PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data
Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and he...
Gespeichert in:
| Veröffentlicht in: | BMC bioinformatics Jg. 21; H. 1; S. 146 - 20 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
BioMed Central
16.04.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.
Results
We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.
Conclusions
Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. |
|---|---|
| AbstractList | Background
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.
Results
We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.
Conclusions
Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Abstract Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.BACKGROUNDRecent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.RESULTSWe propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.CONCLUSIONSOur suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources. Results We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters. Conclusions Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups. Keywords: Deep learning, Patient clustering, Multi-omics |
| ArticleNumber | 146 |
| Audience | Academic |
| Author | Ouadfel, Salima Lemsara, Amina Fröhlich, Holger |
| Author_xml | – sequence: 1 givenname: Amina surname: Lemsara fullname: Lemsara, Amina organization: Computer Science Department, University of Constantine 2 – sequence: 2 givenname: Salima surname: Ouadfel fullname: Ouadfel, Salima organization: Computer Science Department, University of Constantine 2 – sequence: 3 givenname: Holger orcidid: 0000-0002-5328-1243 surname: Fröhlich fullname: Fröhlich, Holger email: frohlich@bit.uni-bonn.de organization: University of Bonn, Bonn-Aachen, International Center for IT, Fraunhofer Institute for, Algorithms and Scientific, Computing (SCAI) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32299344$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wA9igSGxgkWI7fiQskKqqwEhFIB5ry4-bqUdJPLWdQv89TmdKOxWgLBzZ3znJPT6Hxd7oRyiK5xgdY9zwNxGThrUVIqiqKWcVeVQcYCpwRTBie_fe94vDGFcIYdEg9qTYrwlp25rSg6L7otLFp7O35TqvP9V1qVUEWw5Tn1w1eKv6Mq5ViFCqKXkYjbcQYtn5UJp-igmCG5el72a9gzFVPVxBv9X7wZlYWpXU0-Jxp_oIz7brUfHj_dn304_V-ecPi9OT88oIVKfKWgzGiNqyDgRn1CpELGgGoA23WiPKKQhNaMfbrhGZ0lRjrBE2TGvW1EfFYuNrvVrJdXCDCtfSKydvNnxYShWSMz1IRZjpjCGUIU45Vq1QuOacY2ZbJYTOXu82XutJD2BNni6ofsd092R0F3Lpr6TAHGM0_8yrrUHwlxPEJAcXDfS9GsFPUZK6xa2gdd1m9OUDdOWnMOaobigiKBXkjlqqPIAbO5-_a2ZTecKJqBkijcjU8V-o_FjI95Eb1Lm8vyN4vSPITIJfaammGOXi29dd9sX9UP6kcduoDIgNYIKPMUAnjUu5G37OyPUSIzl3V266K3N35dxdOU-HHyhvzf-nIRtNXM9FhHCX279FvwG7YP-2 |
| CitedBy_id | crossref_primary_10_1093_bib_bbae541 crossref_primary_10_1016_j_csbj_2022_11_050 crossref_primary_10_1016_j_heliyon_2023_e19441 crossref_primary_10_1016_j_jbi_2023_104512 crossref_primary_10_1016_j_labinv_2024_102184 crossref_primary_10_1016_j_ebiom_2025_105569 crossref_primary_10_1093_bib_bbac246 crossref_primary_10_1093_bib_bbab454 crossref_primary_10_1146_annurev_pathmechdis_051222_113147 crossref_primary_10_2174_1574893618666230227122331 crossref_primary_10_1186_s12859_023_05262_8 crossref_primary_10_1007_s00439_021_02417_6 crossref_primary_10_1049_cit2_12230 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_2174_1574893618666230519145545 crossref_primary_10_3389_fonc_2020_588221 crossref_primary_10_1016_j_csbj_2021_07_021 crossref_primary_10_1016_j_csbj_2024_04_053 crossref_primary_10_1002_ijc_33860 crossref_primary_10_1093_jamia_ocaa346 crossref_primary_10_1038_s42003_022_03579_3 crossref_primary_10_3390_ijms22062822 crossref_primary_10_1016_j_csbj_2022_12_028 crossref_primary_10_1016_j_bbadis_2024_167120 crossref_primary_10_1093_bib_bbab024 crossref_primary_10_1038_s41598_022_10441_3 crossref_primary_10_1182_blood_2023020912 crossref_primary_10_1109_ACCESS_2024_3462543 crossref_primary_10_1016_j_semcancer_2023_02_009 crossref_primary_10_1093_bib_bbab315 crossref_primary_10_1002_rai2_12171 crossref_primary_10_1186_s12967_024_05915_z crossref_primary_10_1371_journal_pcbi_1009224 crossref_primary_10_1016_j_compbiomed_2022_106085 crossref_primary_10_1093_bib_bbae449 crossref_primary_10_1007_s13167_020_00221_2 crossref_primary_10_1016_j_bbcan_2021_188588 crossref_primary_10_1186_s13073_021_00968_x crossref_primary_10_1109_TNB_2024_3456797 |
| Cites_doi | 10.1038/44565 10.1186/1471-2105-11-367 10.1155/2012/574768 10.1038/s41551-018-0304-0 10.1126/science.1127647 10.1038/nature11412 10.1093/jjco/hyt084 10.1023/A:1023949509487 10.1158/0008-5472.CAN-09-0587 10.3390/ijms140816365 10.1158/1535-7163.MCT-16-0465 10.1038/cddis.2017.440 10.3233/CBM-150489 10.1007/978-3-642-35289-8_26 10.1200/jco.2015.33.15_suppl.3547 10.1186/1471-2105-7-78 10.25080/Majora-8b375195-003 10.1101/377002 10.1186/1471-2407-12-292 10.18632/oncotarget.5735 10.1093/nar/gkn653 10.1093/bioinformatics/bts595 10.1093/bioinformatics/btm134 10.1038/35021093 10.1038/nrc2780 10.1080/10618600.2012.681250 10.1007/s12253-017-0268-5 10.1038/sigtrans.2017.40 10.1186/s12859-015-0680-3 10.1038/nmeth.2810 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.ccr.2006.11.023 10.1038/sj.bjc.6601741 10.1002/1097-0215(20000520)89:3<265::AID-IJC9>3.0.CO;2-N 10.3389/fendo.2015.00059 10.3390/cells8020146 10.1111/j.2517-6161.1996.tb02080.x 10.1016/0377-0427(87)90125-7 10.1371/journal.pcbi.1002227 10.1038/sj.onc.1210623 10.1016/j.ccr.2009.12.020 10.1137/1.9781611972832.28 10.1038/nrc3721 10.1158/1078-0432.CCR-13-2943 10.1038/ng.2764 10.1371/journal.pone.0035236 10.1515/raon-2015-0041 10.1073/pnas.191367098 10.1309/AJCPRXHNJQLO09QA 10.1038/nm.3967 10.1073/pnas.0308531101 10.1016/j.cell.2018.02.052 10.1042/BSR20180752 10.1155/2013/506731 10.1214/11-AOAS533 10.1145/1390156.1390294 10.1111/j.1467-9868.2005.00532.x 10.1371/journal.pone.0133578 10.1038/labinvest.2015.82 10.18547/gcb.2016.vol2.iss1.e32 10.1158/1078-0432.CCR-13-0325 10.1080/01621459.1971.10482356 10.1186/gb-2011-12-4-r41 10.1007/s12032-018-1109-4 10.1186/1471-2105-13-20 10.1126/science.286.5439.531 10.1186/s13059-017-1215-1 10.1200/JCO.2009.21.9832 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-020-3465-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_a25cfcc24506461a97a1366615d9a77b PMC7161108 A627350287 32299344 10_1186_s12859_020_3465_2 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 M0N NPM 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c703t-dd1ecc73d5fe7654da02deb5eebc6dbb0464e7b24f69f875feb4b11b01c5bb583 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528557600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:53:43 EDT 2025 Tue Nov 04 01:56:11 EST 2025 Fri Sep 05 06:56:27 EDT 2025 Mon Oct 06 18:28:39 EDT 2025 Tue Nov 11 10:19:24 EST 2025 Tue Nov 04 17:58:53 EST 2025 Thu Nov 13 15:07:59 EST 2025 Wed Feb 19 02:30:25 EST 2025 Sat Nov 29 05:40:06 EST 2025 Tue Nov 18 22:20:04 EST 2025 Sat Sep 06 07:27:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Multi-omics Patient clustering |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c703t-dd1ecc73d5fe7654da02deb5eebc6dbb0464e7b24f69f875feb4b11b01c5bb583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5328-1243 |
| OpenAccessLink | https://link.springer.com/10.1186/s12859-020-3465-2 |
| PMID | 32299344 |
| PQID | 2391274472 |
| PQPubID | 44065 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a25cfcc24506461a97a1366615d9a77b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7161108 proquest_miscellaneous_2391974339 proquest_journals_2391274472 gale_infotracmisc_A627350287 gale_infotracacademiconefile_A627350287 gale_incontextgauss_ISR_A627350287 pubmed_primary_32299344 crossref_citationtrail_10_1186_s12859_020_3465_2 crossref_primary_10_1186_s12859_020_3465_2 springer_journals_10_1186_s12859_020_3465_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-16 |
| PublicationDateYYYYMMDD | 2020-04-16 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | J Liu (3465_CR13) 2013 G Hinton (3465_CR29) 2012 K Seystahl (3465_CR65) 2017; 16 3465_CR48 3465_CR49 R Gaujoux (3465_CR37) 2010; 11 3465_CR46 3465_CR47 Y Hasin (3465_CR3) 2017; 18 U Smrdel (3465_CR61) 2016; 50 Y Wang (3465_CR73) 2013; 43 R Hamam (3465_CR79) 2017; 8 3465_CR4 JL Ko (3465_CR71) 2000; 89 T Cenci (3465_CR63) 2012; 138 T Dozat (3465_CR31) 2016 M Kormaksson (3465_CR8) 2012; 6 PJ Rousseeuw (3465_CR40) 1987; 20 SN Rubtsova (3465_CR77) 2015; 10 Y Zhang (3465_CR80) 2019; 8 R Tibshirani (3465_CR24) 1996; 58 S Monti (3465_CR38) 2003; 52 M Tian (3465_CR60) 2018; 38 3465_CR30 P Kirk (3465_CR7) 2012; 28 B Wang (3465_CR11) 2014; 11 3465_CR33 Y Yuan (3465_CR10) 2011; 7 3465_CR32 L Silwal-Pandit (3465_CR76) 2014; 20 J Liu (3465_CR41) 2018; 173 CH Mermel (3465_CR18) 2011; 12 M Raponi (3465_CR72) 2009; 69 3465_CR70 M Yuan (3465_CR25) 2007; 68 PR Stevanato Filho (3465_CR56) 2018; 24 J Van der Hage (3465_CR81) 2004; 90 K Tomczak (3465_CR44) 2015; 19 CM Perou (3465_CR1) 2000; 406 A Serra (3465_CR9) 2015; 16 P Sun (3465_CR59) 2015; 15 3465_CR26 D Colussi (3465_CR57) 2013; 14 3465_CR27 CGA Network (3465_CR75) 2012; 490 L Desnoyers (3465_CR51) 2008; 27 A Barzi (3465_CR55) 2013; 19 RL Stewart (3465_CR68) 2015; 95 M Sanson (3465_CR62) 2009; 27 RG Verhaak (3465_CR2) 2010; 17 GE Hinton (3465_CR20) 2006; 313 3465_CR22 3465_CR66 3465_CR23 3465_CR67 JN Weinstein (3465_CR45) 2013; 45 3465_CR21 Y Benjamini (3465_CR36) 1995; 57 I Sutskever (3465_CR28) 2013 J Mlcochova (3465_CR53) 2015; 6 T Sørlie (3465_CR74) 2001; 98 N Turner (3465_CR50) 2010; 10 S Griffiths-Jones (3465_CR19) 2008; 36 RM Costantini (3465_CR69) 1990; 50 H Kim (3465_CR14) 2007; 23 DD Lee (3465_CR34) 1999; 401 A Jonsson (3465_CR54) 2018; 35 VN Kristensen (3465_CR5) 2014; 14 3465_CR15 3465_CR16 3465_CR58 TR Golub (3465_CR42) 1999; 286 3465_CR17 3465_CR52 3465_CR12 WM Rand (3465_CR43) 1971; 66 P Carmona-Saez (3465_CR35) 2006; 7 SM Farabaugh (3465_CR78) 2015; 6 JP Brunet (3465_CR39) 2004; 101 A Ahmad (3465_CR6) 2016; 2 JR Pearson (3465_CR64) 2017; 2 |
| References_xml | – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 3465_CR34 publication-title: Nature doi: 10.1038/44565 – volume: 11 start-page: 367 year: 2010 ident: 3465_CR37 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-367 – ident: 3465_CR49 doi: 10.1155/2012/574768 – ident: 3465_CR15 doi: 10.1038/s41551-018-0304-0 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 3465_CR20 publication-title: Science doi: 10.1126/science.1127647 – volume: 490 start-page: 61 issue: 7418 year: 2012 ident: 3465_CR75 publication-title: Nature doi: 10.1038/nature11412 – volume: 43 start-page: 813 issue: 8 year: 2013 ident: 3465_CR73 publication-title: Jpn J Clin Oncol doi: 10.1093/jjco/hyt084 – volume: 52 start-page: 91 issue: 1 year: 2003 ident: 3465_CR38 publication-title: Machine Learning doi: 10.1023/A:1023949509487 – ident: 3465_CR4 – volume: 69 start-page: 5776 issue: 14 year: 2009 ident: 3465_CR72 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-0587 – volume: 14 start-page: 16,365 issue: 8 year: 2013 ident: 3465_CR57 publication-title: Int J Mol Sci doi: 10.3390/ijms140816365 – volume: 16 start-page: 1177 issue: 6 year: 2017 ident: 3465_CR65 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-16-0465 – volume: 8 issue: 9 year: 2017 ident: 3465_CR79 publication-title: Cell Death Dis doi: 10.1038/cddis.2017.440 – volume: 15 start-page: 391 issue: 4 year: 2015 ident: 3465_CR59 publication-title: Cancer Biomarkers: Section A of Disease Markers doi: 10.3233/CBM-150489 – ident: 3465_CR26 doi: 10.1007/978-3-642-35289-8_26 – ident: 3465_CR52 doi: 10.1200/jco.2015.33.15_suppl.3547 – volume-title: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent year: 2012 ident: 3465_CR29 – volume: 7 start-page: 78 issue: 1 year: 2006 ident: 3465_CR35 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-7-78 – ident: 3465_CR47 – ident: 3465_CR30 – ident: 3465_CR33 doi: 10.25080/Majora-8b375195-003 – ident: 3465_CR48 doi: 10.1101/377002 – ident: 3465_CR58 doi: 10.1186/1471-2407-12-292 – volume: 6 start-page: 38,695 issue: 36 year: 2015 ident: 3465_CR53 publication-title: Oncotarget doi: 10.18632/oncotarget.5735 – ident: 3465_CR16 doi: 10.1093/nar/gkn653 – volume: 28 start-page: 3290 issue: 24 year: 2012 ident: 3465_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts595 – volume: 23 start-page: 1495 issue: 12 year: 2007 ident: 3465_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm134 – volume: 406 start-page: 747 issue: 6797 year: 2000 ident: 3465_CR1 publication-title: Nature doi: 10.1038/35021093 – volume: 10 start-page: 116 issue: 2 year: 2010 ident: 3465_CR50 publication-title: Nat Rev Cancer doi: 10.1038/nrc2780 – ident: 3465_CR23 doi: 10.1080/10618600.2012.681250 – volume: 24 start-page: 533 issue: 3 year: 2018 ident: 3465_CR56 publication-title: Pathology Oncol Research doi: 10.1007/s12253-017-0268-5 – volume: 2 start-page: 17,040 year: 2017 ident: 3465_CR64 publication-title: Signal Transduction Targeted Therapy doi: 10.1038/sigtrans.2017.40 – volume: 16 start-page: 261 issue: 1 year: 2015 ident: 3465_CR9 publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0680-3 – ident: 3465_CR27 – volume: 11 start-page: 333 issue: 3 year: 2014 ident: 3465_CR11 publication-title: Nat Methods doi: 10.1038/nmeth.2810 – volume: 57 start-page: 289 year: 1995 ident: 3465_CR36 publication-title: J Royal Statist Soc Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 3465_CR66 doi: 10.1016/j.ccr.2006.11.023 – volume: 90 start-page: 1543 issue: 8 year: 2004 ident: 3465_CR81 publication-title: Br J Cancer doi: 10.1038/sj.bjc.6601741 – volume: 89 start-page: 265 issue: 3 year: 2000 ident: 3465_CR71 publication-title: Int J Cancer doi: 10.1002/1097-0215(20000520)89:3<265::AID-IJC9>3.0.CO;2-N – volume: 6 start-page: 59 year: 2015 ident: 3465_CR78 publication-title: Front Endocrinol doi: 10.3389/fendo.2015.00059 – volume: 8 start-page: 146 issue: 2 year: 2019 ident: 3465_CR80 publication-title: Cells doi: 10.3390/cells8020146 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 3465_CR24 publication-title: J Royal Statist Soc B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 20 start-page: 53 year: 1987 ident: 3465_CR40 publication-title: J Comp and Applied Mathematics doi: 10.1016/0377-0427(87)90125-7 – volume: 7 issue: 10 year: 2011 ident: 3465_CR10 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002227 – volume: 27 start-page: 85 issue: 1 year: 2008 ident: 3465_CR51 publication-title: Oncogene doi: 10.1038/sj.onc.1210623 – volume: 17 start-page: 98 issue: 1 year: 2010 ident: 3465_CR2 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.12.020 – volume-title: Incorporating Nesterov momentum into Adam. In: proceedings of 4th international conference on learning representations, workshop track year: 2016 ident: 3465_CR31 – start-page: 252 volume-title: Proceedings of the 2013 SIAM international conference on data mining, Proceedings, Society for Industrial and Applied Mathematics year: 2013 ident: 3465_CR13 doi: 10.1137/1.9781611972832.28 – start-page: 1139 volume-title: International conference on machine learning year: 2013 ident: 3465_CR28 – volume: 14 start-page: 299 issue: 5 year: 2014 ident: 3465_CR5 publication-title: Nature Reviews Cancer doi: 10.1038/nrc3721 – volume: 20 start-page: 3569 issue: 13 year: 2014 ident: 3465_CR76 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-2943 – volume: 45 start-page: 1113 issue: 10 year: 2013 ident: 3465_CR45 publication-title: Nat Genet doi: 10.1038/ng.2764 – volume: 36 start-page: D154 issue: Database issue year: 2008 ident: 3465_CR19 publication-title: Nucleic Acids Res – ident: 3465_CR12 doi: 10.1371/journal.pone.0035236 – volume: 50 start-page: 394 issue: 4 year: 2016 ident: 3465_CR61 publication-title: Radiol Oncol doi: 10.1515/raon-2015-0041 – volume: 98 start-page: 10,869 issue: 19 year: 2001 ident: 3465_CR74 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.191367098 – volume: 138 start-page: 390 issue: 3 year: 2012 ident: 3465_CR63 publication-title: Am J Clin Pathol doi: 10.1309/AJCPRXHNJQLO09QA – ident: 3465_CR46 doi: 10.1038/nm.3967 – volume: 101 start-page: 4164 issue: 12 year: 2004 ident: 3465_CR39 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0308531101 – volume: 173 start-page: 400 issue: 2 year: 2018 ident: 3465_CR41 publication-title: Cell doi: 10.1016/j.cell.2018.02.052 – volume: 38 start-page: BSR20180,752 issue: 6 year: 2018 ident: 3465_CR60 publication-title: Bioscience Reports doi: 10.1042/BSR20180752 – ident: 3465_CR22 – ident: 3465_CR70 doi: 10.1155/2013/506731 – volume: 19 start-page: A68 issue: 1A year: 2015 ident: 3465_CR44 publication-title: Contemp Oncol – volume: 6 start-page: 1327 issue: 3 year: 2012 ident: 3465_CR8 publication-title: Ann Appl Stat doi: 10.1214/11-AOAS533 – ident: 3465_CR32 – ident: 3465_CR21 doi: 10.1145/1390156.1390294 – volume: 68 start-page: 49 issue: 1 year: 2007 ident: 3465_CR25 publication-title: J R Stat Soc doi: 10.1111/j.1467-9868.2005.00532.x – volume: 10 issue: 7 year: 2015 ident: 3465_CR77 publication-title: PLoS One doi: 10.1371/journal.pone.0133578 – volume: 95 start-page: 976 issue: 9 year: 2015 ident: 3465_CR68 publication-title: Lab Investig doi: 10.1038/labinvest.2015.82 – volume: 2 start-page: 32 issue: 1 year: 2016 ident: 3465_CR6 publication-title: Genomics and Computational Biol doi: 10.18547/gcb.2016.vol2.iss1.e32 – volume: 19 start-page: 5842 issue: 21 year: 2013 ident: 3465_CR55 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-0325 – volume: 66 start-page: 846 issue: 336 year: 1971 ident: 3465_CR43 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1971.10482356 – volume: 12 start-page: R41 issue: 4 year: 2011 ident: 3465_CR18 publication-title: Genome Biol doi: 10.1186/gb-2011-12-4-r41 – ident: 3465_CR67 – volume: 35 start-page: 50 issue: 4 year: 2018 ident: 3465_CR54 publication-title: Med Oncol doi: 10.1007/s12032-018-1109-4 – volume: 50 start-page: 6107 issue: 18 year: 1990 ident: 3465_CR69 publication-title: Cancer Res – ident: 3465_CR17 doi: 10.1186/1471-2105-13-20 – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 3465_CR42 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 18 start-page: 83 issue: 1 year: 2017 ident: 3465_CR3 publication-title: Genome Biol doi: 10.1186/s13059-017-1215-1 – volume: 27 start-page: 4150 issue: 25 year: 2009 ident: 3465_CR62 publication-title: J Clin Oncol doi: 10.1200/JCO.2009.21.9832 |
| SSID | ssj0017805 |
| Score | 2.523486 |
| Snippet | Background
Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as... Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a... Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as... Abstract Background Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 146 |
| SubjectTerms | Algorithms Analysis Bias Bioinformatics Biomedical and Life Sciences Cancer Clustering Computational Biology/Bioinformatics Computer Appl. in Life Sciences Deep learning Deoxyribonucleic acid DNA DNA methylation Gene expression Generalized linear models Genetic research Learning algorithms Life Sciences Machine learning Machine Learning and Artificial Intelligence in Bioinformatics Machine learning for computational and systems biology Medical treatment Methodology Methodology Article Methods Methylation Microarrays miRNA Multi-omics Mutation Noise reduction Patient clustering Patients Ribonucleic acid RNA Sensory integration Sparsity Subgroups Therapeutics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yKPgi53f1lCiCoJRr0iZpfDvlDgU9Dr-4t5CkiR6s7bHdKvffO9Nm1-uJ-uLrZsI2M5PJDPnlN4Q8sQWMqELloSp8XjGOlLdOQs0TRMG1reP4bu3zW3V4WB8f66Nzrb4QEzbRA0-K27Vc-Og9r5BZTTKrlWUl5NxMNNoq5TD6Fkqvi6l0f4BM_ekOk9Vyt2fI05ZjqVRWCOuanUIjWf_vIfncmXQRL3nh0nQ8iw62ybWURNK96eOvk0uhvUGuTG0lz26SeARp3bv9FxTbDf-wZxSPqoaO2MH8W9fAVIgjyz5QO6w6ZLJENDOF9JX6xYDMCfCvtIs0ka7mC0QWpfn4irmnCCy9RT4d7H989TpP_RRyD_t6lTcNA4OpshExKCmqxha8CU6E4LxsnMNbzqAcr6LUEeqYGFzlGHMF88I5UZe3yVbbteEuoSUkCtKXXAtrIQQwp2UUTloF6pVC6YwUa_0an8jGsefFwoxFRy3NZBIDJjFoEsMz8mwz5XRi2vib8Es02kYQSbLHH8B1THId8y_XychjNLlBGowWcTZf7ND35s2H92ZPQloHzlqrjDxNQrGDFXibni2AHpA5aya5M5OEfernw2vPMilO9IaXmiFHo4IVPdoM40zEvrWhGyYZqPrKErR6Z3LEzbohHEOCWVUZUTMXnSlmPtKefB1ZxKFQxicgGXm-duZfn_VHvd_7H3q_T65y3IrImCl3yNZqOYQH5LL_vjrplw_HjfwT2XxJVA priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA86FXzxe1qdEkUQlLImbZLWF5myoaDj4hd7C0mazMG1nbe3yv57z2lz7-zEvfjanECS85Fzek5-h5CnJoMRlanUF5lLC8YR8tZKiHm8yHhlyjC8W_v6Xu3vlwcH1Sz-cOtiWeXKJg6Gum4d_iPf5nnFEM1O8VfHP1LsGoXZ1dhC4yK5hCgJfCjdm62zCIjXHzOZrJTbHUO0thQDprzA4q7JXTRA9v9tmP-4mc5WTZ5JnQ430t71_93LDXIt-qJ0ZxSem-SCb26RK2N3ypPbJMzAO_yw-5Ji1-Jf5oTijVfToQQx_d7WMBXM0aLz1PTLFgExsSiaghdM3bxHAAZYNm0Djdit6RwLlOJ8fAzdUaxPvUO-7O1-fvM2jW0ZUgfmYZnWNQO-q7wWwSspitpkvPZWeG-drK3FZKlXlhdBVgHCoeBtYRmzGXPCWlHmm2SjaRt_j9Ac_A3pcl4JY8CSMFvJIKw0CvgjhaoSkq0YpF3ELMfWGXM9xC6l1CNPNfBUI081T8jz9ZTjEbDjPOLXyPU1IWJtDx_axaGOqqsNFy44xwvE9pPMVMqwHKI-JurKKGUT8gRlRiOaRoPlOoem7zr97tNHvSPBOwSZL1VCnkWi0MIOnImvH-AcEIBrQrk1oQR1d9PhlUzpaG46fSpQCXm8HsaZWELX-LYfaSB4zHM41bujJK_3DVYd_NSiSIiayPjkYKYjzdG3AYwc4m18SZKQFyttOF3WP8_9_vmbeECuctRShNSUW2Rjuej9Q3LZ_VwedYtHg47_BtguWA8 priority: 102 providerName: ProQuest |
| Title | PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data |
| URI | https://link.springer.com/article/10.1186/s12859-020-3465-2 https://www.ncbi.nlm.nih.gov/pubmed/32299344 https://www.proquest.com/docview/2391274472 https://www.proquest.com/docview/2391974339 https://pubmed.ncbi.nlm.nih.gov/PMC7161108 https://doaj.org/article/a25cfcc24506461a97a1366615d9a77b |
| Volume | 21 |
| WOSCitedRecordID | wos000528557600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZoCxIv3EegrAxCQgJF5LKd8Nairaigq2gLVemLZTtOqbQkaLML6r9nxvEupBwSvPhhPSPF4_EcO-PPhDxVEcyISIQ2i0yYxQlC3moOOY9lUVKovHb31o7eickkPz4uSn-Pu1t1u69Kks5Su2Od85ddjFhrIaY7aYatWRtkC7xdju81TA-P1qUDBOn35cvfsg0ckMPp_9Ua_-SOLrZKXqiXOje0d_2_FnCDXPNRJ93p1eQmuWSbW-RK_w7l-W1SlxAHHoxfUXyf-Js6p-jbKuqaDcPPbQWsYHjmnaVquWgR-hLbnynEu9TMlgi1AN9B25p6lNZwhq1Inh-vPXcUO1HvkA974_ev34T-AYbQgCFYhFUVww6LtGK1FZxllYqSympmrTa80hrLolboJKt5UUPiU1ud6TjWUWyY1ixP75LNpm3sfUJTiCy4SZOCKQU2I9YFr5nmSoAoOBNFQKLVrkjj0cnxkYyZdFlKzmUvPgnikyg-mQTk-ZrlSw_N8TfiXdzqNSGiarsf2vmp9IdUqoSZ2pgkQxQ_HqtCqDiF_C5mVaGE0AF5gooiETejwcacU7XsOrl_OJU7HOJA0O5cBOSZJ6pbWIFR_p4DyAGhtgaU2wNKONhmOL3SR-kNSyeTtIgR1FHAih6vp5ETm-Ua2y57GkgT0xSkeq9X3_W6wX5DRJplAREDxR4IZjjTnH1ysOOQWeOdkYC8WKn3j8_6o9wf_BP1Q3I1wfOBWJp8m2wu5kv7iFw2Xxdn3XxENsSxcGM-Ilu740k5Hbn_UGB8K8IR9u2WMJbsBObL_YPy48jZhu_oR1Zw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCAQEihq7CR2goRQgVZd7baqaEG9GdtxSqUlKZtdqv1T_EZm8tiSInrrgWs8juLZee6MvyHkuQ5gRQbSd1Fg_YhxhLw1AnIeFwc81Ule31v7MpLb28n-frqzRH51d2GwrbKzibWhzkqL_5Gv8jBliGYn-bujHz5OjcLqajdCoxGLoZsfQ8pWvR18hN_3Becb63sfNv12qoBvQbqnfpYx-GwZZnHupIijTAc8cyZ2zliRGYO1PicNj3KR5hDN585EhjETMBsbEychvPcCuRiFiUS9Gkp_UbXA-QBt5ZQlYrViiA7nY4IWRthM1vN99YiAvx3BH57wdJfmqVJt7QE3rv9vvLtBrrWxNl1rlOMmWXLFLXK5mb45v03yHYh-t9bfUJzKfKznFD16RusWS_97mcFWMLeTylE9m5YI-IlN3xSifGrHMwSYADbRMqctNq0_xgasdj9e9q4o9t_eIZ_P5ZB3yXJRFu4-oSHEU8KGPI21BkvJTCry2AgtQR5ELFOPBJ1AKNtisuNokLGqc7NEqEaGFMiQQhlS3COvFluOGkCSs4jfo5QtCBFLvH5QTg5Ua5qU5rHNreURYhcKplOpWQhZLYuzVEtpPPIMZVQhWkiB7UgHelZVarD7Sa0JiH5BpxPpkZctUV7CCaxub3cAHxBgrEe50qMEc2b7y50Mq9acVupEgD3ydLGMO7FFsHDlrKGB5DgMgav3Gs1ZnBu8FsThUeQR2dOpHmP6K8XhtxpsXUJKxILEI6877Tv5rH_y_cHZh3hCrmzubY3UaLA9fEiucrQQCB8qVsjydDJzj8gl-3N6WE0e1_aFkq_nrZS_AbcvuNE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI9gfIgXvhmFAQEhIQ1Va9omaXkbsBMT43RiMO0tStJkm3S00_UOtP8eu80ddHxIiNfGlhrHdmzZ-ZmQ5zqBFZnI2OWJjXOWIuStEZDzOJ6kpS58927tYE-Ox8XhYTkJc07bZbf7siTZv2lAlKZ6vnVa-d7EC7HVMsRdizH1yXJs07pILuXYR4_p-v7BqoyAgP2hlPlbtsFl1GH2_-qZf7qazrdNnquddlfS6MZ_b-YmuR6iUbrdq88tcsHVt8mVfj7l2R3iJxAffth5RXFu8Td9RvHOq2jXhBh_aSpgBYc0ax3Vi3mDkJjYFk0hDqZ2ukAIBvgn2nga0FvjKbYoBX58Dt1S7FC9Sz6Pdj69eReHwQyxBQcxj6uKwcnLrOLeScHzSidp5Qx3zlhRGYPlUidNmntRekiIvDO5YcwkzHJjeJHdI2t1U7v7hGYQcQibpSXXGnwJM6Xw3AgtQRSCyzIiyfKElA2o5Tg8Y6q67KUQqhefAvEpFJ9KI7K5YjntITv-Rvwaj31FiGjb3YdmdqSC8SqdcuutTXNE9xNMl1KzDPI-xqtSS2ki8gyVRiGeRo0NO0d60bZqd_-j2hYQH4LWFzIiLwKRb2AHVof3DyAHhOAaUG4MKMHg7XB5qZsqOJxWpVnJEOxRwo6erpaRE5voatcsehpIH7MMpLreq_Jq3-DXIVLN84jIgZIPBDNcqU-OOzhyyLjxLUlEXi5V_cdv_VHuD_6J-gm5Onk7Unu74_cPybUUTQXhNsUGWZvPFu4RuWy_zk_a2ePO_L8D3cNZYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PathME%3A+pathway+based+multi-modal+sparse+autoencoders+for+clustering+of+patient-level+multi-omics+data&rft.jtitle=BMC+bioinformatics&rft.au=Lemsara%2C+Amina&rft.au=Ouadfel%2C+Salima&rft.au=Fr%C3%B6hlich%2C+Holger&rft.date=2020-04-16&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=146&rft_id=info:doi/10.1186%2Fs12859-020-3465-2&rft_id=info%3Apmid%2F32299344&rft.externalDocID=32299344 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |