Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array
Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analyti...
Saved in:
| Published in: | BMC genomics Vol. 20; no. 1; pp. 366 - 15 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
14.05.2019
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1471-2164, 1471-2164 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies.
Results
We quantified DNA methylation in the Understanding Society cohort (
n
= 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of
p
-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10
− 8
. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites.
Conclusion
We propose that a significance threshold of
P
< 9 × 10
− 8
adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. |
|---|---|
| AbstractList | Abstract Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10− 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 × 10− 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies.BACKGROUNDThere has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies.We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites.RESULTSWe quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites.We propose that a significance threshold of P < 9 × 10- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.CONCLUSIONWe propose that a significance threshold of P < 9 × 10- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10 . Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. We propose that a significance threshold of P < 9 × 10 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10− 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 × 10− 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 x 10.sup.- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. We propose that a significance threshold of P < 9 x 10.sup.- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 x 10.sup.- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 x 10.sup.- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. Keywords: DNA methylation, Epigenome-wide association study (EWAS), Multiple testing, Illumina EPIC array, Power Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort ( n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p -values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10 − 8 . Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 × 10 − 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. |
| ArticleNumber | 366 |
| Audience | Academic |
| Author | Kumari, Meena Bao, Yanchun Mill, Jonathan Hannon, Eilis Gorrie-Stone, Tyler J. Mansell, Georgina Schalkwyk, Leonard S. |
| Author_xml | – sequence: 1 givenname: Georgina surname: Mansell fullname: Mansell, Georgina organization: University of Exeter Medical School, University of Exeter, RD&E Hospital – sequence: 2 givenname: Tyler J. surname: Gorrie-Stone fullname: Gorrie-Stone, Tyler J. organization: School of Biological Sciences, University of Essex – sequence: 3 givenname: Yanchun surname: Bao fullname: Bao, Yanchun organization: Institute for Social and Economic Research, University of Essex – sequence: 4 givenname: Meena surname: Kumari fullname: Kumari, Meena organization: Institute for Social and Economic Research, University of Essex – sequence: 5 givenname: Leonard S. surname: Schalkwyk fullname: Schalkwyk, Leonard S. organization: School of Biological Sciences, University of Essex – sequence: 6 givenname: Jonathan surname: Mill fullname: Mill, Jonathan organization: University of Exeter Medical School, University of Exeter, RD&E Hospital – sequence: 7 givenname: Eilis orcidid: 0000-0001-6840-072X surname: Hannon fullname: Hannon, Eilis email: e.j.hannon@exeter.ac.uk organization: University of Exeter Medical School, University of Exeter, RD&E Hospital |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31088362$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNURB_wA9igSGxgkeJHYntYII2GUkaqAPEQS-vGsTMeJXaxHcT8ezyd0nYqQLEU6-Y7x87ROS4OnHe6KJ5idIqxYK8iJoLVFcKzquEMV_xBcYRrjiuCWX1wZ39YHMe4RghzQZpHxSHFSAjKyFHx_XyyHTilS-ND-fbDvBx1Wm0GSNa7Mqapszq-zps8iMkqGErrou1XKZYm-LFMK10uh2EarYPy7NNyUUIIsHlcPDQwRP3k-n1SfHt39nXxvrr4eL5czC8qxRFNFRO048Bb09adoLTVou4Mw7wVXNXAQHVNXrRFnRIwaw1BwEmj64ZiQw1j9KRY7nw7D2t5GewIYSM9WHk18KGXEPK9By0BkDaKE43VrOYAsxlhlGDQrG4JqUn2erPzupzaUXdKuxRg2DPd_-LsSvb-p2QNFoLQbPDi2iD4H5OOSY42Kj0M4LSfoiSEEpSTx3VGn99D134KLkeVKcIxmlHBbqke8g9YZ3w-V21N5bwRrEGiwTxTp3-h8tPp0apcGWPzfE_wck-QmaR_pR6mGOXyy-d99tndUG7S-FOhDOAdoIKPMWhzg2AktzWVu5rKXFO5rancmvJ7GmXTVeXyze3wXyXZKWM-xfU63Ob2b9Fvefz5Hw |
| CitedBy_id | crossref_primary_10_1089_neu_2020_7283 crossref_primary_10_1038_s41467_023_44683_0 crossref_primary_10_1016_j_tjnut_2023_01_028 crossref_primary_10_1080_15592294_2020_1819666 crossref_primary_10_1038_s41467_020_18255_5 crossref_primary_10_1164_rccm_202101_0004OC crossref_primary_10_1164_rccm_202110_2308OC crossref_primary_10_1177_25168657211006159 crossref_primary_10_3390_ijms25116168 crossref_primary_10_1080_17501911_2025_2500907 crossref_primary_10_1093_humupd_dmac010 crossref_primary_10_1111_all_16429 crossref_primary_10_1038_s41380_023_02219_4 crossref_primary_10_1093_ecco_jcc_jjad133 crossref_primary_10_1371_journal_pgen_1010567 crossref_primary_10_1371_journal_pone_0247709 crossref_primary_10_3389_fendo_2021_671724 crossref_primary_10_1016_j_csbj_2024_08_018 crossref_primary_10_2217_epi_2019_0343 crossref_primary_10_1038_s41398_021_01697_w crossref_primary_10_1038_s41531_023_00568_z crossref_primary_10_1111_bpa_12880 crossref_primary_10_3390_biomedicines11071987 crossref_primary_10_1016_j_bbih_2021_100247 crossref_primary_10_1080_20008066_2023_2228155 crossref_primary_10_3390_biomedicines10112798 crossref_primary_10_1093_ajcn_nqac221 crossref_primary_10_1038_s41531_023_00594_x crossref_primary_10_1371_journal_pgen_1009443 crossref_primary_10_1186_s13073_024_01417_1 crossref_primary_10_1002_acn3_52292 crossref_primary_10_1017_S2040174422000526 crossref_primary_10_1016_j_comppsych_2025_152629 crossref_primary_10_1016_j_bbi_2025_04_031 crossref_primary_10_2478_rir_2022_0018 crossref_primary_10_1186_s12915_024_01827_y crossref_primary_10_1186_s13148_024_01741_8 crossref_primary_10_1186_s12864_024_10450_8 crossref_primary_10_3390_ijerph17103569 crossref_primary_10_1016_j_biopsych_2025_09_005 crossref_primary_10_1186_s43682_022_00014_w crossref_primary_10_1016_j_ajhg_2024_01_012 crossref_primary_10_1016_j_bpsgos_2025_100545 crossref_primary_10_3389_fnut_2022_829915 crossref_primary_10_1080_15592294_2020_1853317 crossref_primary_10_1371_journal_pone_0239196 crossref_primary_10_1016_S2665_9913_23_00010_3 crossref_primary_10_3390_ijerph20043635 crossref_primary_10_1038_s41380_020_00968_0 crossref_primary_10_2217_epi_2023_0169 crossref_primary_10_2217_epi_2020_0344 crossref_primary_10_1007_s00439_023_02608_3 crossref_primary_10_1097_YPG_0000000000000398 crossref_primary_10_1080_15592294_2025_2539234 crossref_primary_10_1093_jnen_nlad036 crossref_primary_10_1007_s10549_021_06185_9 crossref_primary_10_1016_j_jaci_2023_01_026 crossref_primary_10_1016_j_tig_2025_04_010 crossref_primary_10_1186_s13148_025_01945_6 crossref_primary_10_1017_S2040174423000211 crossref_primary_10_1186_s13059_021_02347_6 crossref_primary_10_2217_epi_2021_0388 crossref_primary_10_1093_hmg_ddac112 crossref_primary_10_1186_s12859_024_05711_y crossref_primary_10_1186_s13148_023_01513_w crossref_primary_10_3389_fgene_2023_1113086 crossref_primary_10_1111_all_16174 crossref_primary_10_1186_s12916_020_01736_1 crossref_primary_10_3390_cells11111744 crossref_primary_10_1080_15592294_2023_2214394 crossref_primary_10_3389_fgene_2022_793278 crossref_primary_10_7554_eLife_58430 crossref_primary_10_1371_journal_pgen_1009035 crossref_primary_10_1093_eep_dvae008 crossref_primary_10_1186_s12864_024_10226_0 crossref_primary_10_1080_15592294_2021_1992910 crossref_primary_10_1038_s41431_022_01081_2 crossref_primary_10_1165_rcmb_2020_0546OC crossref_primary_10_1080_15592294_2021_1975917 crossref_primary_10_3390_genes12091408 crossref_primary_10_1038_s41380_025_03042_9 crossref_primary_10_1186_s40345_019_0176_6 crossref_primary_10_1016_j_fertnstert_2022_11_010 crossref_primary_10_1002_wics_1553 crossref_primary_10_1007_s00018_024_05206_2 crossref_primary_10_1136_bmjment_2023_300936 crossref_primary_10_1186_s13148_021_01083_9 crossref_primary_10_1002_1878_0261_13573 crossref_primary_10_1186_s13148_023_01522_9 crossref_primary_10_1136_bmjopen_2024_091801 crossref_primary_10_1186_s13148_023_01447_3 crossref_primary_10_1016_j_ehb_2023_101233 crossref_primary_10_1186_s13148_019_0805_z crossref_primary_10_1210_clinem_dgad659 crossref_primary_10_1289_EHP8928 crossref_primary_10_1080_17501911_2025_2542116 crossref_primary_10_1016_j_jpsychires_2023_02_025 crossref_primary_10_1093_humupd_dmaa025 crossref_primary_10_1177_10998004221099253 crossref_primary_10_1186_s13148_023_01571_0 crossref_primary_10_1289_EHP13838 crossref_primary_10_1038_s41467_023_41434_z crossref_primary_10_1177_25168657231172159 crossref_primary_10_3389_fgene_2019_00801 crossref_primary_10_1371_journal_pone_0279991 crossref_primary_10_2217_epi_2023_0034 crossref_primary_10_1111_all_16627 crossref_primary_10_1186_s43682_021_00001_7 crossref_primary_10_1158_0008_5472_CAN_23_2957 crossref_primary_10_1093_bioadv_vbaf026 crossref_primary_10_1183_13993003_00217_2020 crossref_primary_10_3390_biomedicines11030676 crossref_primary_10_1186_s13059_023_02855_7 crossref_primary_10_2217_epi_2021_0382 crossref_primary_10_1186_s13148_021_01200_8 crossref_primary_10_1038_s41398_020_0860_4 crossref_primary_10_1111_1755_0998_14021 crossref_primary_10_1038_s41390_024_03354_6 crossref_primary_10_1038_s41380_021_01398_2 crossref_primary_10_1186_s13148_021_01153_y crossref_primary_10_1186_s12882_019_1517_5 crossref_primary_10_1186_s12939_023_01967_7 crossref_primary_10_1186_s13058_023_01730_4 crossref_primary_10_1038_s41531_022_00355_2 crossref_primary_10_3389_fgene_2020_00016 crossref_primary_10_3390_genes12121912 crossref_primary_10_1038_s41398_020_0710_4 crossref_primary_10_1080_15592294_2024_2333654 crossref_primary_10_1186_s13148_020_00876_8 crossref_primary_10_1017_S2040174421000453 crossref_primary_10_1038_s41390_022_02150_4 crossref_primary_10_1016_j_neubiorev_2022_104997 crossref_primary_10_1038_s41467_022_34963_6 crossref_primary_10_1093_bioadv_vbaf150 crossref_primary_10_1186_s13148_021_01081_x crossref_primary_10_1038_s42003_022_03965_x crossref_primary_10_1016_j_jgg_2021_05_015 crossref_primary_10_1186_s13148_023_01503_y crossref_primary_10_1186_s13293_024_00629_9 crossref_primary_10_1016_j_yjmcc_2021_01_011 crossref_primary_10_1053_j_gastro_2020_08_017 crossref_primary_10_1177_2516865720938669 crossref_primary_10_1186_s12864_020_07169_7 crossref_primary_10_1126_scitranslmed_abj0264 crossref_primary_10_3389_frph_2025_1523386 crossref_primary_10_1093_hmg_ddab339 crossref_primary_10_1186_s13148_023_01544_3 crossref_primary_10_1186_s13229_020_00402_w crossref_primary_10_1186_s13148_023_01570_1 crossref_primary_10_1016_j_psychres_2024_115984 crossref_primary_10_1186_s13148_021_01161_y crossref_primary_10_1183_16000617_0076_2021 crossref_primary_10_2337_db20_0487 crossref_primary_10_1186_s13148_023_01604_8 crossref_primary_10_1038_s41380_025_03203_w crossref_primary_10_1093_bib_bbaf427 crossref_primary_10_1007_s40572_022_00381_5 crossref_primary_10_1038_s41398_024_02896_x crossref_primary_10_1093_bioadv_vbad020 crossref_primary_10_3390_ijms241813910 crossref_primary_10_1097_HC9_0000000000000496 crossref_primary_10_1080_15592294_2021_1903376 crossref_primary_10_3390_cells12020263 crossref_primary_10_1002_jts_22655 crossref_primary_10_2217_epi_2021_0225 crossref_primary_10_1080_15592294_2022_2030883 crossref_primary_10_1080_15592294_2024_2413815 crossref_primary_10_2217_epi_2020_0136 crossref_primary_10_1080_15592294_2020_1712876 crossref_primary_10_1136_bmjopen_2021_052922 crossref_primary_10_3390_ijerph17186775 crossref_primary_10_1186_s13148_024_01648_4 crossref_primary_10_1186_s12859_022_04899_1 crossref_primary_10_1080_15592294_2023_2196759 crossref_primary_10_3390_ijms23105856 crossref_primary_10_1186_s13104_025_07324_x crossref_primary_10_1080_15592294_2022_2152637 crossref_primary_10_1097_MOT_0000000000000836 crossref_primary_10_1111_ahg_12440 crossref_primary_10_1186_s13073_021_00875_1 crossref_primary_10_1210_clinem_dgab488 crossref_primary_10_1186_s40478_023_01610_0 crossref_primary_10_1016_j_schres_2024_06_035 crossref_primary_10_1186_s12864_023_09661_2 crossref_primary_10_1007_s00018_024_05208_0 crossref_primary_10_1007_s40142_019_00176_5 crossref_primary_10_3389_fonc_2021_620873 |
| Cites_doi | 10.1002/gepi.20331 10.1186/s13148-014-0040-6 10.1038/nature20784 10.1186/1471-2164-14-293 10.1186/1471-2105-13-86 10.1186/s13059-014-0483-2 10.1186/s13059-016-1041-x 10.1093/bioinformatics/bty713 10.1038/nrg3405 10.1016/j.ajhg.2018.09.007 10.1289/ehp.1509966 10.1002/gepi.20297 10.1093/carcin/bgs321 10.1038/nn.3786 10.1038/nrg3000 10.1371/journal.pgen.1003678 10.1161/CIRCGENETICS.116.001506 10.4161/epi.25430 10.1038/nbt.2487 10.1371/journal.pgen.1002300 10.4161/epi.26265 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nn.3782 10.1371/journal.pone.0050266 10.1016/j.gdata.2016.05.012 10.1016/S0140-6736(14)60269-5 10.1186/1868-7083-6-4 10.1038/nbt1209-1135 10.4161/epi.6.1.13392 10.1186/1471-2105-11-587 10.1038/mp.2013.114 10.1186/gb-2013-14-10-r115 10.1371/journal.pmed.1000356 10.1101/gr.180273.114 10.1198/016214505000000637 10.1038/nrg2732 10.1111/acel.12159 10.1371/journal.pgen.1006105 10.1186/s13148-015-0163-4 10.1371/journal.pgen.1002629 10.1093/ije/dyv041 10.1186/s13073-018-0527-4 10.1371/journal.pgen.1004402 10.1016/j.ajhg.2016.02.019 10.1080/15592294.2015.1105424 10.1038/ng.298 10.1101/gr.154187.112 10.1186/s13059-015-0600-x 10.1002/gepi.22086 10.1101/054643 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2019 COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s). 2019 – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1186/s12864-019-5761-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Statistics |
| EISSN | 1471-2164 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_aa0efc72e1c947aa9926321ae64b2242 PMC6518823 A586508517 31088362 10_1186_s12864_019_5761_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Economic and Social Research Council grantid: ES/K005146/1; ES/N00812X/1 funderid: http://dx.doi.org/10.13039/501100000269 – fundername: Medical Research Council grantid: K013807 funderid: http://dx.doi.org/10.13039/501100000265 – fundername: Medical Research Council grantid: G1001799 – fundername: Medical Research Council grantid: MR/N01104X/2 – fundername: Medical Research Council grantid: K013807 – fundername: Medical Research Council grantid: MR/N01104X/1 – fundername: Economic and Social Research Council grantid: ES/N00812X/1 – fundername: Economic and Social Research Council grantid: ES/K005146/1 – fundername: ; grantid: ES/K005146/1; ES/N00812X/1 – fundername: ; grantid: K013807 |
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c703t-683d7a7bfb4d833be84df617b87c4a6acd5cd53b0dc8a9bf20a725e4531f3f663 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 214 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468050300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2164 |
| IngestDate | Fri Oct 03 12:49:21 EDT 2025 Tue Nov 04 02:01:13 EST 2025 Fri Sep 05 12:24:45 EDT 2025 Tue Oct 07 05:25:37 EDT 2025 Tue Nov 11 10:16:33 EST 2025 Tue Nov 04 17:43:27 EST 2025 Thu Nov 13 15:44:52 EST 2025 Mon Jul 21 06:02:48 EDT 2025 Tue Nov 18 21:49:21 EST 2025 Sat Nov 29 01:45:58 EST 2025 Sat Sep 06 07:21:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | DNA methylation Multiple testing Illumina EPIC array Epigenome-wide association study (EWAS) Power |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c703t-683d7a7bfb4d833be84df617b87c4a6acd5cd53b0dc8a9bf20a725e4531f3f663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6840-072X |
| OpenAccessLink | https://link.springer.com/10.1186/s12864-019-5761-7 |
| PMID | 31088362 |
| PQID | 2227109386 |
| PQPubID | 44682 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aa0efc72e1c947aa9926321ae64b2242 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6518823 proquest_miscellaneous_2232008814 proquest_journals_2227109386 gale_infotracmisc_A586508517 gale_infotracacademiconefile_A586508517 gale_incontextgauss_ISR_A586508517 pubmed_primary_31088362 crossref_primary_10_1186_s12864_019_5761_7 crossref_citationtrail_10_1186_s12864_019_5761_7 springer_journals_10_1186_s12864_019_5761_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-14 |
| PublicationDateYYYYMMDD | 2019-05-14 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2019 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | PW Laird (5761_CR17) 2010; 11 H Spiers (5761_CR21) 2015; 25 Z Gao (5761_CR40) 2018; 15 CL Relton (5761_CR15) 2010; 7 Ruth Pidsley (5761_CR49) 2013; 14 E Birney (5761_CR19) 2016; 12 P Du (5761_CR18) 2010; 11 E Hannon (5761_CR9) 2016; 17 V Moskvina (5761_CR28) 2008; 32 E Hannon (5761_CR34) 2018; 103 K Lunnon (5761_CR13) 2014; 17 JR Glossop (5761_CR38) 2013; 8 Y Benjamini (5761_CR27) 1995; 57 R Development Core Team (5761_CR47) 2008 TM Murphy (5761_CR1) 2014; 383 H Heyn (5761_CR2) 2013; 34 5761_CR33 SB Zaghlool (5761_CR29) 2015; 7 RA Irizarry (5761_CR3) 2009; 41 BR Joubert (5761_CR45) 2016; 98 VK Rakyan (5761_CR16) 2011; 12 AA Fryer (5761_CR39) 2011; 6 PL De Jager (5761_CR12) 2014; 17 EA Peña (5761_CR37) 2006; 101 R Joehanes (5761_CR44) 2016; 9 R Pidsley (5761_CR8) 2014; 15 J Mill (5761_CR14) 2013; 14 JT Bell (5761_CR36) 2012; 8 5761_CR46 ER Berko (5761_CR11) 2014; 10 HR Elliott (5761_CR23) 2014; 6 Y Liu (5761_CR5) 2013; 31 B Lehne (5761_CR31) 2015; 16 A Saffari (5761_CR32) 2018; 42 A Cardenas (5761_CR22) 2015; 10 TJ Gorrie-Stone (5761_CR48) 2019; 35 TM Murphy (5761_CR7) 2015; 7 S Horvath (5761_CR50) 2013; 14 C Ladd-Acosta (5761_CR10) 2014; 19 DM Absher (5761_CR30) 2013; 9 WS Noble (5761_CR26) 2009; 27 5761_CR41 S Wahl (5761_CR43) 2017; 541 J Cohen (5761_CR55) 1988 VK Rakyan (5761_CR6) 2011; 7 5761_CR54 DC Koestler (5761_CR53) 2013; 8 CP Lange (5761_CR4) 2012; 7 F Dudbridge (5761_CR35) 2008; 32 DL McCartney (5761_CR51) 2016; 9 H Heyn (5761_CR25) 2013; 23 EA Houseman (5761_CR52) 2012; 13 T Panni (5761_CR20) 2016; 124 ML Ong (5761_CR24) 2014; 13 E Hannon (5761_CR42) 2018; 10 |
| References_xml | – volume: 32 start-page: 567 issue: 6 year: 2008 ident: 5761_CR28 publication-title: Genet Epidemiol doi: 10.1002/gepi.20331 – volume: 7 start-page: 6 issue: 1 year: 2015 ident: 5761_CR29 publication-title: Clin Epigenetics doi: 10.1186/s13148-014-0040-6 – volume: 541 start-page: 81 issue: 7635 year: 2017 ident: 5761_CR43 publication-title: Nature doi: 10.1038/nature20784 – volume: 14 start-page: 293 issue: 1 year: 2013 ident: 5761_CR49 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-293 – volume: 13 start-page: 86 year: 2012 ident: 5761_CR52 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-86 – volume: 15 start-page: 483 issue: 10 year: 2014 ident: 5761_CR8 publication-title: Genome Biol doi: 10.1186/s13059-014-0483-2 – volume-title: R: A language and environment for statistical computing year: 2008 ident: 5761_CR47 – volume: 17 start-page: 176 issue: 1 year: 2016 ident: 5761_CR9 publication-title: Genome Biol doi: 10.1186/s13059-016-1041-x – volume: 35 start-page: 981 issue: 6 year: 2019 ident: 5761_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty713 – volume: 14 start-page: 585 issue: 8 year: 2013 ident: 5761_CR14 publication-title: Nat Rev Genet doi: 10.1038/nrg3405 – volume: 103 start-page: 654 issue: 5 year: 2018 ident: 5761_CR34 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2018.09.007 – volume: 124 start-page: 983 issue: 7 year: 2016 ident: 5761_CR20 publication-title: Environ Health Perspect doi: 10.1289/ehp.1509966 – volume: 32 start-page: 227 issue: 3 year: 2008 ident: 5761_CR35 publication-title: Genet Epidemiol doi: 10.1002/gepi.20297 – volume: 34 start-page: 102 issue: 1 year: 2013 ident: 5761_CR2 publication-title: Carcinogenesis doi: 10.1093/carcin/bgs321 – volume: 17 start-page: 1156 issue: 9 year: 2014 ident: 5761_CR12 publication-title: Nat Neurosci doi: 10.1038/nn.3786 – volume: 12 start-page: 529 issue: 8 year: 2011 ident: 5761_CR16 publication-title: Nat Rev Genet doi: 10.1038/nrg3000 – volume: 9 start-page: e1003678 issue: 8 year: 2013 ident: 5761_CR30 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003678 – volume: 9 start-page: 436 issue: 5 year: 2016 ident: 5761_CR44 publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.116.001506 – volume: 8 start-page: 816 issue: 8 year: 2013 ident: 5761_CR53 publication-title: Epigenetics doi: 10.4161/epi.25430 – volume: 31 start-page: 142 issue: 2 year: 2013 ident: 5761_CR5 publication-title: Nat Biotechnol doi: 10.1038/nbt.2487 – volume: 7 start-page: e1002300 issue: 9 year: 2011 ident: 5761_CR6 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002300 – volume: 8 start-page: 1188 issue: 11 year: 2013 ident: 5761_CR38 publication-title: Epigenetics doi: 10.4161/epi.26265 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 5761_CR27 publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1995.tb02031.x – volume-title: Statistical power analysis for the behavioral sciences, Second edn year: 1988 ident: 5761_CR55 – volume: 17 start-page: 1164 issue: 9 year: 2014 ident: 5761_CR13 publication-title: Nat Neurosci doi: 10.1038/nn.3782 – volume: 7 start-page: e50266 issue: 11 year: 2012 ident: 5761_CR4 publication-title: PLoS One doi: 10.1371/journal.pone.0050266 – ident: 5761_CR54 – volume: 9 start-page: 22 issue: September year: 2016 ident: 5761_CR51 publication-title: Genomics Data doi: 10.1016/j.gdata.2016.05.012 – volume: 383 start-page: 1952 issue: 9933 year: 2014 ident: 5761_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(14)60269-5 – volume: 6 start-page: 4 issue: 1 year: 2014 ident: 5761_CR23 publication-title: Clin Epigenetics doi: 10.1186/1868-7083-6-4 – volume: 27 start-page: 1135 issue: 12 year: 2009 ident: 5761_CR26 publication-title: Nat Biotechnol doi: 10.1038/nbt1209-1135 – volume: 6 start-page: 86 issue: 1 year: 2011 ident: 5761_CR39 publication-title: Epigenetics doi: 10.4161/epi.6.1.13392 – volume: 11 start-page: 587 year: 2010 ident: 5761_CR18 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-587 – volume: 19 start-page: 862 issue: 8 year: 2014 ident: 5761_CR10 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.114 – volume: 14 start-page: R115 issue: 10 year: 2013 ident: 5761_CR50 publication-title: Genome Biol doi: 10.1186/gb-2013-14-10-r115 – volume: 7 start-page: e1000356 issue: 10 year: 2010 ident: 5761_CR15 publication-title: PLoS Med doi: 10.1371/journal.pmed.1000356 – volume: 25 start-page: 338 issue: 3 year: 2015 ident: 5761_CR21 publication-title: Genome Res doi: 10.1101/gr.180273.114 – volume: 101 start-page: 341 issue: 473 year: 2006 ident: 5761_CR37 publication-title: J Am Stat Assoc doi: 10.1198/016214505000000637 – volume: 11 start-page: 191 issue: 3 year: 2010 ident: 5761_CR17 publication-title: Nat Rev Genet doi: 10.1038/nrg2732 – volume: 13 start-page: 142 issue: 1 year: 2014 ident: 5761_CR24 publication-title: Aging Cell doi: 10.1111/acel.12159 – volume: 12 start-page: e1006105 issue: 6 year: 2016 ident: 5761_CR19 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006105 – volume: 7 start-page: 130 year: 2015 ident: 5761_CR7 publication-title: Clin Epigenetics doi: 10.1186/s13148-015-0163-4 – volume: 8 start-page: e1002629 issue: 4 year: 2012 ident: 5761_CR36 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002629 – volume: 15 start-page: 103 issue: 1 year: 2018 ident: 5761_CR40 publication-title: Exp Ther Med – ident: 5761_CR46 doi: 10.1093/ije/dyv041 – volume: 10 start-page: 19 issue: 1 year: 2018 ident: 5761_CR42 publication-title: Genome Med doi: 10.1186/s13073-018-0527-4 – volume: 10 start-page: e1004402 issue: 5 year: 2014 ident: 5761_CR11 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004402 – volume: 98 start-page: 680 issue: 4 year: 2016 ident: 5761_CR45 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2016.02.019 – volume: 10 start-page: 1054 issue: 11 year: 2015 ident: 5761_CR22 publication-title: Epigenetics doi: 10.1080/15592294.2015.1105424 – volume: 41 start-page: 178 issue: 2 year: 2009 ident: 5761_CR3 publication-title: Nat Genet doi: 10.1038/ng.298 – volume: 23 start-page: 1363 issue: 9 year: 2013 ident: 5761_CR25 publication-title: Genome Res doi: 10.1101/gr.154187.112 – volume: 16 start-page: 37 year: 2015 ident: 5761_CR31 publication-title: Genome Biol doi: 10.1186/s13059-015-0600-x – volume: 42 start-page: 20 issue: 1 year: 2018 ident: 5761_CR32 publication-title: Genet Epidemiol doi: 10.1002/gepi.22086 – ident: 5761_CR41 doi: 10.1101/054643 – ident: 5761_CR33 doi: 10.1093/bioinformatics/bty713 |
| SSID | ssj0017825 |
| Score | 2.644119 |
| Snippet | Background
There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of... There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the... Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of... Abstract Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 366 |
| SubjectTerms | Animal Genetics and Genomics Arrays Biomedical and Life Sciences CpG Islands Deoxyribonucleic acid DNA DNA Methylation DNA sequencing Epidemiology Epigenesis, Genetic Epigenetic inheritance Epigenetics Epigenome-wide association study (EWAS) Epigenomics - methods Future predictions Genetic research Genome-Wide Association Study Genomics Human and rodent genomics Humans Illumina EPIC array Life Sciences Linear Models Mathematical analysis Methods Methylation Microarrays Microbial Genetics and Genomics Multiple testing Oligonucleotide Array Sequence Analysis - methods Phenotypes Plant Genetics and Genomics Population (statistical) Population studies Power Proteomics Regression analysis Research Article Statistical analysis Statistical methods Statistics Studies |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kUPBF_LbeKVEEQSnXzyT1bT3vdEGWw897C9M0OReke2xvhf3vnUm76_VEfRH2aTPdbecj80sz-Q3AM2m1VN5j3Eh-dYNpEaN3KibojE1e5Q2GU_xf3qvZTJ-cVMcXWn1xTVhPD9wrbh8xcd6qzKW2KhRiVTHDeIpOFjWlnzD7EurZLKaG_QPKe-Wwh5lqud_RLCy52qKKCV-nsRploUDW__uUfCEnXa6XvLRpGnLR0U24MYBIMelv_hZcce1tuNa3lVzfga9vV_OGrSkIkYo3s4ngPtHrvupNdH3l4CvBZ4kCTTP91LzteJXeCT5uIggUiim3QJ63KA6PpwcCl0tc34XPR4efDt7FQwOF2FIgn8dS541CVfu6aHSe104XjSfIUmtlC5Rom5I-eZ00VmNV-yxBlZWuoLj0uScscg922kXrHoCofFonVmeVdrSATG2taClkCd0pT5CgtBEkG4UaO7CLc5OL7yasMrQ0vQ0M2cCwDYyK4MX2krOeWuNvwq_ZSltBZsUOX5CvmMFXzL98JYKnbGPDvBctF9ac4qrrzPTjBzMpNWPVMqV_ej4I-QU9gcXhnALpgamyRpJ7I0kKTDse3riSGSaGzvDRY2bw0jKCJ9thvpKL3Vq3WLFMzlUpOi0iuN973va5CY1rTaAjAjXyyZFixiPt_FugDZfMvZflEbzceO-v2_qj3h_-D73vwvWMY49Jb4s92DlfrtwjuGp_kJcvH4fI_QnFmERn priority: 102 providerName: Directory of Open Access Journals – databaseName: Biological Science Database (ProQuest) dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAakXHuUVKMggJCRQ1DxthwtaSgsrodWKZ2-W49hlJZSUpIu0_56ZxLslRfSCtKd4nI3tmfFne_wNwDNuJBfO6bDitHWj4yzUzooQobOu0iKtdH-L_-sHMZvJo6Ni7jfcOh9WufaJvaOuGkN75Ht0Z5OojyR_ffIzpKxRdLrqU2hchivEkpD2oXvzzSkCzn65P8mMJd_r0BdzirkoQkTZcShGc1FP2f-3Y_5jZjofNXnu6LSfkQ5v_G9bbsJ1j0XZZFCeW3DJ1jtwbchOudqBbQKiA4_zbfj2brmoSEMYolz2djZhlHt6NUTSsW6IRnzFunUVfO-i7mjl3zG6wsIQaLIppVVe1JodzKf7TLetXt2BL4cHn_ffhz4pQ2jQOZyGXKaV0KJ0ZVbJNC2tzCqHMKiUwmSaa1Pl-EvLqDJSF6VLIi2S3GZo6y51iG_uwlbd1PY-sMLFZWRkUkiLi9LYlAKXVwYRo3AIM3ITQLQeHmU8Yzklzvih-pWL5GoYUYUjqmhElQjgxabKyUDXcZHwGxrzjSAxbfcPmvZYecNVWkfWGZHY2BSZ0LooiOE-1pZnJcKfJICnpDGKuDRqCtY51suuU9NPH9Ukl4R_8xj_6bkXcg22wGh_9wH7gei3RpK7I0k0djMuXmuU8s6mU2fqFMCTTTHVpAC62jZLkkkp0kXGWQD3Bj3etBsRvpQIZAIQIw0fdcy4pF5876nIOfH5JWkAL9e2cPZZ_-z3Bxc34iFsJ2SjRJGb7cLWabu0j-Cq-YX62z7uLfw3v51Wxg priority: 102 providerName: ProQuest |
| Title | Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array |
| URI | https://link.springer.com/article/10.1186/s12864-019-5761-7 https://www.ncbi.nlm.nih.gov/pubmed/31088362 https://www.proquest.com/docview/2227109386 https://www.proquest.com/docview/2232008814 https://pubmed.ncbi.nlm.nih.gov/PMC6518823 https://doaj.org/article/aa0efc72e1c947aa9926321ae64b2242 |
| Volume | 20 |
| WOSCitedRecordID | wos000468050300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-xDSS-8H4ERmUQEhIoIk_b4Vs3OqgEVdTB6D5ZjhOPSihFzYrU_547Jy1kPCSQon6Iz0l9vrN_ju9-BnjKjeTCWu2XnD7d6DDxta2Ej9BZl3EWl9pl8Z-8E5OJnM2yvMvjbjbR7pstSTdSO7eW_GWDIymniInMR4wc-mIH9nC2k-SN0-OT7dYBTnlpt33522q9Ccjx9P86Gv80HV0MlbywX-qmoaPr_9WAG3CtQ51s2JrJTbhU1bfgSnsO5fo2fHqzmpfU_QwhLHs9GTI6WHrdhsmxpg01fMUo-cjxOuOj5nVDy_qGUX4KQxTJxnRm8rzWbJSPD5leLvX6Dnw8Gn04fOt3Jy74Bj3_3OcyLoUWhS2SUsZxUcmktIhxCilMork2ZYpXXASlkTorbBRoEaVVgo5sY4vg5S7s1ou6ug8ss2ERGBllssIVZ2gKgWsng3BQWMQQqfEg2HSDMh0dOZ2K8UW5ZYnkqtWXQn0p0pcSHjzfVvnacnH8TfiA-nYrSDTa7sZieaY6r1RaB5U1IqpCkyVC6ywj-vpQVzwpENtEHjwhy1BElFFTJM6ZXjWNGh9P1TCVBG7TEN_0rBOyC2yB0V1iA-qBuLV6kvs9SfRk0y_eGKDqRpJGUa4yUX5J7sHjbTHVpOi4ulqsSCamMBYZJh7ca-11226E71IiSvFA9Cy5p5h-ST3_7HjGOZH1RbEHLzb2_ONv_VHvD_5J-iFcjcghiA432Yfd8-WqegSXzTc05-UAdsRMuF85gL2D0SSfDtxHkwGF6OZ4Lx-_z08HbgD4DusXTzA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxEB6VFERfOMq1UMAgEBJo1expLxJCoQeNmkYRFChPxuu1SyS0KdkGlD_Fb2Rmj5Qtom99QMpTPN6snW9mPtvjGYAnsRYxt1a5WUxbN8oLXWUNd5E6qyxIgkyVt_g_DvhwKA4OktES_GruwlBYZWMTS0OdTTTtka_TnU1KfSTi10ffXaoaRaerTQmNCha7Zv4Tl2zFq_4m_r9PfX97a39jx62rCrga0X3sxiLIuOKpTcNMBEFqRJhZ9OOp4DpUsdJZhJ8g7WZaqCS1fldxPzIhgtUGFh00PvcCLIcIdtGB5VF_b_R5cW6B_jaqz049Ea8XaP1jivJIXOT1nstb3q8sEvC3K_jDF56O0zx1WFv6wO2r_9vsXYMrNdtmvUo9rsOSyVfhUlV_c74KK0S1q0zVN-DT29k4Ix1gyOPZ5rDHqLr2vIoVZEUVb_mSFU0XfO44L2hvo2B0SYchlWZ9Khw9zhXbGvU3mJpO1fwmfDiXId6CTj7JzR1gifXSrhZ-Igwuuz2dclxAauTE3CKRirQD3QYOUtc52ak0yDdZrs1ELCsESUSQJARJ7sDzRZejKiHJWcJvCGMLQcolXn4xmR7K2jRJpbrGau4bTychVypJKIe_p0wcpkjwfAceE0IlZQvJKRzpUM2KQvbfv5O9SBDDjzz8pWe1kJ3gCLSqb3fgPFCCsZbkWksSzZluNzcIlrU5LeQJfB14tGimnhQimJvJjGQCiuURXujA7UpvFuPGNYwQSNUc4C2Nak1MuyUffy2TrceUsdAPHHjR6N7Ja_1z3u-ePYiHcHlnf28gB_3h7j1Y8ck-UELgcA06x9OZuQ8X9Q_E8vRBbV8YfDlvpfwNIam3MA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZbxMxEB5BOcQL97FQwCAkJNCqe9pe3kLbQEQVRRTavller10ioU21myDl3zOzR2DLISGkPMXjJJ6dsb-JZ74BeMGN5MI57Rec_rrRYeJrZ4WP0FkXcRYXuqniPzoQ06k8OclmXZ_Tus92768k25oGYmkqlztnhWtdXPKdGndVTtkTmY94OfTFRbiUUM8gCtcPjzbXCHj8pd1V5m-nDQ6jhrP_1535p6PpfNrkubvT5kga3_jvxdyE6x0aZaPWfG7BBVvehittf8r1HTh-t5oXZBYMoS3bm44YNZxet-lzrG5TEN8wKkpq-J7xo-ZlTeF-zahuhSG6ZBPqpTwvNdufTXaZriq9vgufx_ufdt_7XScG3-COsPS5jAuhRe7ypJBxnFuZFA6xTy6FSTTXpkjxFedBYaTOchcFWkSpTdDBXewQ1NyDrXJR2gfAMhfmgZFRJi1GoqHJBcZUBmGicIgtUuNB0D8SZTqacuqW8VU14YrkqtWXQn0p0pcSHrzaTDlrOTr-JvyWnvNGkOi1mzcW1anqvFVpHVhnRGRDkyVC6ywjWvtQW57kiHkiD56TlSgi0CgpQ-dUr-paTQ4_qlEqCfSmIX7Ty07ILXAFRncFD6gH4twaSG4PJNHDzXC4N0bV7TC1ohpmogKT3INnm2GaSVlzpV2sSCam9BYZJh7cb213s26E9VIievFADKx6oJjhSDn_0vCPcyLxi2IPXve2_eNn_VHvD_9J-ilcne2N1cFk-uERXIvIN4gxN9mGrWW1so_hsvmGll09afz9O_yKU_M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+DNA+methylation+studies%3A+statistical+insights+from+the+Illumina+EPIC+array&rft.jtitle=BMC+genomics&rft.au=Mansell%2C+Georgina&rft.au=Gorrie-Stone%2C+Tyler+J&rft.au=Bao%2C+Yanchun&rft.au=Kumari%2C+Meena&rft.date=2019-05-14&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-019-5761-7&rft.externalDocID=A586508517 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |