Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array

Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analyti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC genomics Ročník 20; číslo 1; s. 366 - 15
Hlavní autoři: Mansell, Georgina, Gorrie-Stone, Tyler J., Bao, Yanchun, Kumari, Meena, Schalkwyk, Leonard S., Mill, Jonathan, Hannon, Eilis
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 14.05.2019
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2164, 1471-2164
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort ( n  = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p -values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10 − 8 . Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P  < 9 × 10 − 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
AbstractList Abstract Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10− 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 × 10− 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies.BACKGROUNDThere has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies.We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites.RESULTSWe quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites.We propose that a significance threshold of P < 9 × 10- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.CONCLUSIONWe propose that a significance threshold of P < 9 × 10- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10 . Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. We propose that a significance threshold of P < 9 × 10 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10− 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 × 10− 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 x 10.sup.- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. We propose that a significance threshold of P < 9 x 10.sup.- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort (n = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p-values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 x 10.sup.- 8. Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P < 9 x 10.sup.- 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies. Keywords: DNA methylation, Epigenome-wide association study (EWAS), Multiple testing, Illumina EPIC array, Power
Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the challenges of epigenetic epidemiology regarding study design and interpretation have been discussed in detail, however there are analytical concerns that are outstanding and require further exploration. In this study we seek to address three analytical issues. First, we quantify the multiple testing burden and propose a standard statistical significance threshold for identifying DNA methylation sites that are associated with an outcome. Second, we establish whether linear regression, the chosen statistical tool for the majority of studies, is appropriate and whether it is biased by the underlying distribution of DNA methylation data. Finally, we assess the sample size required for adequately powered DNA methylation association studies. Results We quantified DNA methylation in the Understanding Society cohort ( n  = 1175), a large population based study, using the Illumina EPIC array to assess the statistical properties of DNA methylation association analyses. By simulating null DNA methylation studies, we generated the distribution of p -values expected by chance and calculated the 5% family-wise error for EPIC array studies to be 9 × 10 − 8 . Next, we tested whether the assumptions of linear regression are violated by DNA methylation data and found that the majority of sites do not satisfy the assumption of normal residuals. Nevertheless, we found no evidence that this bias influences analyses by increasing the likelihood of affected sites to be false positives. Finally, we performed power calculations for EPIC based DNA methylation studies, demonstrating that existing studies with data on ~ 1000 samples are adequately powered to detect small differences at the majority of sites. Conclusion We propose that a significance threshold of P  < 9 × 10 − 8 adequately controls the false positive rate for EPIC array DNA methylation studies. Moreover, our results indicate that linear regression is a valid statistical methodology for DNA methylation studies, despite the fact that the data do not always satisfy the assumptions of this test. These findings have implications for epidemiological-based studies of DNA methylation and provide a framework for the interpretation of findings from current and future studies.
ArticleNumber 366
Audience Academic
Author Kumari, Meena
Bao, Yanchun
Mill, Jonathan
Hannon, Eilis
Gorrie-Stone, Tyler J.
Mansell, Georgina
Schalkwyk, Leonard S.
Author_xml – sequence: 1
  givenname: Georgina
  surname: Mansell
  fullname: Mansell, Georgina
  organization: University of Exeter Medical School, University of Exeter, RD&E Hospital
– sequence: 2
  givenname: Tyler J.
  surname: Gorrie-Stone
  fullname: Gorrie-Stone, Tyler J.
  organization: School of Biological Sciences, University of Essex
– sequence: 3
  givenname: Yanchun
  surname: Bao
  fullname: Bao, Yanchun
  organization: Institute for Social and Economic Research, University of Essex
– sequence: 4
  givenname: Meena
  surname: Kumari
  fullname: Kumari, Meena
  organization: Institute for Social and Economic Research, University of Essex
– sequence: 5
  givenname: Leonard S.
  surname: Schalkwyk
  fullname: Schalkwyk, Leonard S.
  organization: School of Biological Sciences, University of Essex
– sequence: 6
  givenname: Jonathan
  surname: Mill
  fullname: Mill, Jonathan
  organization: University of Exeter Medical School, University of Exeter, RD&E Hospital
– sequence: 7
  givenname: Eilis
  orcidid: 0000-0001-6840-072X
  surname: Hannon
  fullname: Hannon, Eilis
  email: e.j.hannon@exeter.ac.uk
  organization: University of Exeter Medical School, University of Exeter, RD&E Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31088362$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkeJHYntYII2GUkaqAPEQS-vGsTMeJXaxHcT8ezyd0nYqQLEU6-Y7x87ROS4OnHe6KJ5idIqxYK8iJoLVFcKzquEMV_xBcYRrjiuCWX1wZ39YHMe4RghzQZpHxSHFSAjKyFHx_XyyHTilS-ND-fbDvBx1Wm0GSNa7Mqapszq-zps8iMkqGErrou1XKZYm-LFMK10uh2EarYPy7NNyUUIIsHlcPDQwRP3k-n1SfHt39nXxvrr4eL5czC8qxRFNFRO048Bb09adoLTVou4Mw7wVXNXAQHVNXrRFnRIwaw1BwEmj64ZiQw1j9KRY7nw7D2t5GewIYSM9WHk18KGXEPK9By0BkDaKE43VrOYAsxlhlGDQrG4JqUn2erPzupzaUXdKuxRg2DPd_-LsSvb-p2QNFoLQbPDi2iD4H5OOSY42Kj0M4LSfoiSEEpSTx3VGn99D134KLkeVKcIxmlHBbqke8g9YZ3w-V21N5bwRrEGiwTxTp3-h8tPp0apcGWPzfE_wck-QmaR_pR6mGOXyy-d99tndUG7S-FOhDOAdoIKPMWhzg2AktzWVu5rKXFO5rancmvJ7GmXTVeXyze3wXyXZKWM-xfU63Ob2b9Fvefz5Hw
CitedBy_id crossref_primary_10_1089_neu_2020_7283
crossref_primary_10_1038_s41467_023_44683_0
crossref_primary_10_1016_j_tjnut_2023_01_028
crossref_primary_10_1080_15592294_2020_1819666
crossref_primary_10_1038_s41467_020_18255_5
crossref_primary_10_1164_rccm_202101_0004OC
crossref_primary_10_1164_rccm_202110_2308OC
crossref_primary_10_1177_25168657211006159
crossref_primary_10_3390_ijms25116168
crossref_primary_10_1080_17501911_2025_2500907
crossref_primary_10_1093_humupd_dmac010
crossref_primary_10_1111_all_16429
crossref_primary_10_1038_s41380_023_02219_4
crossref_primary_10_1093_ecco_jcc_jjad133
crossref_primary_10_1371_journal_pgen_1010567
crossref_primary_10_1371_journal_pone_0247709
crossref_primary_10_3389_fendo_2021_671724
crossref_primary_10_1016_j_csbj_2024_08_018
crossref_primary_10_2217_epi_2019_0343
crossref_primary_10_1038_s41398_021_01697_w
crossref_primary_10_1038_s41531_023_00568_z
crossref_primary_10_1111_bpa_12880
crossref_primary_10_3390_biomedicines11071987
crossref_primary_10_1016_j_bbih_2021_100247
crossref_primary_10_1080_20008066_2023_2228155
crossref_primary_10_3390_biomedicines10112798
crossref_primary_10_1093_ajcn_nqac221
crossref_primary_10_1038_s41531_023_00594_x
crossref_primary_10_1371_journal_pgen_1009443
crossref_primary_10_1186_s13073_024_01417_1
crossref_primary_10_1002_acn3_52292
crossref_primary_10_1017_S2040174422000526
crossref_primary_10_1016_j_comppsych_2025_152629
crossref_primary_10_1016_j_bbi_2025_04_031
crossref_primary_10_2478_rir_2022_0018
crossref_primary_10_1186_s12915_024_01827_y
crossref_primary_10_1186_s13148_024_01741_8
crossref_primary_10_1186_s12864_024_10450_8
crossref_primary_10_3390_ijerph17103569
crossref_primary_10_1016_j_biopsych_2025_09_005
crossref_primary_10_1186_s43682_022_00014_w
crossref_primary_10_1016_j_ajhg_2024_01_012
crossref_primary_10_1016_j_bpsgos_2025_100545
crossref_primary_10_3389_fnut_2022_829915
crossref_primary_10_1080_15592294_2020_1853317
crossref_primary_10_1371_journal_pone_0239196
crossref_primary_10_1016_S2665_9913_23_00010_3
crossref_primary_10_3390_ijerph20043635
crossref_primary_10_1038_s41380_020_00968_0
crossref_primary_10_2217_epi_2023_0169
crossref_primary_10_2217_epi_2020_0344
crossref_primary_10_1007_s00439_023_02608_3
crossref_primary_10_1097_YPG_0000000000000398
crossref_primary_10_1080_15592294_2025_2539234
crossref_primary_10_1093_jnen_nlad036
crossref_primary_10_1007_s10549_021_06185_9
crossref_primary_10_1016_j_jaci_2023_01_026
crossref_primary_10_1016_j_tig_2025_04_010
crossref_primary_10_1186_s13148_025_01945_6
crossref_primary_10_1017_S2040174423000211
crossref_primary_10_1186_s13059_021_02347_6
crossref_primary_10_2217_epi_2021_0388
crossref_primary_10_1093_hmg_ddac112
crossref_primary_10_1186_s12859_024_05711_y
crossref_primary_10_1186_s13148_023_01513_w
crossref_primary_10_3389_fgene_2023_1113086
crossref_primary_10_1111_all_16174
crossref_primary_10_1186_s12916_020_01736_1
crossref_primary_10_3390_cells11111744
crossref_primary_10_1080_15592294_2023_2214394
crossref_primary_10_3389_fgene_2022_793278
crossref_primary_10_7554_eLife_58430
crossref_primary_10_1371_journal_pgen_1009035
crossref_primary_10_1093_eep_dvae008
crossref_primary_10_1186_s12864_024_10226_0
crossref_primary_10_1080_15592294_2021_1992910
crossref_primary_10_1038_s41431_022_01081_2
crossref_primary_10_1165_rcmb_2020_0546OC
crossref_primary_10_1080_15592294_2021_1975917
crossref_primary_10_3390_genes12091408
crossref_primary_10_1038_s41380_025_03042_9
crossref_primary_10_1186_s40345_019_0176_6
crossref_primary_10_1016_j_fertnstert_2022_11_010
crossref_primary_10_1002_wics_1553
crossref_primary_10_1007_s00018_024_05206_2
crossref_primary_10_1136_bmjment_2023_300936
crossref_primary_10_1186_s13148_021_01083_9
crossref_primary_10_1002_1878_0261_13573
crossref_primary_10_1186_s13148_023_01522_9
crossref_primary_10_1136_bmjopen_2024_091801
crossref_primary_10_1186_s13148_023_01447_3
crossref_primary_10_1016_j_ehb_2023_101233
crossref_primary_10_1186_s13148_019_0805_z
crossref_primary_10_1210_clinem_dgad659
crossref_primary_10_1289_EHP8928
crossref_primary_10_1080_17501911_2025_2542116
crossref_primary_10_1016_j_jpsychires_2023_02_025
crossref_primary_10_1093_humupd_dmaa025
crossref_primary_10_1177_10998004221099253
crossref_primary_10_1186_s13148_023_01571_0
crossref_primary_10_1289_EHP13838
crossref_primary_10_1038_s41467_023_41434_z
crossref_primary_10_1177_25168657231172159
crossref_primary_10_3389_fgene_2019_00801
crossref_primary_10_1371_journal_pone_0279991
crossref_primary_10_2217_epi_2023_0034
crossref_primary_10_1111_all_16627
crossref_primary_10_1186_s43682_021_00001_7
crossref_primary_10_1158_0008_5472_CAN_23_2957
crossref_primary_10_1093_bioadv_vbaf026
crossref_primary_10_1183_13993003_00217_2020
crossref_primary_10_3390_biomedicines11030676
crossref_primary_10_1186_s13059_023_02855_7
crossref_primary_10_2217_epi_2021_0382
crossref_primary_10_1186_s13148_021_01200_8
crossref_primary_10_1038_s41398_020_0860_4
crossref_primary_10_1111_1755_0998_14021
crossref_primary_10_1038_s41390_024_03354_6
crossref_primary_10_1038_s41380_021_01398_2
crossref_primary_10_1186_s13148_021_01153_y
crossref_primary_10_1186_s12882_019_1517_5
crossref_primary_10_1186_s12939_023_01967_7
crossref_primary_10_1186_s13058_023_01730_4
crossref_primary_10_1038_s41531_022_00355_2
crossref_primary_10_3389_fgene_2020_00016
crossref_primary_10_3390_genes12121912
crossref_primary_10_1038_s41398_020_0710_4
crossref_primary_10_1080_15592294_2024_2333654
crossref_primary_10_1186_s13148_020_00876_8
crossref_primary_10_1017_S2040174421000453
crossref_primary_10_1038_s41390_022_02150_4
crossref_primary_10_1016_j_neubiorev_2022_104997
crossref_primary_10_1038_s41467_022_34963_6
crossref_primary_10_1093_bioadv_vbaf150
crossref_primary_10_1186_s13148_021_01081_x
crossref_primary_10_1038_s42003_022_03965_x
crossref_primary_10_1016_j_jgg_2021_05_015
crossref_primary_10_1186_s13148_023_01503_y
crossref_primary_10_1186_s13293_024_00629_9
crossref_primary_10_1016_j_yjmcc_2021_01_011
crossref_primary_10_1053_j_gastro_2020_08_017
crossref_primary_10_1177_2516865720938669
crossref_primary_10_1186_s12864_020_07169_7
crossref_primary_10_1126_scitranslmed_abj0264
crossref_primary_10_3389_frph_2025_1523386
crossref_primary_10_1093_hmg_ddab339
crossref_primary_10_1186_s13148_023_01544_3
crossref_primary_10_1186_s13229_020_00402_w
crossref_primary_10_1186_s13148_023_01570_1
crossref_primary_10_1016_j_psychres_2024_115984
crossref_primary_10_1186_s13148_021_01161_y
crossref_primary_10_1183_16000617_0076_2021
crossref_primary_10_2337_db20_0487
crossref_primary_10_1186_s13148_023_01604_8
crossref_primary_10_1038_s41380_025_03203_w
crossref_primary_10_1093_bib_bbaf427
crossref_primary_10_1007_s40572_022_00381_5
crossref_primary_10_1038_s41398_024_02896_x
crossref_primary_10_1093_bioadv_vbad020
crossref_primary_10_3390_ijms241813910
crossref_primary_10_1097_HC9_0000000000000496
crossref_primary_10_1080_15592294_2021_1903376
crossref_primary_10_3390_cells12020263
crossref_primary_10_1002_jts_22655
crossref_primary_10_2217_epi_2021_0225
crossref_primary_10_1080_15592294_2022_2030883
crossref_primary_10_1080_15592294_2024_2413815
crossref_primary_10_2217_epi_2020_0136
crossref_primary_10_1080_15592294_2020_1712876
crossref_primary_10_1136_bmjopen_2021_052922
crossref_primary_10_3390_ijerph17186775
crossref_primary_10_1186_s13148_024_01648_4
crossref_primary_10_1186_s12859_022_04899_1
crossref_primary_10_1080_15592294_2023_2196759
crossref_primary_10_3390_ijms23105856
crossref_primary_10_1186_s13104_025_07324_x
crossref_primary_10_1080_15592294_2022_2152637
crossref_primary_10_1097_MOT_0000000000000836
crossref_primary_10_1111_ahg_12440
crossref_primary_10_1186_s13073_021_00875_1
crossref_primary_10_1210_clinem_dgab488
crossref_primary_10_1186_s40478_023_01610_0
crossref_primary_10_1016_j_schres_2024_06_035
crossref_primary_10_1186_s12864_023_09661_2
crossref_primary_10_1007_s00018_024_05208_0
crossref_primary_10_1007_s40142_019_00176_5
crossref_primary_10_3389_fonc_2021_620873
Cites_doi 10.1002/gepi.20331
10.1186/s13148-014-0040-6
10.1038/nature20784
10.1186/1471-2164-14-293
10.1186/1471-2105-13-86
10.1186/s13059-014-0483-2
10.1186/s13059-016-1041-x
10.1093/bioinformatics/bty713
10.1038/nrg3405
10.1016/j.ajhg.2018.09.007
10.1289/ehp.1509966
10.1002/gepi.20297
10.1093/carcin/bgs321
10.1038/nn.3786
10.1038/nrg3000
10.1371/journal.pgen.1003678
10.1161/CIRCGENETICS.116.001506
10.4161/epi.25430
10.1038/nbt.2487
10.1371/journal.pgen.1002300
10.4161/epi.26265
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nn.3782
10.1371/journal.pone.0050266
10.1016/j.gdata.2016.05.012
10.1016/S0140-6736(14)60269-5
10.1186/1868-7083-6-4
10.1038/nbt1209-1135
10.4161/epi.6.1.13392
10.1186/1471-2105-11-587
10.1038/mp.2013.114
10.1186/gb-2013-14-10-r115
10.1371/journal.pmed.1000356
10.1101/gr.180273.114
10.1198/016214505000000637
10.1038/nrg2732
10.1111/acel.12159
10.1371/journal.pgen.1006105
10.1186/s13148-015-0163-4
10.1371/journal.pgen.1002629
10.1093/ije/dyv041
10.1186/s13073-018-0527-4
10.1371/journal.pgen.1004402
10.1016/j.ajhg.2016.02.019
10.1080/15592294.2015.1105424
10.1038/ng.298
10.1101/gr.154187.112
10.1186/s13059-015-0600-x
10.1002/gepi.22086
10.1101/054643
ContentType Journal Article
Copyright The Author(s). 2019
COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-019-5761-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Publicly Available Content Database




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 1471-2164
EndPage 15
ExternalDocumentID oai_doaj_org_article_aa0efc72e1c947aa9926321ae64b2242
PMC6518823
A586508517
31088362
10_1186_s12864_019_5761_7
Genre Journal Article
GrantInformation_xml – fundername: Economic and Social Research Council
  grantid: ES/K005146/1; ES/N00812X/1
  funderid: http://dx.doi.org/10.13039/501100000269
– fundername: Medical Research Council
  grantid: K013807
  funderid: http://dx.doi.org/10.13039/501100000265
– fundername: Medical Research Council
  grantid: G1001799
– fundername: Medical Research Council
  grantid: MR/N01104X/2
– fundername: Medical Research Council
  grantid: K013807
– fundername: Medical Research Council
  grantid: MR/N01104X/1
– fundername: Economic and Social Research Council
  grantid: ES/N00812X/1
– fundername: Economic and Social Research Council
  grantid: ES/K005146/1
– fundername: ;
  grantid: ES/K005146/1; ES/N00812X/1
– fundername: ;
  grantid: K013807
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c703t-683d7a7bfb4d833be84df617b87c4a6acd5cd53b0dc8a9bf20a725e4531f3f663
IEDL.DBID RSV
ISICitedReferencesCount 214
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468050300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Fri Oct 03 12:49:21 EDT 2025
Tue Nov 04 02:01:13 EST 2025
Fri Sep 05 12:24:45 EDT 2025
Tue Oct 07 05:25:37 EDT 2025
Tue Nov 11 10:16:33 EST 2025
Tue Nov 04 17:43:27 EST 2025
Thu Nov 13 15:44:52 EST 2025
Mon Jul 21 06:02:48 EDT 2025
Tue Nov 18 21:49:21 EST 2025
Sat Nov 29 01:45:58 EST 2025
Sat Sep 06 07:21:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DNA methylation
Multiple testing
Illumina EPIC array
Epigenome-wide association study (EWAS)
Power
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-683d7a7bfb4d833be84df617b87c4a6acd5cd53b0dc8a9bf20a725e4531f3f663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6840-072X
OpenAccessLink https://link.springer.com/10.1186/s12864-019-5761-7
PMID 31088362
PQID 2227109386
PQPubID 44682
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_aa0efc72e1c947aa9926321ae64b2242
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6518823
proquest_miscellaneous_2232008814
proquest_journals_2227109386
gale_infotracmisc_A586508517
gale_infotracacademiconefile_A586508517
gale_incontextgauss_ISR_A586508517
pubmed_primary_31088362
crossref_primary_10_1186_s12864_019_5761_7
crossref_citationtrail_10_1186_s12864_019_5761_7
springer_journals_10_1186_s12864_019_5761_7
PublicationCentury 2000
PublicationDate 2019-05-14
PublicationDateYYYYMMDD 2019-05-14
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-14
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2019
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References PW Laird (5761_CR17) 2010; 11
H Spiers (5761_CR21) 2015; 25
Z Gao (5761_CR40) 2018; 15
CL Relton (5761_CR15) 2010; 7
Ruth Pidsley (5761_CR49) 2013; 14
E Birney (5761_CR19) 2016; 12
P Du (5761_CR18) 2010; 11
E Hannon (5761_CR9) 2016; 17
V Moskvina (5761_CR28) 2008; 32
E Hannon (5761_CR34) 2018; 103
K Lunnon (5761_CR13) 2014; 17
JR Glossop (5761_CR38) 2013; 8
Y Benjamini (5761_CR27) 1995; 57
R Development Core Team (5761_CR47) 2008
TM Murphy (5761_CR1) 2014; 383
H Heyn (5761_CR2) 2013; 34
5761_CR33
SB Zaghlool (5761_CR29) 2015; 7
RA Irizarry (5761_CR3) 2009; 41
BR Joubert (5761_CR45) 2016; 98
VK Rakyan (5761_CR16) 2011; 12
AA Fryer (5761_CR39) 2011; 6
PL De Jager (5761_CR12) 2014; 17
EA Peña (5761_CR37) 2006; 101
R Joehanes (5761_CR44) 2016; 9
R Pidsley (5761_CR8) 2014; 15
J Mill (5761_CR14) 2013; 14
JT Bell (5761_CR36) 2012; 8
5761_CR46
ER Berko (5761_CR11) 2014; 10
HR Elliott (5761_CR23) 2014; 6
Y Liu (5761_CR5) 2013; 31
B Lehne (5761_CR31) 2015; 16
A Saffari (5761_CR32) 2018; 42
A Cardenas (5761_CR22) 2015; 10
TJ Gorrie-Stone (5761_CR48) 2019; 35
TM Murphy (5761_CR7) 2015; 7
S Horvath (5761_CR50) 2013; 14
C Ladd-Acosta (5761_CR10) 2014; 19
DM Absher (5761_CR30) 2013; 9
WS Noble (5761_CR26) 2009; 27
5761_CR41
S Wahl (5761_CR43) 2017; 541
J Cohen (5761_CR55) 1988
VK Rakyan (5761_CR6) 2011; 7
5761_CR54
DC Koestler (5761_CR53) 2013; 8
CP Lange (5761_CR4) 2012; 7
F Dudbridge (5761_CR35) 2008; 32
DL McCartney (5761_CR51) 2016; 9
H Heyn (5761_CR25) 2013; 23
EA Houseman (5761_CR52) 2012; 13
T Panni (5761_CR20) 2016; 124
ML Ong (5761_CR24) 2014; 13
E Hannon (5761_CR42) 2018; 10
References_xml – volume: 32
  start-page: 567
  issue: 6
  year: 2008
  ident: 5761_CR28
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20331
– volume: 7
  start-page: 6
  issue: 1
  year: 2015
  ident: 5761_CR29
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-014-0040-6
– volume: 541
  start-page: 81
  issue: 7635
  year: 2017
  ident: 5761_CR43
  publication-title: Nature
  doi: 10.1038/nature20784
– volume: 14
  start-page: 293
  issue: 1
  year: 2013
  ident: 5761_CR49
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-293
– volume: 13
  start-page: 86
  year: 2012
  ident: 5761_CR52
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-86
– volume: 15
  start-page: 483
  issue: 10
  year: 2014
  ident: 5761_CR8
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0483-2
– volume-title: R: A language and environment for statistical computing
  year: 2008
  ident: 5761_CR47
– volume: 17
  start-page: 176
  issue: 1
  year: 2016
  ident: 5761_CR9
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-1041-x
– volume: 35
  start-page: 981
  issue: 6
  year: 2019
  ident: 5761_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty713
– volume: 14
  start-page: 585
  issue: 8
  year: 2013
  ident: 5761_CR14
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3405
– volume: 103
  start-page: 654
  issue: 5
  year: 2018
  ident: 5761_CR34
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.09.007
– volume: 124
  start-page: 983
  issue: 7
  year: 2016
  ident: 5761_CR20
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1509966
– volume: 32
  start-page: 227
  issue: 3
  year: 2008
  ident: 5761_CR35
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20297
– volume: 34
  start-page: 102
  issue: 1
  year: 2013
  ident: 5761_CR2
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs321
– volume: 17
  start-page: 1156
  issue: 9
  year: 2014
  ident: 5761_CR12
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3786
– volume: 12
  start-page: 529
  issue: 8
  year: 2011
  ident: 5761_CR16
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3000
– volume: 9
  start-page: e1003678
  issue: 8
  year: 2013
  ident: 5761_CR30
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003678
– volume: 9
  start-page: 436
  issue: 5
  year: 2016
  ident: 5761_CR44
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.116.001506
– volume: 8
  start-page: 816
  issue: 8
  year: 2013
  ident: 5761_CR53
  publication-title: Epigenetics
  doi: 10.4161/epi.25430
– volume: 31
  start-page: 142
  issue: 2
  year: 2013
  ident: 5761_CR5
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2487
– volume: 7
  start-page: e1002300
  issue: 9
  year: 2011
  ident: 5761_CR6
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002300
– volume: 8
  start-page: 1188
  issue: 11
  year: 2013
  ident: 5761_CR38
  publication-title: Epigenetics
  doi: 10.4161/epi.26265
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 5761_CR27
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume-title: Statistical power analysis for the behavioral sciences, Second edn
  year: 1988
  ident: 5761_CR55
– volume: 17
  start-page: 1164
  issue: 9
  year: 2014
  ident: 5761_CR13
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3782
– volume: 7
  start-page: e50266
  issue: 11
  year: 2012
  ident: 5761_CR4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050266
– ident: 5761_CR54
– volume: 9
  start-page: 22
  issue: September
  year: 2016
  ident: 5761_CR51
  publication-title: Genomics Data
  doi: 10.1016/j.gdata.2016.05.012
– volume: 383
  start-page: 1952
  issue: 9933
  year: 2014
  ident: 5761_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60269-5
– volume: 6
  start-page: 4
  issue: 1
  year: 2014
  ident: 5761_CR23
  publication-title: Clin Epigenetics
  doi: 10.1186/1868-7083-6-4
– volume: 27
  start-page: 1135
  issue: 12
  year: 2009
  ident: 5761_CR26
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1209-1135
– volume: 6
  start-page: 86
  issue: 1
  year: 2011
  ident: 5761_CR39
  publication-title: Epigenetics
  doi: 10.4161/epi.6.1.13392
– volume: 11
  start-page: 587
  year: 2010
  ident: 5761_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-587
– volume: 19
  start-page: 862
  issue: 8
  year: 2014
  ident: 5761_CR10
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.114
– volume: 14
  start-page: R115
  issue: 10
  year: 2013
  ident: 5761_CR50
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-10-r115
– volume: 7
  start-page: e1000356
  issue: 10
  year: 2010
  ident: 5761_CR15
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000356
– volume: 25
  start-page: 338
  issue: 3
  year: 2015
  ident: 5761_CR21
  publication-title: Genome Res
  doi: 10.1101/gr.180273.114
– volume: 101
  start-page: 341
  issue: 473
  year: 2006
  ident: 5761_CR37
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000637
– volume: 11
  start-page: 191
  issue: 3
  year: 2010
  ident: 5761_CR17
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2732
– volume: 13
  start-page: 142
  issue: 1
  year: 2014
  ident: 5761_CR24
  publication-title: Aging Cell
  doi: 10.1111/acel.12159
– volume: 12
  start-page: e1006105
  issue: 6
  year: 2016
  ident: 5761_CR19
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006105
– volume: 7
  start-page: 130
  year: 2015
  ident: 5761_CR7
  publication-title: Clin Epigenetics
  doi: 10.1186/s13148-015-0163-4
– volume: 8
  start-page: e1002629
  issue: 4
  year: 2012
  ident: 5761_CR36
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002629
– volume: 15
  start-page: 103
  issue: 1
  year: 2018
  ident: 5761_CR40
  publication-title: Exp Ther Med
– ident: 5761_CR46
  doi: 10.1093/ije/dyv041
– volume: 10
  start-page: 19
  issue: 1
  year: 2018
  ident: 5761_CR42
  publication-title: Genome Med
  doi: 10.1186/s13073-018-0527-4
– volume: 10
  start-page: e1004402
  issue: 5
  year: 2014
  ident: 5761_CR11
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004402
– volume: 98
  start-page: 680
  issue: 4
  year: 2016
  ident: 5761_CR45
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2016.02.019
– volume: 10
  start-page: 1054
  issue: 11
  year: 2015
  ident: 5761_CR22
  publication-title: Epigenetics
  doi: 10.1080/15592294.2015.1105424
– volume: 41
  start-page: 178
  issue: 2
  year: 2009
  ident: 5761_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng.298
– volume: 23
  start-page: 1363
  issue: 9
  year: 2013
  ident: 5761_CR25
  publication-title: Genome Res
  doi: 10.1101/gr.154187.112
– volume: 16
  start-page: 37
  year: 2015
  ident: 5761_CR31
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0600-x
– volume: 42
  start-page: 20
  issue: 1
  year: 2018
  ident: 5761_CR32
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.22086
– ident: 5761_CR41
  doi: 10.1101/054643
– ident: 5761_CR33
  doi: 10.1093/bioinformatics/bty713
SSID ssj0017825
Score 2.644119
Snippet Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of...
There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of the...
Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex phenotypes. Many of...
Abstract Background There has been a steady increase in the number of studies aiming to identify DNA methylation differences associated with complex...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 366
SubjectTerms Animal Genetics and Genomics
Arrays
Biomedical and Life Sciences
CpG Islands
Deoxyribonucleic acid
DNA
DNA Methylation
DNA sequencing
Epidemiology
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Epigenome-wide association study (EWAS)
Epigenomics - methods
Future predictions
Genetic research
Genome-Wide Association Study
Genomics
Human and rodent genomics
Humans
Illumina EPIC array
Life Sciences
Linear Models
Mathematical analysis
Methods
Methylation
Microarrays
Microbial Genetics and Genomics
Multiple testing
Oligonucleotide Array Sequence Analysis - methods
Phenotypes
Plant Genetics and Genomics
Population (statistical)
Population studies
Power
Proteomics
Regression analysis
Research Article
Statistical analysis
Statistical methods
Statistics
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SFHwRrV-rrUQRBGXpfmTz0beztnovR_ED-xYm2aQeyJ7c9oT7753Z3Tu7LeqLcE-Xyd3uzCTzGzL5DWMvRSYwLGFaYoyDVLhcpkYHSGNdZk4Z7YsSumYTajbTZ2fm9FKrL6oJ6-mBe8UdAGQhelWE3BuhAIwhhvEcghQOw0-3-yLq2SRTw_kBxr1qOMPMtTxocReWVG1hUsTXeapGUagj67--JV-KSVfrJa8cmnax6OQuuzOASD7pH_4euxGaXXarbyu5vs--vl_Na7ImR0TK380mnPpEr_uqN972lYOHnO4SdTTN-FPzpqUsveV03YQjKORTaoE8b4Afn06POCyXsH7Avpwcfz76kA4NFFKPC_kilbqsFSgXnah1WbqgRR0RsjitvAAJvq7wU7qs9hqMi0UGqqiCwHUZy4hY5CHbaRZNeMx45ooavFTEri8whdIQjIwe52MGGWuRsGyjUOsHdnFqcvHddlmGlra3gUUbWLKBVQl7vZ3yo6fW-JvwW7LSVpBYsbsv0Ffs4Cv2X76SsBdkY0u8Fw0V1pzDqm3t9NNHO6k0YdUqx396NQjFBb6Bh-GeAuqBqLJGknsjSVyYfjy8cSU7bAytpavHxOClZcKeb4dpJhW7NWGxIpmSqlJ0jlp91Hve9r0RjWuNoCNhauSTI8WMR5r5t442XBL3XlEm7M3Ge38_1h_1_uR_6P0pu13Q2iPSW7HHdi6Wq7DPbvqf6OXLZ93K_QViI0RQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggNQLj_JooCCDkJBAUfNw_OCCltLCXlYrHqI3y3acshJK2qSLtP-emcS7JUX0grSn9Xg3tmfG38Tjbwh5yRIG2xKEJUpZEzOb8lhJb-KqzBMrlHRZbvpiE2I2k8fHah5euHUhrXLtE3tHXTYO35Hv451NpD6S_N3pWYxVo_B0NZTQuE5uIEtC3qfuzTenCLD7FeEkM5V8vwNfzDHnQsWAstNYjPainrL_b8f8x850OWvy0tFpvyMd3fnfsdwltwMWpZNBee6Ra77eIbeG6pSrHbKNQHTgcb5Pvn9cLkrUEAool36YTSjWnl4NmXS0G7IR39Ju3QV-d1F3GPl3FK-wUACadIpllRe1oYfz6QE1bWtWD8i3o8OvB5_iUJQhduAczmMu81IYYSvLSpnn1ktWVgCDrBSOGW5cWcAnt0nppFG2yhIjssIzsPUqrwDfPCRbdVP7XUITm5XGcYGM_QzCMmm84pWD_hCVViWLSLJeHu0CYzkWzvip-8hFcj2sqIYV1biiWkTk9abL6UDXcZXwe1zzjSAybfdfNO2JDoarjUl85UTmU6eYMEYpZLhPjefMAvzJIvICNUYjl0aNyTonZtl1evrls54UEvFvkcI_vQpCVQMjcCbcfYB5QPqtkeTeSBKM3Y2b1xqlg7Pp9IU6ReT5phl7YgJd7ZslyuSY6SJTmNVHgx5vxg0IX0oAMhERIw0fTcy4pV786KnIOfL5ZXlE3qxt4eKx_jnvj68exBOynaGNIkUu2yNb5-3SPyU33S_Q3_ZZb-G_ASwOVq8
  priority: 102
  providerName: ProQuest
Title Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array
URI https://link.springer.com/article/10.1186/s12864-019-5761-7
https://www.ncbi.nlm.nih.gov/pubmed/31088362
https://www.proquest.com/docview/2227109386
https://www.proquest.com/docview/2232008814
https://pubmed.ncbi.nlm.nih.gov/PMC6518823
https://doaj.org/article/aa0efc72e1c947aa9926321ae64b2242
Volume 20
WOSCitedRecordID wos000468050300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELZoCxIv3MdCiQxCQgKt2MPxwVtaUsgD0SrlaJ8s2-stkdAGZRuk_HtmvJvAlkMCKcrDepzE4xnPTDzzDSFPWcLALEFYopQ1MbMpj5X0Jq7KPLFCSZflJjSbENOpPDlRRVfH3Wyy3TdXkuGkDmot-csGTlKOGRMqBh85jcUO2QNrJ1EbZ8cft1cHYPKG3fXlb6f1DFDA6f_1NP7JHF1MlbxwXxrM0NH1_1rADXKt8zrpqBWTm-SSr2-RK20fyvVt8unNal7i9lNwYenr6YhiY-l1myZHmzbV8BXF4qOA6wwfNa8bDOsbivUpFLxIOsGeyfPa0HExOaRmuTTrO-TD0fj94du467gQO9D885jLvBRG2MqyUua59ZKVFfg4VgrHDDeuHMIrt0nppFG2yhIjsqFnoMhVXoHzcpfs1ova3yc0sVlpHBcIx88g5pLGK145mA8hZ1WyiCSbbdCugyPHrhhfdAhLJNctvzTwSyO_tIjI8-2Ury0Wx9-ID3Bvt4QIox0eLJZnutNKbUziKycynzrFhDFKIXx9ajxnFnybLCJPUDI0AmXUmIlzZlZNoyfHMz0aSnRuhyl807OOqFrACpzpChuAD4it1aPc71GCJrv-8EYAdXeSNBprlRHyS_KIPN4O40zMjqv9YoU0OaaxyBS4eq-V1-26wX2XEryUiIieJPcY0x-p558DzjhHsL4sj8iLjTz_-Fl_5PuDf6J-SK5mqBAIh8v2ye75cuUfkcvuG4jzckB2xIkI73JA9g7G02I2CH-aDDBFt4BnxeRdcToIB8B3aA5PGQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFERfOMplKLAgEBLIqo-Nd42EUOlBrbZRVIooT8t6vS6RkFPiBpQ_xW9kxkeKi-hbH5DyFM863s03l3f2G4Bn3OPoljAtieNUuzz1IzeWVrt5FnqpiKUJQl01mxCDgTw8jIcL8Ks9C0Nlla1NrAx1Njb0jnyVzmwS9ZGM3h5_d6lrFO2uti00aljs2NlPTNnKN8kG_r_Pg2Br82B92226CrgG0X3iRjLMhBZpnvJMhmFqJc9y9OOpFIbrSJusj58w9TIjdZzmgadF0LccwZqHOTpovO8lWOQIdtmDxWGyN_w837dAf9tv9k59Ga2WaP0jqvKIXYzrfVd0vF_VJOBvV_CHLzxbp3lms7bygVvX_7fVuwHXmmibrdXqcRMWbLEMV-r-m7NlWKJQu2aqvgWf3k9HGekAwziebQzWGHXXntW1gqys6y1fs7IdgvcdFSW92ygZHdJhGEqzhBpHjwrNNofJOtOTiZ7dho8XMsU70CvGhb0HzEuDTJtIUE8Cjomn1DaOcoPjMe_OM-6A18JBmYaTnVqDfFNVbiYjVSNIIYIUIUgJB17OhxzXhCTnCb8jjM0FiUu8-mI8OVKNaVJaezY3IrC-ibnQOo6Jw9_XNuIpBniBA08JoYrYQgoqRzrS07JUyYd9tdaXFOH3ffylF41QPsYZGN2c7sB1IIKxjuRKRxLNmelebhGsGnNaqlP4OvBkfplGUolgYcdTkgmplkf6uKp3a72ZzxtzGCkxVHNAdDSqszDdK8Xoa0W2HhFjYRA68KrVvdPH-ue63z9_Eo_h6vbB3q7aTQY7D2ApIPtAhMB8BXonk6l9CJfND8Ty5FFjXxh8uWil_A35O7cZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwELdgPMQX3ozAAIOQkEDR8nD84FvZVqhAVcVg7JtlO_ZWCaVT0yL1v-cuSQsZDwkh9VN9buPLnf07-e53hDxnCYNjCcISpayJmU15rKQ3cSjzxAolXZabptmEGI_l8bGadH1O63W2-_pKsq1pQJamarF7VobWxSXfrWFX5Zg9oWLAy2ksLpJLDHsGYbh-eLS5RoDjr-iuMn87rXcYNZz9v-7MPx1N59Mmz92dNkfS8MZ_L-Ymud6hUTpozecWueCr2-RK259ydYd8ebuclmgWFKAt3R8PKDacXrXpc7RuUxBfUyxKavie4aemVY3hfk2xboUCuqQj7KU8rQw9mIz2qJnPzeou-Tw8-LT3Lu46McQOdoRFzGVeCiNssKyUeW69ZGUA7GOlcMxw48oCPrlNSieNsiFLjMgKz8DBQx4A1NwjW9Ws8vcJTWxWGscF0vQziMWk8YoHB_MhFA0li0iyfiXadTTl2C3jq27CFcl1qy8N-tKoLy0i8nIz5azl6Pib8Bt8zxtBpNduvpjNT3TnrdqYxAcnMp86xYQxSiGtfWo8ZxYwTxaRZ2glGgk0KszQOTHLutajw496UEgEvUUK__SiEwozWIEzXcED6AE5t3qSOz1J8HDXH14bo-52mFpjDTNSgUkekaebYZyJWXOVny1RJsf0FpmCVrdb292sG2C9lIBeIiJ6Vt1TTH-kmp42_OMcSfyyPCKv1rb947H-qPcH_yT9hFyd7A_1h9H4_UNyLUPfQMZctkO2FvOlf0Quu29g2fPHjb9_B21kU9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+for+DNA+methylation+studies%3A+statistical+insights+from+the+Illumina+EPIC+array&rft.jtitle=BMC+genomics&rft.au=Mansell%2C+Georgina&rft.au=Gorrie-Stone%2C+Tyler+J&rft.au=Bao%2C+Yanchun&rft.au=Kumari%2C+Meena&rft.date=2019-05-14&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=20&rft.issue=1&rft.spage=366&rft_id=info:doi/10.1186%2Fs12864-019-5761-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon