.1371/journal.pcbi.1002227
10.1038/sj.onc.1210623
10.1016/j.ccr.2009.12.020
10.1137/1.9781611972832.28
10.1038/nrc3721
10.1158/1078-0432.CCR-13-2943
10.1038/ng.2764
10.1371/journal.pone.0035236
10.1515/raon-2015-0041
10.1073/pnas.191367098
10.1309/AJCPRXHNJQLO09QA
10.1038/nm.3967
10.1073/pnas.0308531101
10.1016/j.cell.2018.02.052
10.1042/BSR20180752
10.1155/2013/506731
10.1214/11-AOAS533
10.1145/1390156.1390294
10.1111/j.1467-9868.2005.00532.x
10.1371/journal.pone.0133578
10.1038/labinvest.2015.82
10.18547/gcb.2016.vol2.iss1.e32
10.1158/1078-0432.CCR-13-0325
10.1080/01621459.1971.10482356
10.1186/gb-2011-12-4-r41
10.1007/s12032-018-1109-4
10.1186/1471-2105-13-20
10.1126/science.286.5439.531
10.1186/s13059-017-1215-1
10.1200/JCO.2009.21.9832
ContentType Journal Article
Copyright The Author(s). 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-3465-2
DatabaseName SpringerOpen
CrossRef
PubMed
Science in Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central (subscription)
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_a25cfcc24506461a97a1366615d9a77b
PMC7161108
A627350287
32299344
10_1186_s12859_020_3465_2
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c703t-dd1ecc73d5fe7654da02deb5eebc6dbb0464e7b24f69f875feb4b11b01c5bb583
IEDL.DBID RSV
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528557600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:43 EDT 2025
Tue Nov 04 01:56:11 EST 2025
Fri Sep 05 06:56:27 EDT 2025
Mon Oct 06 18:28:39 EDT 2025
Tue Nov 11 10:19:24 EST 2025
Tue Nov 04 17:58:53 EST 2025
Thu Nov 13 15:07:59 EST 2025
Wed Feb 19 02:30:25 EST 2025
Sat Nov 29 05:40:06 EST 2025
Tue Nov 18 22:20:04 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Multi-omics
Patient clustering
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-dd1ecc73d5fe7654da02deb5eebc6dbb0464e7b24f69f875feb4b11b01c5bb583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5328-1243
OpenAccessLink https://link.springer.com/10.1186/s12859-020-3465-2
PMID 32299344
PQID 2391274472
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_a25cfcc24506461a97a1366615d9a77b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7161108
proquest_miscellaneous_2391974339
proquest_journals_2391274472
gale_infotracmisc_A627350287
gale_infotracacademiconefile_A627350287
gale_incontextgauss_ISR_A627350287
pubmed_primary_32299344
crossref_citationtrail_10_1186_s12859_020_3465_2
crossref_primary_10_1186_s12859_020_3465_2
springer_journals_10_1186_s12859_020_3465_2
PublicationCentury 2000
PublicationDate 2020-04-16
PublicationDateYYYYMMDD 2020-04-16
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Liu (3465_CR13) 2013
G Hinton (3465_CR29) 2012
K Seystahl (3465_CR65) 2017; 16
3465_CR48
3465_CR49
R Gaujoux (3465_CR37) 2010; 11
3465_CR46
3465_CR47
Y Hasin (3465_CR3) 2017; 18
U Smrdel (3465_CR61) 2016; 50
Y Wang (3465_CR73) 2013; 43
R Hamam (3465_CR79) 2017; 8
3465_CR4
JL Ko (3465_CR71) 2000; 89
T Cenci (3465_CR63) 2012; 138
T Dozat (3465_CR31) 2016
M Kormaksson (3465_CR8) 2012; 6
PJ Rousseeuw (3465_CR40) 1987; 20
SN Rubtsova (3465_CR77) 2015; 10
Y Zhang (3465_CR80) 2019; 8
R Tibshirani (3465_CR24) 1996; 58
S Monti (3465_CR38) 2003; 52
M Tian (3465_CR60) 2018; 38
3465_CR30
P Kirk (3465_CR7) 2012; 28
B Wang (3465_CR11) 2014; 11
3465_CR33
Y Yuan (3465_CR10) 2011; 7
3465_CR32
L Silwal-Pandit (3465_CR76) 2014; 20
J Liu (3465_CR41) 2018; 173
CH Mermel (3465_CR18) 2011; 12
M Raponi (3465_CR72) 2009; 69
3465_CR70
M Yuan (3465_CR25) 2007; 68
PR Stevanato Filho (3465_CR56) 2018; 24
J Van der Hage (3465_CR81) 2004; 90
K Tomczak (3465_CR44) 2015; 19
CM Perou (3465_CR1) 2000; 406
A Serra (3465_CR9) 2015; 16
P Sun (3465_CR59) 2015; 15
3465_CR26
D Colussi (3465_CR57) 2013; 14
3465_CR27
CGA Network (3465_CR75) 2012; 490
L Desnoyers (3465_CR51) 2008; 27
A Barzi (3465_CR55) 2013; 19
RL Stewart (3465_CR68) 2015; 95
M Sanson (3465_CR62) 2009; 27
RG Verhaak (3465_CR2) 2010; 17
GE Hinton (3465_CR20) 2006; 313
3465_CR22
3465_CR66
3465_CR23
3465_CR67
JN Weinstein (3465_CR45) 2013; 45
3465_CR21
Y Benjamini (3465_CR36) 1995; 57
I Sutskever (3465_CR28) 2013
J Mlcochova (3465_CR53) 2015; 6
T Sørlie (3465_CR74) 2001; 98
N Turner (3465_CR50) 2010; 10
S Griffiths-Jones (3465_CR19) 2008; 36
RM Costantini (3465_CR69) 1990; 50
H Kim (3465_CR14) 2007; 23
DD Lee (3465_CR34) 1999; 401
A Jonsson (3465_CR54) 2018; 35
VN Kristensen (3465_CR5) 2014; 14
3465_CR15
3465_CR16
3465_CR58
TR Golub (3465_CR42) 1999; 286
3465_CR17
3465_CR52
3465_CR12
WM Rand (3465_CR43) 1971; 66
P Carmona-Saez (3465_CR35) 2006; 7
SM Farabaugh (3465_CR78) 2015; 6
JP Brunet (3465_CR39) 2004; 101
A Ahmad (3465_CR6) 2016; 2
JR Pearson (3465_CR64) 2017; 2
References_xml – volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 3465_CR34
  publication-title: Nature
  doi: 10.1038/44565
– volume: 11
  start-page: 367
  year: 2010
  ident: 3465_CR37
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-367
– ident: 3465_CR49
  doi: 10.1155/2012/574768
– ident: 3465_CR15
  doi: 10.1038/s41551-018-0304-0
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 3465_CR20
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 490
  start-page: 61
  issue: 7418
  year: 2012
  ident: 3465_CR75
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 43
  start-page: 813
  issue: 8
  year: 2013
  ident: 3465_CR73
  publication-title: Jpn J Clin Oncol
  doi: 10.1093/jjco/hyt084
– volume: 52
  start-page: 91
  issue: 1
  year: 2003
  ident: 3465_CR38
  publication-title: Machine Learning
  doi: 10.1023/A:1023949509487
– ident: 3465_CR4
– volume: 69
  start-page: 5776
  issue: 14
  year: 2009
  ident: 3465_CR72
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-0587
– volume: 14
  start-page: 16,365
  issue: 8
  year: 2013
  ident: 3465_CR57
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms140816365
– volume: 16
  start-page: 1177
  issue: 6
  year: 2017
  ident: 3465_CR65
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-16-0465
– volume: 8
  issue: 9
  year: 2017
  ident: 3465_CR79
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2017.440
– volume: 15
  start-page: 391
  issue: 4
  year: 2015
  ident: 3465_CR59
  publication-title: Cancer Biomarkers: Section A of Disease Markers
  doi: 10.3233/CBM-150489
– ident: 3465_CR26
  doi: 10.1007/978-3-642-35289-8_26
– ident: 3465_CR52
  doi: 10.1200/jco.2015.33.15_suppl.3547
– volume-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent
  year: 2012
  ident: 3465_CR29
– volume: 7
  start-page: 78
  issue: 1
  year: 2006
  ident: 3465_CR35
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-7-78
– ident: 3465_CR47
– ident: 3465_CR30
– ident: 3465_CR33
  doi: 10.25080/Majora-8b375195-003
– ident: 3465_CR48
  doi: 10.1101/377002
– ident: 3465_CR58
  doi: 10.1186/1471-2407-12-292
– volume: 6
  start-page: 38,695
  issue: 36
  year: 2015
  ident: 3465_CR53
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5735
– ident: 3465_CR16
  doi: 10.1093/nar/gkn653
– volume: 28
  start-page: 3290
  issue: 24
  year: 2012
  ident: 3465_CR7
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts595
– volume: 23
  start-page: 1495
  issue: 12
  year: 2007
  ident: 3465_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm134
– volume: 406
  start-page: 747
  issue: 6797
  year: 2000
  ident: 3465_CR1
  publication-title: Nature
  doi: 10.1038/35021093
– volume: 10
  start-page: 116
  issue: 2
  year: 2010
  ident: 3465_CR50
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2780
– ident: 3465_CR23
  doi: 10.1080/10618600.2012.681250
– volume: 24
  start-page: 533
  issue: 3
  year: 2018
  ident: 3465_CR56
  publication-title: Pathology Oncol Research
  doi: 10.1007/s12253-017-0268-5
– volume: 2
  start-page: 17,040
  year: 2017
  ident: 3465_CR64
  publication-title: Signal Transduction Targeted Therapy
  doi: 10.1038/sigtrans.2017.40
– volume: 16
  start-page: 261
  issue: 1
  year: 2015
  ident: 3465_CR9
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0680-3
– ident: 3465_CR27
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 3465_CR11
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 57
  start-page: 289
  year: 1995
  ident: 3465_CR36
  publication-title: J Royal Statist Soc Series B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 3465_CR66
  doi: 10.1016/j.ccr.2006.11.023
– volume: 90
  start-page: 1543
  issue: 8
  year: 2004
  ident: 3465_CR81
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6601741
– volume: 89
  start-page: 265
  issue: 3
  year: 2000
  ident: 3465_CR71
  publication-title: Int J Cancer
  doi: 10.1002/1097-0215(20000520)89:3<265::AID-IJC9>3.0.CO;2-N
– volume: 6
  start-page: 59
  year: 2015
  ident: 3465_CR78
  publication-title: Front Endocrinol
  doi: 10.3389/fendo.2015.00059
– volume: 8
  start-page: 146
  issue: 2
  year: 2019
  ident: 3465_CR80
  publication-title: Cells
  doi: 10.3390/cells8020146
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 3465_CR24
  publication-title: J Royal Statist Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 20
  start-page: 53
  year: 1987
  ident: 3465_CR40
  publication-title: J Comp and Applied Mathematics
  doi: 10.1016/0377-0427(87)90125-7
– volume: 7
  issue: 10
  year: 2011
  ident: 3465_CR10
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002227
– volume: 27
  start-page: 85
  issue: 1
  year: 2008
  ident: 3465_CR51
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210623
– volume: 17
  start-page: 98
  issue: 1
  year: 2010
  ident: 3465_CR2
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.12.020
– volume-title: Incorporating Nesterov momentum into Adam. In: proceedings of 4th international conference on learning representations, workshop track
  year: 2016
  ident: 3465_CR31
– start-page: 252
  volume-title: Proceedings of the 2013 SIAM international conference on data mining, Proceedings, Society for Industrial and Applied Mathematics
  year: 2013
  ident: 3465_CR13
  doi: 10.1137/1.9781611972832.28
– start-page: 1139
  volume-title: International conference on machine learning
  year: 2013
  ident: 3465_CR28
– volume: 14
  start-page: 299
  issue: 5
  year: 2014
  ident: 3465_CR5
  publication-title: Nature Reviews Cancer
  doi: 10.1038/nrc3721
– volume: 20
  start-page: 3569
  issue: 13
  year: 2014
  ident: 3465_CR76
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-2943
– volume: 45
  start-page: 1113
  issue: 10
  year: 2013
  ident: 3465_CR45
  publication-title: Nat Genet
  doi: 10.1038/ng.2764
– volume: 36
  start-page: D154
  issue: Database issue
  year: 2008
  ident: 3465_CR19
  publication-title: Nucleic Acids Res
– ident: 3465_CR12
  doi: 10.1371/journal.pone.0035236
– volume: 50
  start-page: 394
  issue: 4
  year: 2016
  ident: 3465_CR61
  publication-title: Radiol Oncol
  doi: 10.1515/raon-2015-0041
– volume: 98
  start-page: 10,869
  issue: 19
  year: 2001
  ident: 3465_CR74
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.191367098
– volume: 138
  start-page: 390
  issue: 3
  year: 2012
  ident: 3465_CR63
  publication-title: Am J Clin Pathol
  doi: 10.1309/AJCPRXHNJQLO09QA
– ident: 3465_CR46
  doi: 10.1038/nm.3967
– volume: 101
  start-page: 4164
  issue: 12
  year: 2004
  ident: 3465_CR39
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0308531101
– volume: 173
  start-page: 400
  issue: 2
  year: 2018
  ident: 3465_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.052
– volume: 38
  start-page: BSR20180,752
  issue: 6
  year: 2018
  ident: 3465_CR60
  publication-title: Bioscience Reports
  doi: 10.1042/BSR20180752
– ident: 3465_CR22
– ident: 3465_CR70
  doi: 10.1155/2013/506731
– volume: 19
  start-page: A68
  issue: 1A
  year: 2015
  ident: 3465_CR44
  publication-title: Contemp Oncol
– volume: 6
  start-page: 1327
  issue: 3
  year: 2012
  ident: 3465_CR8
  publication-title: Ann Appl Stat
  doi: 10.1214/11-AOAS533
– ident: 3465_CR32
– ident: 3465_CR21
  doi: 10.1145/1390156.1390294
– volume: 68
  start-page: 49
  issue: 1
  year: 2007
  ident: 3465_CR25
  publication-title: J R Stat Soc
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 10
  issue: 7
  year: 2015
  ident: 3465_CR77
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133578
– volume: 95
  start-page: 976
  issue: 9
  year: 2015
  ident: 3465_CR68
  publication-title: Lab Investig
  doi: 10.1038/labinvest.2015.82
– volume: 2
  start-page: 32
  issue: 1
  year: 2016
  ident: 3465_CR6
  publication-title: Genomics and Computational Biol
  doi: 10.18547/gcb.2016.vol2.iss1.e32
– volume: 19
  start-page: 5842
  issue: 21
  year: 2013
  ident: 3465_CR55
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-0325
– volume: 66
  start-page: 846
  issue: 336
  year: 1971
  ident: 3465_CR43
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1971.10482356
– volume: 12
  start-page: R41
  issue: 4
  year: 2011
  ident: 3465_CR18
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-4-r41
– ident: 3465_CR67
– volume: 35
  start-page: 50
  issue: 4
  year: 2018
  ident: 3465_CR54
  publication-title: Med Oncol
  doi: 10.1007/s12032-018-1109-4
– volume: 50
  start-page: 6107
  issue: 18
  year: 1990
  ident: 3465_CR69
  publication-title: Cancer Res
– ident: 3465_CR17
  doi: 10.1186/1471-2105-13-20
– volume: 286
  start-page: 531
  issue: 5439
  year: 1999
  ident: 3465_CR42
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 18
  start-page: 83
  issue: 1
  year: 2017
  ident: 3465_CR3
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1215-1
– volume: 27
  start-page: 4150
  issue: 25
  year: 2009
  ident: 3465_CR62
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.21.9832
SSID ssj0017805
Score 2.523486
Snippet Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as...
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a...
Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as...
Abstract Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 146
SubjectTerms Algorithms
Analysis
Bias
Bioinformatics
Biomedical and Life Sciences
Cancer
Clustering
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deep learning
Deoxyribonucleic acid
DNA
DNA methylation
Gene expression
Generalized linear models
Genetic research
Learning algorithms
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Machine learning for computational and systems biology
Medical treatment
Methodology
Methodology Article
Methods
Methylation
Microarrays
miRNA
Multi-omics
Mutation
Noise reduction
Patient clustering
Patients
Ribonucleic acid
RNA
Sensory integration
Sparsity
Subgroups
Therapeutics
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yKPgi6726ShRBUMo2TZs0vq2yi4Iuizf2LeSqC8d2OT1V9t870-Yctyvqi6_NpG1mJpMZZvINIU-MaDABFEB5jcsrz0WuTPQQpVjJjAm1GqvdP7-Vh4fN8bE6OtfqC2vCJnjgiXG7pqxddK6sEFlNMKOkYRx8blZ7ZaS0aH0LqdbBVMofIFJ_ymGyRuz2DHHacgyVeIVlXbNTaATr_90knzuTLtZLXkiajmfRwTa5lpxIujf9_HVyKbQ3yJWpreTZTRKPwK17t_-CYrvhH-aM4lHl6Vg7mH_rPEwFO7LsAzXDqkMkS6xmpuC-UrcYEDkBvkq7SBPoar7AyqI0H28x9xQLS2-RTwf7H1-9zlM_hdzBvl7l3jMQmOS-jkGKuvKmKH2wdQjWCW8tZjmDtGUVhYoQx8RgK8uYLZirra0bfptstV0b7hIaPbxFwdHOva1MVRhWWs6ZZ8oYBS_KSLHmr3YJbBx7Xiz0GHQ0Qk8i0SASjSLRZUaebaacTkgbfyN-iULbECJI9vgAVEcn1dH_Up2MPEaRa4TBaLHO5osZ-l6_-fBe7wlw62rwvWRGniai2MEKnEnXFoAPiJw1o9yZUcI-dfPhtWbpZCd6XXLFEKNRwooebYZxJta-taEbJhqI-jhXGbkzKeJm3WCOwcGsgN9ypqIzxsxH2pOvI4o4BMp4BSQjz9fK_Ou3_sj3e_-D7_fJ1RK3IiJmih2ytVoO4QG57L6vTvrlw3Ej_wSF9EqP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFdyFQkEFISKCo6ziJYy6ooFYgQbXipd4sP0ulJSmbDaj_npnEm5IieuEaj6PY8_BMZvwNIU91WWECyIPwapvmjpep1MFBlGIE09oXsq92__pe7O9XBwdyHn-4tbGscm0Te0PtGov_yLczLhmi2Yns1fGPFLtGYXY1ttC4SC4hSkLWl-7NxywC4vXHTCaryu2WIVpbigETz7G4a3IW9ZD9fxvmP06ms1WTZ1Kn_Ym0d_1_13KDXIu-KN0ZhOcmueDrW-TK0J3y5DYJc_AOP-y-pNi1-Jc-oXjiOdqXIKbfGwdTwRwtW091t2oQEBOLoil4wdQuOgRggM-mTaARuzVdYIFSnI-XoVuK9al3yJe93c9v3qaxLUNqwTysUucY8F1wVwQvyiJ3epY5bwrvjS2dMZgs9cJkeShlgHAoeJMbxsyM2cKYouKbZKNuan-P0ODgLRI8BO5MrvOZZpnhnDkmtZbwooTM1gxSNmKWY-uMhepjl6pUA08V8FQhT1WWkOfjlOMBsOM84tfI9ZEQsbb7B83yUEXVVTorbLA2yxHbr2RaCs04RH2scFILYRLyBGVGIZpGjeU6h7prW_Xu00e1U4J3WIALJxLyLBKFBlZgdbz9APuAAFwTyq0JJai7nQ6vZUpFc9OqU4FKyONxGGdiCV3tm26ggeCRc5mQu4Mkj-sGqw5-ag77LSYyPtmY6Uh99K0HI4d4G2-SJOTFWhtOP-uf-37__EU8IFcz1FKE1Cy3yMZq2fmH5LL9uTpql496Hf8NdhBZSg
  priority: 102
  providerName: ProQuest
Title PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data
URI https://link.springer.com/article/10.1186/s12859-020-3465-2
https://www.ncbi.nlm.nih.gov/pubmed/32299344
https://www.proquest.com/docview/2391274472
https://www.proquest.com/docview/2391974339
https://pubmed.ncbi.nlm.nih.gov/PMC7161108
https://doaj.org/article/a25cfcc24506461a97a1366615d9a77b
Volume 21
WOSCitedRecordID wos000528557600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (Open Access)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfMMCowoICQkUUcdJnPC2oU5MsCrqYCp7sfyVbVJJUNOC9t9z57iFjA8JXvxQn6P4cj7f9X7-mZBnMsuxAGTBeKWOEsOyqJCVgSxFcSqlTQuHdj9-z8fjfDotSn-Ou12h3VclSeep3bLOs1ctRa61CNMdliA0a4NswW6X430Nk6PjdekASfp9-fK3w3obkOPp_9Ub_7QdXYZKXqqXum1o_-Z_TeAWueGjznC3M5Pb5Iqt75Br3T2UF3dJVUIceDh6HeL9xN_kRYh7mwkd2DD63BgYCo5n3tpQLhcNUl8i_DmEeDfUsyVSLcB7hE0VepbWaIZQJD8ejz23ISJR75GP-6MPb95G_gKGSIMjWETGUPjCnJm0sjxLEyOHsbEqtVbpzCiFZVHLVZxUWVFB4lNZlShK1ZDqVKk0Z_fJZt3UdpuElYGnFBALMKMSmQwljRVj1NBCygIeFJDh6qsI7dnJ8ZKMmXBZSp6JTn0C1CdQfSIOyIv1kC8dNcffhPfwU68FkVXb_dDMT4VfpELGqa60jhNk8cuoLLikDPI7mppCcq4C8hQNRSBvRo3AnFO5bFtxcDQRuxnEgSkEazwgz71Q1cAMtPTnHEAPSLXVk9zpScLC1v3ulT0K71haEbOCIqkjhxk9WXfjSATL1bZZdjKQJjJWBORBZ77reYP_hog0AX3znmH3FNPvqc_PHO04ZNZ4ZiQgL1fm_eO1_qj3h_8k_Yhcj3F9IJdmtkM2F_OlfUyu6q-L83Y-IBt8yl2bD8jW3mhcTgbuPxRo3_FogLjdEtoyPYH-8uCw_DRwvuE7zqJXqw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VAoILzwKGAgsCIVFZzXptr42EUIFWjZJGFS2ot2VfLpWCXeKEKn-K38iMHykuorceuGZnLe9knp7Zbwh5oeIEC0AOhFcZP7Q89lOVWchStGBKuSitut2_DMVolBwcpLtL5Fd7FwbbKlubWBlqWxj8Rr4e8JQhmp0I3h3_8HFqFFZX2xEatVgM3PwEUrbybf8j_L8vg2Brc__Dtt9MFfANSPfUt5bBawtuo8yJOAqt6gXW6cg5bWKrNdb6nNBBmMVpBtF85nSoGdM9ZiKto4TDcy-RyyFPBOrVQPiLqgXOB2gqpyyJ10uG6HA-Jmg8xGayju-rRgT87Qj-8IRnuzTPlGorD7h183_j3S1yo4m16UatHLfJksvvkKv19M35XZLtQvS7s_mG4lTmEzWn6NEtrVos_e-Fha1gbielo2o2LRDwE5u-KUT51IxnCDABbKJFRhtsWn-MDVjNfrzsXVLsv10hny_kkPfIcl7k7gGhmYWnpBABcatDFfYUCzTnzLJUqRQe5JFeKxDSNJjsOBpkLKvcLIllLUMSZEiiDMnAI68XW45rQJLziN-jlC0IEUu8-qGYHMrGNEkVRCYzJggRuzBmKhWKcchqWWRTJYT2yHOUUYloITm2Ix2qWVnK_t4nuRFD9BtBiCo88qohygo4gVHN7Q7gAwKMdShXO5Rgzkx3uZVh2ZjTUp4KsEeeLZZxJ7YI5q6Y1TSQHHOeeuR-rTmLc4PXgjg8BH6Ljk51GNNdyY--VWDrAlIi1ks8stZq3-lr_ZPvD88_xFNybXt_ZyiH_dHgEbkeoIVA-NB4lSxPJzP3mFwxP6dH5eRJZV8o-XrRSvkbQzW6DA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKFmxIoYBASUlHUdZzEa94KdEVFWa0oVH2zfLaVlqTa7IL675lJvAsph4R4jWeseDy2ZzSfPxPyXJdDLAB5cF5t09zxMpU6OMhSjGBa-0K2aPeDPTEeDw8P5SS-c9os0e7LkmR3pwFZmqr51qkL3RIfllsNQ961FFMfniNM6yK5lCOOHtP1_YNVGQEJ-2Mp87dqvcOo5ez_dWf-6Wg6D5s8Vzttj6TRjf8ezE1yPUajdLtzn1vkgq9ukyvd-5Rnd0iYQHz4YecVxXeLv-kzimeeoy0IMf1SO1CFDWnWeKoX8xopMREWTSEOpna6QAoG-CdaBxrZW9MpQpSiPl6HbigiVO-Sz6OdT2_epfFhhtTCBjFPnWMw84K7InhRFrnTg8x5U3hvbOmMwXKpFybLQykDJETBm9wwZgbMFsYUQ36PrFV15e8TGhz0IiFG4M7kOh9olhnOmWNSawkdJWSwnCFlI2s5Pp4xVW32MixVZz4F5lNoPpUlZHOlctpRdvxN-DVO-0oQ2bbbD_XsSMXFq3RW2GBtliO7X8m0FJpxyPtY4aQWwiTkGTqNQj6NCgE7R3rRNGp3_6PaLiE-LCCIEwl5EYVCDSOwOt5_ADsgBVdPcqMnCQve9puXvqnihtOojEuGZI8CRvR01YyaCKKrfL3oZCB95FwmZL1z5dW4YV-HSDUHe4uek_cM02-pTo5bOnLIuPEuSUJeLl39x2_90e4P_kn6Cbk6eTtSe7vj9w_JtQyXCtJtlhtkbT5b-Efksv06P2lmj9vl_x2ci1qe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PathME%3A+pathway+based+multi-modal+sparse+autoencoders+for+clustering+of+patient-level+multi-omics+data&rft.jtitle=BMC+bioinformatics&rft.au=Lemsara%2C+Amina&rft.au=Ouadfel%2C+Salima&rft.au=Fr%C3%B6hlich%2C+Holger&rft.date=2020-04-16&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-3465-2&rft.externalDocID=10_1186_s12859_020_3465_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon