Dual graph convolutional neural network for predicting chemical networks

Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 21; číslo Suppl 3; s. 94 - 13
Hlavní autori: Harada, Shonosuke, Akita, Hirotaka, Tsubaki, Masashi, Baba, Yukino, Takigawa, Ichigaku, Yamanishi, Yoshihiro, Kashima, Hisashi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 23.04.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. Results We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Conclusions Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
AbstractList Abstract Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. Results We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Conclusions Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner.BACKGROUNDPredicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner.We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner.RESULTSWe give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner.Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.CONCLUSIONSExperiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. Results We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Conclusions Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. Results We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Conclusions Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks. Keywords: Chemical network prediction, Graph convolutional neural network, Graph of graphs
Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The recent rapid growth of the amount of available data has enabled applications of computational approaches such as statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound structures are represented as graphs, and various graph-based approaches including graph convolutional neural networks have been successfully applied to chemical network prediction. However, there was no efficient method that can consider the two different types of graphs in an end-to-end manner. Results We give a new formulation of the chemical network prediction problem as a link prediction problem in a graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph convolutional network that learns compound representations from both the compound graphs and the inter-compound network in an end-to-end manner. Conclusions Experiments using four chemical networks with different sparsity levels and degree distributions shows that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while the performance becomes inferior on extremely-sparse networks.
ArticleNumber 94
Audience Academic
Author Baba, Yukino
Tsubaki, Masashi
Yamanishi, Yoshihiro
Harada, Shonosuke
Takigawa, Ichigaku
Akita, Hirotaka
Kashima, Hisashi
Author_xml – sequence: 1
  givenname: Shonosuke
  surname: Harada
  fullname: Harada, Shonosuke
  email: sh1108@ml.ist.i.kyoto-u.ac.jp
  organization: Kyoto University
– sequence: 2
  givenname: Hirotaka
  surname: Akita
  fullname: Akita, Hirotaka
  organization: Preferred Networks
– sequence: 3
  givenname: Masashi
  surname: Tsubaki
  fullname: Tsubaki, Masashi
  organization: National Institute of Advanced Industrial Science and Technology
– sequence: 4
  givenname: Yukino
  surname: Baba
  fullname: Baba, Yukino
  organization: Tsukuba University
– sequence: 5
  givenname: Ichigaku
  surname: Takigawa
  fullname: Takigawa, Ichigaku
  organization: Hokkaido University, Riken AIP
– sequence: 6
  givenname: Yoshihiro
  surname: Yamanishi
  fullname: Yamanishi, Yoshihiro
  organization: Kyushu Institute of Technology
– sequence: 7
  givenname: Hisashi
  surname: Kashima
  fullname: Kashima, Hisashi
  organization: Kyoto University, Riken AIP
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32321421$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igkdiURYpfsZ0NUlUeHakSEo-15Th2xkPGHuykwL_npmmZTgUoimxdf-fc-OYcFwchBlsUzzE6w1jy1xkTWdUlIqikVMgSPSqOMBO4JBhVB_f2h8VxzmuEsJCoelIcUkIJZgQfFZdvR90vuqS3q4WJ4Tr24-BjgFqwY7pZhh8xfVu4mBbbZFtvBh-6hVnZjTe78_y0eOx0n-2z2_Wk-Pr-3ZeLy_Lq44flxflVaQSiQ1lhXdeukrSVhEhhW2QRN9S0GlcIGQuvdrqR3BjHq4ZKwTCqEaaYatPwlp4Uy9m3jXqttslvdPqlovbqphBTp3QavOmtIprQmlpEnEXM1a5peS1Fgw1BreMSg9eb2Ws7NhvbGhsGuPKe6f5J8CvVxWslYJA1Y2BwemuQ4vfR5kFtfDa273WwccwK-jNS1ZwJQF8-QNdxTDBooBhihMm64juq03ABH1yEvmYyVeecCMqnzkCd_YWCp51-CmTEeajvCV7tCYAZ7M-h02POavn50z774v5Q_kzjLjMAiBkwKeacrFPGD3pKDXyF7xVGakqnmtOpIJ1qSqdCoMQPlHfm_9OQWZOBDZ1Nu7n9W_QbkAT0Iw
CitedBy_id crossref_primary_10_1145_3473338
crossref_primary_10_1016_j_inffus_2024_102684
crossref_primary_10_1016_j_ejphar_2025_178183
crossref_primary_10_2147_IJGM_S529322
crossref_primary_10_3389_fgene_2021_690049
crossref_primary_10_1155_2023_8342104
crossref_primary_10_1016_j_procs_2021_09_287
crossref_primary_10_1093_bib_bbab584
crossref_primary_10_1109_TNNLS_2021_3116936
crossref_primary_10_1186_s12859_020_03899_3
crossref_primary_10_1016_j_compbiomed_2023_106859
crossref_primary_10_1111_exsy_12780
crossref_primary_10_1007_s11280_021_00900_8
crossref_primary_10_1038_s41598_022_12116_5
crossref_primary_10_1155_2022_4000171
crossref_primary_10_1186_s13321_024_00932_y
crossref_primary_10_1038_s41524_021_00618_1
crossref_primary_10_1109_ACCESS_2024_3382299
crossref_primary_10_3389_fphar_2021_794205
crossref_primary_10_3390_e25060909
crossref_primary_10_1007_s00371_022_02499_x
crossref_primary_10_1002_wcms_1540
Cites_doi 10.1371/journal.pcbi.1002323
10.1080/10629369908039182
10.1145/2939672.2939754
10.1021/ci100050t
10.1016/0263-7855(88)85004-5
10.1093/bioinformatics/btn273
10.1038/nprot.2014.151
10.1186/1471-2105-13-S17-S8
10.1021/acs.jcim.5b00444
10.1093/nar/gkq318
10.1016/j.neunet.2005.07.009
10.1186/1471-2105-11-228
10.1371/journal.pone.0016999
10.1021/ci060138m
10.1186/s12859-017-1546-7
10.1093/bioinformatics/btt244
10.3389/fenvs.2015.00080
10.1016/j.drudis.2013.01.008
10.1021/c160017a018
10.1007/s10822-016-9938-8
10.7551/mitpress/4057.001.0001
10.1109/BIBM.2018.8621390
10.1093/bioinformatics/btt234
10.1021/ci010132r
10.1136/amiajnl-2013-002512
10.1093/bioinformatics/btn162
10.1093/nar/gkj067
10.1145/2623330.2623732
10.1093/bioinformatics/btu265
10.1371/journal.pone.0058321
10.1093/nar/gkp456
10.1038/msb.2012.26
10.1093/bioinformatics/bts670
10.1093/nar/gkr988
10.1073/pnas.1406102111
10.1093/bioinformatics/btp433
10.1186/s12859-017-1460-z
10.1371/journal.pcbi.1002503
10.1109/ICPR.2018.8545246
10.1093/bioinformatics/btv224
10.2174/1386207322666181226170140
10.1016/j.drudis.2018.05.010
10.1021/ci00028a014
10.1038/nature11159
10.1093/bioinformatics/bti213
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-3378-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Science in Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 13
ExternalDocumentID oai_doaj_org_article_2a2393e02fe04f9fbd6987b1c20df681
PMC7178944
A627367178
32321421
10_1186_s12859_020_3378_0
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c703t-51a99f583d82287ed0e06c3cda1500ce00cafab86ccf65b387410901313acb6d3
IEDL.DBID DOA
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529989500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:58 EDT 2025
Tue Nov 04 01:42:16 EST 2025
Sun Nov 09 09:18:17 EST 2025
Tue Oct 07 05:16:20 EDT 2025
Tue Nov 11 10:27:14 EST 2025
Tue Nov 04 17:53:48 EST 2025
Thu Nov 13 15:08:01 EST 2025
Wed Feb 19 02:30:47 EST 2025
Sat Nov 29 05:40:06 EST 2025
Tue Nov 18 22:35:09 EST 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 3
Keywords Chemical network prediction
Graph convolutional neural network
Graph of graphs
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-51a99f583d82287ed0e06c3cda1500ce00cafab86ccf65b387410901313acb6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/2a2393e02fe04f9fbd6987b1c20df681
PMID 32321421
PQID 2404248956
PQPubID 44065
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2a2393e02fe04f9fbd6987b1c20df681
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7178944
proquest_miscellaneous_2394259647
proquest_journals_2404248956
gale_infotracmisc_A627367178
gale_infotracacademiconefile_A627367178
gale_incontextgauss_ISR_A627367178
pubmed_primary_32321421
crossref_citationtrail_10_1186_s12859_020_3378_0
crossref_primary_10_1186_s12859_020_3378_0
springer_journals_10_1186_s12859_020_3378_0
PublicationCentury 2000
PublicationDate 2020-04-23
PublicationDateYYYYMMDD 2020-04-23
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References HL Morgan (3378_CR14) 1965; 5
M Kotera (3378_CR25) 2013; 29
N Greene (3378_CR1) 1999; 10
S Kearnes (3378_CR36) 2016; 30
L Ralaivola (3378_CR20) 2005; 18
Y Yamanishi (3378_CR27) 2015; 31
F Darvas (3378_CR5) 1988; 6
P Mahé (3378_CR21) 2006; 46
3378_CR38
3378_CR39
3378_CR37
Y Yamanishi (3378_CR6) 2008; 24
3378_CR35
F Cheng (3378_CR22) 2014; 21
PN Hameed (3378_CR23) 2017; 18
S Vilar (3378_CR31) 2014; 9
T Wang (3378_CR43) 2018; 21
R Notebaart (3378_CR4) 2014; 111
F Cheng (3378_CR7) 2012; 8
Y Wang (3378_CR12) 2013; 29
K Bleakley (3378_CR9) 2009; 25
H Iwata (3378_CR33) 2015; 55
S Vilar (3378_CR30) 2013; 8
F Mordelet (3378_CR47) 2008; 24
M Kotera (3378_CR26) 2014; 30
M Kanehisa (3378_CR49) 2011; 40
3378_CR44
L Cerulo (3378_CR46) 2010; 11
3378_CR41
3378_CR42
J-P Mei (3378_CR8) 2012; 29
3378_CR40
Y Lu (3378_CR53) 2017; 18
A Mayr (3378_CR34) 2016; 3
E Lounkine (3378_CR10) 2012; 486
JL Durant (3378_CR18) 2002; 42
X-M Zhao (3378_CR32) 2011; 7
3378_CR54
D Rogers (3378_CR16) 2010; 50
3378_CR55
3378_CR52
Y Moriya (3378_CR2) 2010; 38
LH Hall (3378_CR17) 1995; 35
3378_CR50
3378_CR51
DS Wishart (3378_CR45) 2006; 34
JL Medina-Franco (3378_CR11) 2013; 18
V Hatzimanikatis (3378_CR3) 2005; 21
3378_CR28
I Takigawa (3378_CR48) 2011; 6
Y-C Lo (3378_CR13) 2018; 23
M Nakamura (3378_CR24) 2012; 13
Y Wang (3378_CR15) 2009; 37
S Vilar (3378_CR29) 2012; 2012
B Schölkopf (3378_CR19) 2004
References_xml – volume: 7
  start-page: 1002323
  issue: 12
  year: 2011
  ident: 3378_CR32
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002323
– volume: 10
  start-page: 299
  year: 1999
  ident: 3378_CR1
  publication-title: SAR QSAR Environ Res
  doi: 10.1080/10629369908039182
– ident: 3378_CR42
  doi: 10.1145/2939672.2939754
– ident: 3378_CR44
– volume: 50
  start-page: 742
  issue: 5
  year: 2010
  ident: 3378_CR16
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100050t
– volume: 2012
  start-page: 1066—1074
  year: 2012
  ident: 3378_CR29
  publication-title: J Am Med Inform Assoc
– volume: 6
  start-page: 80
  year: 1988
  ident: 3378_CR5
  publication-title: J Mol Graphics
  doi: 10.1016/0263-7855(88)85004-5
– volume: 24
  start-page: 76
  issue: 16
  year: 2008
  ident: 3378_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn273
– volume: 9
  start-page: 2147
  issue: 9
  year: 2014
  ident: 3378_CR31
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2014.151
– ident: 3378_CR54
– volume: 13
  start-page: 8
  year: 2012
  ident: 3378_CR24
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S17-S8
– volume: 55
  start-page: 2705
  issue: 12
  year: 2015
  ident: 3378_CR33
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00444
– ident: 3378_CR35
– volume: 38
  start-page: 138
  year: 2010
  ident: 3378_CR2
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq318
– volume: 18
  start-page: 1093
  issue: 8
  year: 2005
  ident: 3378_CR20
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.07.009
– ident: 3378_CR50
– volume: 11
  start-page: 228
  issue: 1
  year: 2010
  ident: 3378_CR46
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-228
– volume: 6
  start-page: 16999
  issue: 2
  year: 2011
  ident: 3378_CR48
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016999
– volume: 46
  start-page: 2003
  issue: 5
  year: 2006
  ident: 3378_CR21
  publication-title: J Chem Inf Model
  doi: 10.1021/ci060138m
– volume: 18
  start-page: 140
  issue: 1
  year: 2017
  ident: 3378_CR23
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1546-7
– volume: 29
  start-page: 135
  year: 2013
  ident: 3378_CR25
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt244
– volume: 3
  start-page: 80
  year: 2016
  ident: 3378_CR34
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00080
– volume: 18
  start-page: 495
  issue: 9
  year: 2013
  ident: 3378_CR11
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2013.01.008
– volume: 5
  start-page: 107
  issue: 2
  year: 1965
  ident: 3378_CR14
  publication-title: J Chem Document
  doi: 10.1021/c160017a018
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 3378_CR36
  publication-title: J Comput-aided Mole Design
  doi: 10.1007/s10822-016-9938-8
– volume-title: Kernel Methods in Computational Biology
  year: 2004
  ident: 3378_CR19
  doi: 10.7551/mitpress/4057.001.0001
– ident: 3378_CR40
  doi: 10.1109/BIBM.2018.8621390
– ident: 3378_CR55
– volume: 29
  start-page: 126
  issue: 13
  year: 2013
  ident: 3378_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt234
– volume: 42
  start-page: 1273
  year: 2002
  ident: 3378_CR18
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci010132r
– ident: 3378_CR51
– volume: 21
  start-page: 278
  issue: e2
  year: 2014
  ident: 3378_CR22
  publication-title: J Am Med Informa Assoc
  doi: 10.1136/amiajnl-2013-002512
– volume: 24
  start-page: 232
  issue: 13
  year: 2008
  ident: 3378_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– ident: 3378_CR38
– volume: 34
  start-page: 668
  issue: suppl_1
  year: 2006
  ident: 3378_CR45
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj067
– ident: 3378_CR41
  doi: 10.1145/2623330.2623732
– ident: 3378_CR52
– volume: 30
  start-page: 165
  issue: 12
  year: 2014
  ident: 3378_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu265
– volume: 8
  start-page: 58321
  issue: 3
  year: 2013
  ident: 3378_CR30
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058321
– volume: 37
  start-page: 623
  year: 2009
  ident: 3378_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp456
– ident: 3378_CR28
  doi: 10.1038/msb.2012.26
– ident: 3378_CR37
– volume: 29
  start-page: 238
  issue: 2
  year: 2012
  ident: 3378_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts670
– volume: 40
  start-page: 109
  issue: D1
  year: 2011
  ident: 3378_CR49
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr988
– volume: 111
  start-page: 11762
  year: 2014
  ident: 3378_CR4
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1406102111
– volume: 25
  start-page: 2397
  issue: 18
  year: 2009
  ident: 3378_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp433
– volume: 18
  start-page: 39
  issue: 1
  year: 2017
  ident: 3378_CR53
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1460-z
– volume: 8
  start-page: 1002503
  issue: 5
  year: 2012
  ident: 3378_CR7
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002503
– ident: 3378_CR39
  doi: 10.1109/ICPR.2018.8545246
– volume: 31
  start-page: 161
  year: 2015
  ident: 3378_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv224
– volume: 21
  start-page: 789
  issue: 10
  year: 2018
  ident: 3378_CR43
  publication-title: Combi Chem High Throughput Screening
  doi: 10.2174/1386207322666181226170140
– volume: 23
  start-page: 1538
  issue: 8
  year: 2018
  ident: 3378_CR13
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2018.05.010
– volume: 35
  start-page: 1039
  year: 1995
  ident: 3378_CR17
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00028a014
– volume: 486
  start-page: 361
  issue: 7403
  year: 2012
  ident: 3378_CR10
  publication-title: Nature
  doi: 10.1038/nature11159
– volume: 21
  start-page: 1603
  year: 2005
  ident: 3378_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti213
SSID ssj0017805
Score 2.4954584
Snippet Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various...
Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various applications in...
Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various...
Abstract Background Predicting of chemical compounds is one of the fundamental tasks in bioinformatics and chemoinformatics, because it contributes to various...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 94
SubjectTerms Algorithms
Analysis
Artificial neural networks
Bioinformatics
Biomedical and Life Sciences
Chemical bonds
Chemical compounds
Chemical interactions
Chemical network prediction
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Computer architecture
Computer Graphics
Convolution
Drug Discovery
Graph convolutional neural network
Graph of graphs
Graph representations
Graphical representations
Graphs
Learning algorithms
Life Sciences
Machine learning
Mathematical models
Metabolic engineering
Metabolism
Microarrays
Models, Chemical
Neural networks
Neural Networks, Computer
Predictions
Statistical models
Structural hierarchy
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA66KuyL90t1lSqCoJRNk540eZL1sqwvy-IF9i0kabIuSHv29BzBf-9MmnbtivviQyntTCHJTGYmzeQbQl46Zn3tDC98UBSP5NjCqAUtaicqxUMElYrFJurDQ3l8rI7SD7c-pVWONjEa6qZz-I98FzxPxSoJ4fzb5VmBVaNwdzWV0LhKriFKAoupe0fTLgLi9aedzFKK3b5EtLYCF0ycI7DszBdFyP6_DfMfnuli1uSFrdPokfZv_W9fbpObKRbN9wbluUOu-PYuuTFUp_x1jxx82AA1IlrnmJyelBTeIQhmvMUU8hzi3ny5wh0fzKHOXcIgGOn9ffJt_-PX9wdFKrxQODAA62JRGqXCQvIGwgdZ-4Z6Khx3jYHwkToPlwnGSuFcEAvLJYQlVCFyDzfOioY_IFtt1_pHJGeyqRtW29pQU5U-WBvAa8KTE4qVpswIHUWgXUIlx-IYP3RcnUihB6lpkJpGqWmakdfTJ8sBkuMy5nco14kR0bTji251otPk1MwgEJynLHhaBRVsI5SsbekYbYKQ0MgXqBUa8TJaTMg5MZu-15--fNZ7AuI_AWtimZFXiSl00ANn0vkGGAeE2Jpx7sw4YUK7OXnUGp0MSq_PVSYjzycyfolJcq3vNsDDFVhgPFqckYeDrk795gwrUjHoSj3T4tnAzCnt6fcIN45tUlWVkTejvp8365_j_vjyTjwh2wznIa0KxnfI1nq18U_JdfdzfdqvnsVZ_Bs_aU3N
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9UwEA66Kvji_VJdpYogKGXTpCeXx_WyrC-L7KrsW0jSZF2QnuX0HMF_70yaVrteQB_KoZ0JJHNmMhNm8g0hzzxzQXrLqxA1xSs5rrJ6QSvpRaN5TKBSqdmEPDhQx8f6fb7H3Y_V7mNKMu3UyayV2OlrxFqr8LjDOcLCXiSXwNsp7NdwePRpSh0gSH9OX_522MwBJZz-X3fjn9zR-VLJc_nS5Ib2rv_XAm6QaznqLHcHNblJLoTuFrky9KH8dpvsv9kANWFXl1iGntURviHcZfpJxeIlRLjl2QpzO1gtXfqMNjDS-zvk497bD6_3q9xiofJg6utqUVut40LxFgIFJUNLAxWe-9ZCoEh9gMdG65TwPoqF4woCEKoRo4db70TL75KtbtmF-6RkqpUtk05aaps6ROci-Ed480Kz2tYFoaPcjc_449gG44tJ5xAlzCAgAwIyKCBDC_JiGnI2gG_8jfkV_pkTI-Jmpw_L1YnJZmiYRci3QFkMtIk6ulZoJV3tGW2jUDDJp6gKBpExOiy9ObGbvjfvjg7NroBIT8DpVxXkeWaKS1iBt_kmA8gBwbRmnNszTjBdPyePGmfy1tEbCLEa1ig4txbkyUTGkVgO14XlBni4hr0WLxEX5N6goNO6OcPeUwyWImeqOxPMnNKdfk7A4jgn3TQFeTkq8I9p_VHuD_6J-yG5ytACaFMxvk221qtNeEQu-6_r0371OFnyd8D2Q1M
  priority: 102
  providerName: Springer Nature
Title Dual graph convolutional neural network for predicting chemical networks
URI https://link.springer.com/article/10.1186/s12859-020-3378-0
https://www.ncbi.nlm.nih.gov/pubmed/32321421
https://www.proquest.com/docview/2404248956
https://www.proquest.com/docview/2394259647
https://pubmed.ncbi.nlm.nih.gov/PMC7178944
https://doaj.org/article/2a2393e02fe04f9fbd6987b1c20df681
Volume 21
WOSCitedRecordID wos000529989500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96KtyL-HlXPZcqgqCUS5NuPh7v9I47xKXsqay-hDRN9EC6x3ZX8L93Ju2u1xP1xYemtDOFZDrJzJDJbwh57ljlpbM880FTPJJTZVaPaSadKDQPEVQqFpuQk4mazXR5qdQX5oR18MCd4PaZRZAuT1nwtAg6VLWAMLnKHaN1EPHQNaNSr4Opfv8Akfr7Pcxcif02R5y2DEMlzhFSdmCFIlj_70vyJZt0NV_yyqZptEXHd8jt3olMD7rO3yXXfHOP3OrKSv64T07erIAaoahTzCrvtQveIXplvMXc7xQc1vRigVs1mPycuh48YE1vH5APx0fvX59kfcWEzMHMXWbj3GodxorXYPeV9DX1VDjuagt-H3UeLhtspYRzQYwrrsCfoBohd7h1laj5Q7LVzBu_S1KmalkzWUlLbZH7UFUBzB08OaFZbvOE0LUEjevhxLGqxTcTwwolTCd0A0I3KHRDE_Jy88lFh6XxN-ZD_C0bRoTBji9AOUyvHOZfypGQZ_hTDQJdNJhJ88Wu2tacnk3NgQDHTUAwqxLyomcKcxiBs_3BBJADYmMNOPcGnDAT3ZC81h3TrwStAY-pYIWCMDQhTzdk_BKz2xo_XwEP17B04pnghOx0qrYZN2dYSorBUORACQeCGVKa868RJxz7pIsiIa_W6vqrW3-U-6P_IffHZJvhZKNFxvge2VouVv4Juem-L8_bxYhclzMZWzUiNw6PJuV0FKcvtG9lNsL82xLacvwZ6OXpu_ITPE3PPv4EKBhIzw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGAMEL3x-BAQGBkEDRHDt17AeEBmNq1VEhGNLejOPYYxJKS9OC9k_xN3LnJB0ZYm974KGqGl8in3Nf7p1_R8hTywqXW8MT5xXFIzlFYtSAJrkVmeI-gEqFZhP5ZCL399WHNfKrOwuDZZWdTQyGupxa_I98EzxPxjIJ4fzr2fcEu0ZhdrVrodGIxdgd_YQtW_1qtA3v9xljO-_23g6TtqtAYkG6F8kgNUr5geQl-EaZu5I6Kiy3pYHYiFoHH-NNIYW1XgwKLsHnUoWwNNzYQpQcnnuOnAcuctSrcZ6sshbYH6DNnKZSbNYposMluEHjHIFse74vtAj42xH84QlPVmmeSNUGD7hz9X9bu2vkShtrx1uNclwna666QS423TePbpLh9hJGA2J3jMX3rRLCNQT5DF-hRD6GuD6ezTGjhTXisW0xFrrx-hb5fCZs3Cbr1bRyd0nMZJmXLC9yQ02WOl8UHqIC-GWFYqlJI0K7V65ti7qOzT--6bD7kkI3UqJBSjRKiaYRebG6ZdZAjpxG_AblaEWIaOHhwnR-oFvjo5lBoDtHmXc088oXpVAyL1LLaOmFhEk-QSnUiAdSYcHRgVnWtR59-qi3BMS3Avb8MiLPWyI_BQ6sac9vwDoghFiPcqNHCQbL9oc7KdWtwaz1sYhG5PFqGO_EIsDKTZdAwxV4GDw6HZE7jW6s-OYMO24xYCXvaU1vYfoj1eHXAKeOc1JZFpGXnX4dT-uf637vdCYekUvDvfe7enc0Gd8nlxnaAJoljG-Q9cV86R6QC_bH4rCePwwWJCZfzlrtfgPn76pj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96PvCL70f11CqCoJRLk26afDw9lzuU5fBU7ltI0uQ8kO6y3RX8751J09WeDxA_LGU7E0imM8kMM_kNIc8cs752hhc-KIpXcmxh1IQWtROV4iGCSsVmE_VsJo-P1WHqc9oN1e5DSrK_04AoTe1qZ9GE3sSl2OlKxF0rMPThHCFiz5MLFdbRY7h-9GmTRkDA_pTK_O2w0WEUMft_3Zl_OprOlk2eyZ3GI2l67b8Xc51cTd5ovturzw1yzrc3yaW-P-W3W2R_bw3UiGmdY3l6UlN4hzCY8RGLyHPwfPPFEnM-WEWdu4RCMNC72-Tj9M2H1_tFar1QONgCVsWkNEqFieQNOBCy9g31VDjuGgMOJHUefiYYK4VzQUwsl-CYUIXYPdw4Kxp-h2y189bfIzmTTd2w2taGmqr0wdoA5yb8c0Kx0pQZocM30C7hkmN7jC86xidS6F5AGgSkUUCaZuTFZsiiB-X4G_Mr_LAbRsTTji_myxOdzFMzg1BwnrLgaRVUsI1QsralY7QJQsIkn6JaaETMaLEk58Ssu04fHL3XuwI8QAFRsczI88QU5rACZ9INB5ADgmyNOLdHnGDSbkwetE-nLaXT4HpVrJIQz2bkyYaMI7FMrvXzNfBwBXswXi7OyN1eWTfr5gx7UjFYSj1S45FgxpT29HMEHMc5qarKyMtBmX9M649yv_9P3I_J5cO9qX53MHv7gFxhaAy0KhjfJlur5do_JBfd19Vpt3wUDfw7ztxPGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+graph+convolutional+neural+network+for+predicting+chemical+networks&rft.jtitle=BMC+bioinformatics&rft.au=Shonosuke+Harada&rft.au=Hirotaka+Akita&rft.au=Masashi+Tsubaki&rft.au=Yukino+Baba&rft.date=2020-04-23&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=21&rft.issue=S3&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12859-020-3378-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a2393e02fe04f9fbd6987b1c20df681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon