Detecting Succinylation sites from protein sequences using ensemble support vector machine

Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 19; H. 1; S. 237 - 9
Hauptverfasser: Ning, Qiao, Zhao, Xiaosa, Bao, Lingling, Ma, Zhiqiang, Zhao, Xiaowei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 25.06.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. Results The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. Conclusions The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available at https://github.com/ningq669/PSuccE .
AbstractList Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available athttps://github.com/ningq669/PSuccE.
Abstract Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. Results The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. Conclusions The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available athttps://github.com/ningq669/PSuccE.
Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. Results The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. Conclusions The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available at https://github.com/ningq669/PSuccE .
Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available at https://github.com/ningq669/PSuccE .
Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. Results The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. Conclusions The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available at Keywords: Predict succinylation sites, Multiple features, Grey pseudo amino acid composition, Information gain, SVM, Ensemble learning algorithm
Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm.BACKGROUNDLysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm.The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset.RESULTSThe performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset.The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available at https://github.com/ningq669/PSuccE .CONCLUSIONSThe conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available at https://github.com/ningq669/PSuccE .
Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control. To understand the mechanism of succinylation profoundly, it is necessary to identify succinylation sites in proteins accurately. However, traditional methods, experimental approaches, are labor-intensive and time-consuming. Computational prediction methods have been proposed recent years, and they are popular because of their convenience and high speed. In this study, we developed a new method to predict succinylation sites in protein combining multiple features, including amino acid composition, binary encoding, physicochemical property and grey pseudo amino acid composition, with a feature selection scheme (information gain). And then, it was trained using SVM (Support Vector Machine) and an ensemble learning algorithm. Results The performance of this method was measured with an accuracy of 89.14% and a MCC (Matthew Correlation Coefficient) of 0.79 using 10-fold cross validation on training dataset and an accuracy of 84.5% and a MCC of 0.2 on independent dataset. Conclusions The conclusions made from this study can help to understand more of the succinylation mechanism. These results suggest that our method was very promising for predicting succinylation sites. The source code and data of this paper are freely available athttps://github.com/ningq669/PSuccE.
ArticleNumber 237
Audience Academic
Author Bao, Lingling
Zhao, Xiaosa
Ma, Zhiqiang
Zhao, Xiaowei
Ning, Qiao
Author_xml – sequence: 1
  givenname: Qiao
  surname: Ning
  fullname: Ning, Qiao
  organization: School of Information Science and Technology, Northeast Normal University
– sequence: 2
  givenname: Xiaosa
  surname: Zhao
  fullname: Zhao, Xiaosa
  organization: School of Information Science and Technology, Northeast Normal University
– sequence: 3
  givenname: Lingling
  surname: Bao
  fullname: Bao, Lingling
  organization: School of Information Science and Technology, Northeast Normal University
– sequence: 4
  givenname: Zhiqiang
  surname: Ma
  fullname: Ma, Zhiqiang
  email: zhiqiang.ma967@gmail.com
  organization: School of Information Science and Technology, Northeast Normal University
– sequence: 5
  givenname: Xiaowei
  surname: Zhao
  fullname: Zhao, Xiaowei
  email: zhaoxw303@nenu.edu.cn
  organization: Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29940836$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGzKIsVO_NwgVeU1UiUkChs2lse5Tj1K7MF2Kvrv8XRa2qkARXKim--c2CfnsNrzwUNVvcToBGPB3ibcCiobhEXTtkQ25El1gAnHTYsR3XvwvF8dprRCCHOB6LNqv5WSINGxg-rHe8hgsvNDfTEb4_z1qLMLvk4uQ6ptDFO9jiGDKyP4OYM3ZTynjQB8gmk5Qp3m9TrEXF8VpxDrSZtL5-F59dTqMcGL2_tR9f3jh29nn5vzL58WZ6fnjeGoy02HMWaGa1G2h7QVS0m5YV1PqGkRJ72hBpuOa9JyKSglpLOd7Y2WQnIOFHdH1WLr2we9UuvoJh2vVdBO3QxCHJSO2ZkRlOkpFsvNwg3BwmohrWSwRBRsbzEUr3dbr_W8nKA34HPU447p7hvvLtUQrhRDmGHCisHxrUEMJa2U1eSSgXHUHsKcVIuopKz8E1TQ14_QVZijL1EVimNCBWvpPTXocgDnbSjfNRtTdUoJQ7RjmBfq5C9UuXqYnCmtsa7MdwRvdgSFyfArD3pOSS0uvu6yrx6G8ieNuxYVgG8BE0NKEawyLt_UqOzCjQojtemr2vZVlb6qTV8VKUr8SHln_j9Nu9WkwvoB4n1u_xb9Bu_h-to
CitedBy_id crossref_primary_10_1016_j_biochi_2021_10_001
crossref_primary_10_1016_j_chemolab_2020_104171
crossref_primary_10_3390_cimb46020065
crossref_primary_10_1016_j_jtbi_2019_03_011
crossref_primary_10_1109_TCBB_2020_3006144
crossref_primary_10_3390_biom11060872
crossref_primary_10_1007_s00521_020_04792_z
crossref_primary_10_1186_s12859_021_04101_y
crossref_primary_10_3390_ijms22126256
crossref_primary_10_1186_s13040_022_00290_1
crossref_primary_10_3390_jpm12091408
crossref_primary_10_1155_2021_9923112
crossref_primary_10_1038_s41598_022_21366_2
crossref_primary_10_1186_s12859_020_3342_z
crossref_primary_10_3389_fgene_2024_1464976
crossref_primary_10_3390_cells8020095
crossref_primary_10_1186_s12859_022_05001_5
crossref_primary_10_1093_bib_bbac510
crossref_primary_10_1186_s12859_021_04433_9
crossref_primary_10_1093_bib_bbab089
crossref_primary_10_1016_j_chemolab_2021_104428
crossref_primary_10_1016_j_ab_2020_113592
crossref_primary_10_1155_2020_8858489
crossref_primary_10_1016_j_ab_2021_114386
crossref_primary_10_1093_bib_bbac306
crossref_primary_10_1089_cmb_2022_0109
crossref_primary_10_3389_fphys_2021_658633
crossref_primary_10_1080_13102818_2024_2425694
Cites_doi 10.1371/journal.pone.0017331
10.1371/journal.pone.0049108
10.1016/j.ab.2017.03.021
10.3390/ijms150711204
10.1002/minf.201600010
10.1016/j.molcel.2013.06.001
10.1093/nar/gkv458
10.1016/j.jtbi.2016.12.004
10.18632/oncotarget.7815
10.1002/bip.21645
10.1371/journal.pone.0049040
10.1371/journal.pone.0191900
10.1021/pr500992r
10.3390/ijms12128347
10.1016/j.jtbi.2015.03.029
10.1016/j.jtbi.2016.09.001
10.3109/10409239509083488
10.1016/j.cmet.2014.03.014
10.1093/bioinformatics/btw387
10.1080/07391102.2014.968875
10.1093/bioinformatics/btv439
10.1371/journal.pone.0105018
10.1016/j.ab.2015.12.009
10.1186/s12864-017-4336-8
10.3390/ijms15057594
10.1039/C5MB00853K
10.1038/nprot.2007.494
10.1016/j.celrep.2013.07.024
10.4236/jbise.2013.64054
10.1039/c3mb25555g
10.18632/oncotarget.9987
10.1016/S0003-9861(02)00468-X
10.1093/bioinformatics/bth466
10.1093/bioinformatics/btt072
10.1007/s00438-015-1108-5
10.1093/bioinformatics/btw380
10.1371/journal.pone.0072234
10.1371/journal.pone.0055844
10.1039/C4MB00680A
10.7717/peerj.171
10.1093/nar/27.1.368
10.1016/j.jtbi.2017.05.005
10.18632/oncotarget.10027
10.1093/nar/gkt1093
10.1039/C1MB05420A
10.1016/j.jtbi.2010.12.024
10.3390/ijms151120072
10.1016/j.gde.2008.01.012
10.1093/bioinformatics/btl151
10.18632/oncotarget.9148
10.1093/bioinformatics/btw560
10.3390/ijms150610410
10.1016/j.jtbi.2016.11.028
10.1038/nchembio.495
10.2174/1573406411666141229162834
10.1214/aos/1176344552
10.1039/c3mb25466f
10.1002/prot.22555
10.1016/j.bbrc.2005.04.124
10.1371/journal.pone.0024756
10.1074/mcp.M111.015875
10.2174/157016409789973707
10.1038/srep10184
10.1016/j.jtbi.2016.01.020
10.3390/ijms15033495
10.2174/1568026615666150819110421
ContentType Journal Article
Copyright The Author(s). 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-018-2249-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Science in Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 9
ExternalDocumentID oai_doaj_org_article_cd518bd5187c418fa89f96eb05efdf1e
PMC6016146
A546053617
29940836
10_1186_s12859_018_2249_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61403077
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2014M550166; 2015T80285
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Natural Science Foundation of Shandong Province
  grantid: BS2015DX001
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: Natural Science Foundation of Jilin Province
  grantid: 20150520061JH
  funderid: http://dx.doi.org/10.13039/100007847
– fundername: ;
  grantid: 61403077
– fundername: ;
  grantid: BS2015DX001
– fundername: ;
  grantid: 2014M550166; 2015T80285
– fundername: ;
  grantid: 20150520061JH
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c703t-31116c7a80010af8b957c63d45c2074dc5c1c37a4279855443f3fdca98977e513
IEDL.DBID RSV
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436131900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:39:29 EDT 2025
Tue Nov 04 02:00:05 EST 2025
Fri Sep 05 13:42:13 EDT 2025
Tue Oct 07 05:18:42 EDT 2025
Tue Nov 11 10:27:39 EST 2025
Tue Nov 04 17:24:30 EST 2025
Thu Nov 13 14:29:17 EST 2025
Mon Jul 21 05:59:12 EDT 2025
Sat Nov 29 05:40:02 EST 2025
Tue Nov 18 21:50:33 EST 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ensemble learning algorithm
SVM
Information gain
Predict succinylation sites
Grey pseudo amino acid composition
Multiple features
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-31116c7a80010af8b957c63d45c2074dc5c1c37a4279855443f3fdca98977e513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12859-018-2249-4
PMID 29940836
PQID 2071458625
PQPubID 44065
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_cd518bd5187c418fa89f96eb05efdf1e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6016146
proquest_miscellaneous_2059562100
proquest_journals_2071458625
gale_infotracmisc_A546053617
gale_infotracacademiconefile_A546053617
gale_incontextgauss_ISR_A546053617
pubmed_primary_29940836
crossref_citationtrail_10_1186_s12859_018_2249_4
crossref_primary_10_1186_s12859_018_2249_4
springer_journals_10_1186_s12859_018_2249_4
PublicationCentury 2000
PublicationDate 2018-06-25
PublicationDateYYYYMMDD 2018-06-25
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References M Khan (2249_CR47) 2016; 415
B Liu (2249_CR52) 2015; 43
WZ Lin (2249_CR62) 2011; 6
M Tan (2249_CR3) 2014; 19
Y López (2249_CR33) 2018; 19
WR Qiu (2249_CR11) 2016; 32
Y Xu (2249_CR27) 2015; 5
2249_CR68
Y Xu (2249_CR13) 2013; 8
J Jia (2249_CR21) 2016; 497
A Sharma (2249_CR31) 2014; 13
2249_CR67
X Zhao (2249_CR57) 2015; 11
A Dehzangi (2249_CR34) 2018; 13
SX Lin (2249_CR44) 2013; 6
P Radivojac (2249_CR53) 2010; 78
J Jia (2249_CR8) 2016; 32
WR Qiu (2249_CR10) 2016; 7
J Park (2249_CR37) 2013; 50
M Kabir (2249_CR45) 2016; 291
HD Xu (2249_CR28) 2015; 31
M Behbahani (2249_CR46) 2016; 411
Y Xu (2249_CR23) 2016; 16
Y López (2249_CR30) 2017; 527
C Jia (2249_CR17) 2014; 15
WR Qiu (2249_CR20) 2015; 33
Y Xu (2249_CR18) 2014; 15
B Weinert (2249_CR1) 2013; 4
XW Zhao (2249_CR40) 2011; 12
H Jing (2249_CR66) 2008; 18
KC Chou (2249_CR69) 1995; 30
KC Chou (2249_CR73) 2013; 9
X Xiao (2249_CR65) 2013; 8
Z Zhang (2249_CR5) 2011; 7
X Li (2249_CR36) 2014; 13
KN Papanicolaou (2249_CR4) 2013; 5
Z Xie (2249_CR2) 2012; 11
J Deng (2249_CR60) 1989; 1
K Chou (2249_CR70) 2008; 3
J Jia (2249_CR6) 2016; 394
ZC Wu (2249_CR72) 2012; 8
MM Hasan (2249_CR29) 2016; 12
WZ Lin (2249_CR63) 2012; 7
WR Qiu (2249_CR15) 2014; 2014
Z Liu (2249_CR35) 2014; 42
2249_CR9
WR Qiu (2249_CR12) 2016; 7
Y Machida (2249_CR24) 2005; 332
T Lee (2249_CR54) 2010; 6
J Jia (2249_CR7) 2016; 7
C Lind (2249_CR25) 2002; 406
L Hu (2249_CR39) 2011; 95
J Zhang (2249_CR16) 2014; 15
P Du (2249_CR50) 2014; 15
K Chou (2249_CR58) 2005; 21
Y Xu (2249_CR14) 2013; 1
KC Chou (2249_CR49) 2009; 6
S Kawashima (2249_CR56) 1999; 27
WZ Zhong (2249_CR51) 2014; 15
V Vacic (2249_CR74) 2006; 22
A Dehzangi (2249_CR32) 2017; 425
KC Chou (2249_CR42) 2005; 21
S Suo (2249_CR55) 2012; 7
Y Xu (2249_CR19) 2014; 9
C Shannon (2249_CR41) 1997; 14
M Rahimi (2249_CR48) 2016; 414
K Chou (2249_CR59) 2001; 43
WZ Lin (2249_CR64) 2013; 9
DS Cao (2249_CR43) 2013; 29
W Lin (2249_CR61) 2016; 32
KC Chou (2249_CR22) 2015; 11
KC Chou (2249_CR38) 2011; 273
W Chen (2249_CR71) 2016; 7
X Zhao (2249_CR26) 2015; 374
References_xml – volume: 6
  start-page: e17331
  issue: 3
  year: 2010
  ident: 2249_CR54
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017331
– volume: 7
  start-page: e49108
  issue: 11
  year: 2012
  ident: 2249_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049108
– volume: 14
  start-page: 306
  issue: 4
  year: 1997
  ident: 2249_CR41
  publication-title: M.D.Comput Comput Med Pract
– volume: 527
  start-page: 24
  year: 2017
  ident: 2249_CR30
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2017.03.021
– volume: 15
  start-page: 11204
  year: 2014
  ident: 2249_CR16
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms150711204
– ident: 2249_CR9
  doi: 10.1002/minf.201600010
– volume: 50
  start-page: 919
  issue: 6
  year: 2013
  ident: 2249_CR37
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 43
  start-page: W65
  year: 2015
  ident: 2249_CR52
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv458
– volume: 415
  start-page: 13
  year: 2016
  ident: 2249_CR47
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.12.004
– volume: 7
  start-page: 16895
  year: 2016
  ident: 2249_CR71
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7815
– volume: 95
  start-page: 763
  issue: 11
  year: 2011
  ident: 2249_CR39
  publication-title: Biopolymers
  doi: 10.1002/bip.21645
– volume: 7
  start-page: e49040
  year: 2012
  ident: 2249_CR63
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049040
– volume: 13
  start-page: e0191900
  issue: 2
  year: 2018
  ident: 2249_CR34
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191900
– volume: 13
  start-page: 6087
  issue: 12
  year: 2014
  ident: 2249_CR36
  publication-title: J Proteome Res
  doi: 10.1021/pr500992r
– volume: 12
  start-page: 8347
  issue: 12
  year: 2011
  ident: 2249_CR40
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms12128347
– volume: 374
  start-page: 60
  year: 2015
  ident: 2249_CR26
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2015.03.029
– volume: 411
  start-page: 1
  year: 2016
  ident: 2249_CR46
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.09.001
– volume: 30
  start-page: 275
  issue: 4
  year: 1995
  ident: 2249_CR69
  publication-title: Crit Rev Biochem Mol Biol
  doi: 10.3109/10409239509083488
– volume: 5
  start-page: 301
  issue: 5
  year: 2013
  ident: 2249_CR4
  publication-title: Front Physiol
– volume: 19
  start-page: 605
  issue: 4
  year: 2014
  ident: 2249_CR3
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.03.014
– volume: 32
  start-page: 3133
  year: 2016
  ident: 2249_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw387
– volume: 33
  start-page: 1731
  year: 2015
  ident: 2249_CR20
  publication-title: J Biomol Struct Dyn (JBSD)
  doi: 10.1080/07391102.2014.968875
– volume: 31
  start-page: 3748
  issue: 23
  year: 2015
  ident: 2249_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv439
– ident: 2249_CR68
– volume: 9
  start-page: e105018
  year: 2014
  ident: 2249_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105018
– volume: 497
  start-page: 48
  year: 2016
  ident: 2249_CR21
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2015.12.009
– volume: 19
  start-page: 923
  issue: 1
  year: 2018
  ident: 2249_CR33
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4336-8
– volume: 15
  start-page: 7594
  year: 2014
  ident: 2249_CR18
  publication-title: Int J Mol Sci (IJMS)
  doi: 10.3390/ijms15057594
– volume: 12
  start-page: 786
  issue: 3
  year: 2016
  ident: 2249_CR29
  publication-title: Mol BioSyst
  doi: 10.1039/C5MB00853K
– volume: 3
  start-page: 153
  issue: 2
  year: 2008
  ident: 2249_CR70
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.494
– volume: 4
  start-page: 842
  issue: 4
  year: 2013
  ident: 2249_CR1
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.07.024
– volume: 2014
  start-page: 947416
  year: 2014
  ident: 2249_CR15
  publication-title: Biomed Res Int (BMRI)
– volume: 6
  start-page: 435
  year: 2013
  ident: 2249_CR44
  publication-title: J Biomed Sci Eng (JBiSE)
  doi: 10.4236/jbise.2013.64054
– volume: 9
  start-page: 1092
  year: 2013
  ident: 2249_CR73
  publication-title: Mol Biosyst
  doi: 10.1039/c3mb25555g
– volume: 7
  start-page: 51270
  year: 2016
  ident: 2249_CR12
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9987
– volume: 406
  start-page: 229
  issue: 2
  year: 2002
  ident: 2249_CR25
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(02)00468-X
– volume: 21
  start-page: 10
  year: 2005
  ident: 2249_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 29
  start-page: 960
  year: 2013
  ident: 2249_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt072
– volume: 291
  start-page: 285
  year: 2016
  ident: 2249_CR45
  publication-title: Mol Gen Genomics
  doi: 10.1007/s00438-015-1108-5
– volume: 32
  start-page: 3116
  year: 2016
  ident: 2249_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw380
– volume: 13
  start-page: 41
  issue: 1
  year: 2014
  ident: 2249_CR31
  publication-title: J Theor Biol
– volume: 8
  start-page: e72234
  year: 2013
  ident: 2249_CR65
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072234
– volume: 8
  start-page: e55844
  year: 2013
  ident: 2249_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0055844
– volume: 11
  start-page: 923
  year: 2015
  ident: 2249_CR57
  publication-title: Mol BioSyst
  doi: 10.1039/C4MB00680A
– volume: 1
  start-page: e171
  year: 2013
  ident: 2249_CR14
  publication-title: PeerJ
  doi: 10.7717/peerj.171
– volume: 27
  start-page: 368
  issue: 1
  year: 1999
  ident: 2249_CR56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.368
– volume: 425
  start-page: 97
  year: 2017
  ident: 2249_CR32
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2017.05.005
– volume: 7
  start-page: 44310
  year: 2016
  ident: 2249_CR10
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10027
– volume: 42
  start-page: 531
  issue: Database issue
  year: 2014
  ident: 2249_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1093
– volume: 8
  start-page: 629
  year: 2012
  ident: 2249_CR72
  publication-title: Mol BioSyst
  doi: 10.1039/C1MB05420A
– volume: 273
  start-page: 236
  year: 2011
  ident: 2249_CR38
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 15
  start-page: 20072
  year: 2014
  ident: 2249_CR51
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms151120072
– volume: 18
  start-page: 152
  issue: 2
  year: 2008
  ident: 2249_CR66
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2008.01.012
– volume: 22
  start-page: 1536
  issue: 12
  year: 2006
  ident: 2249_CR74
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl151
– volume: 7
  start-page: 34558
  year: 2016
  ident: 2249_CR7
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9148
– volume: 32
  start-page: 3745
  year: 2016
  ident: 2249_CR61
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw560
– volume: 15
  start-page: 10410
  year: 2014
  ident: 2249_CR17
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms150610410
– volume: 414
  start-page: 128
  year: 2016
  ident: 2249_CR48
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.11.028
– volume: 7
  start-page: 58
  issue: 1
  year: 2011
  ident: 2249_CR5
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.495
– volume: 11
  start-page: 218
  year: 2015
  ident: 2249_CR22
  publication-title: Med Chem
  doi: 10.2174/1573406411666141229162834
– volume: 1
  start-page: 1
  year: 1989
  ident: 2249_CR60
  publication-title: J Grey Syst
– ident: 2249_CR67
  doi: 10.1214/aos/1176344552
– volume: 9
  start-page: 634
  year: 2013
  ident: 2249_CR64
  publication-title: Mol BioSyst
  doi: 10.1039/c3mb25466f
– volume: 78
  start-page: 365
  issue: 2
  year: 2010
  ident: 2249_CR53
  publication-title: Proteins Struct Funct Bioinformatics
  doi: 10.1002/prot.22555
– volume: 332
  start-page: 233
  issue: 1
  year: 2005
  ident: 2249_CR24
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.04.124
– volume: 6
  start-page: e24756
  year: 2011
  ident: 2249_CR62
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024756
– volume: 11
  start-page: 100
  issue: 5
  year: 2012
  ident: 2249_CR2
  publication-title: Mol Cell Proteomics Mcp
  doi: 10.1074/mcp.M111.015875
– volume: 6
  start-page: 262
  year: 2009
  ident: 2249_CR49
  publication-title: Curr Proteomics
  doi: 10.2174/157016409789973707
– volume: 21
  start-page: 10
  issue: 1
  year: 2005
  ident: 2249_CR58
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth466
– volume: 43
  start-page: 246
  issue: 3
  year: 2001
  ident: 2249_CR59
  publication-title: Bioinformatics
– volume: 5
  start-page: 10184
  year: 2015
  ident: 2249_CR27
  publication-title: Sci Rep
  doi: 10.1038/srep10184
– volume: 394
  start-page: 223
  year: 2016
  ident: 2249_CR6
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.01.020
– volume: 15
  start-page: 3495
  year: 2014
  ident: 2249_CR50
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms15033495
– volume: 16
  start-page: 591
  year: 2016
  ident: 2249_CR23
  publication-title: Curr Top Med Chem
  doi: 10.2174/1568026615666150819110421
SSID ssj0017805
Score 2.4605932
Snippet Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular...
Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular function control....
Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and cellular...
Abstract Background Lysine succinylation is a new kind of post-translational modification which plays a key role in protein conformation regulation and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 237
SubjectTerms Accuracy
Algorithms
Amino acid composition
Amino acid sequencing
Amino acids
Bioinformatics
Biomedical and Life Sciences
Chromatography
Composition
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Correlation coefficient
Correlation coefficients
Datasets
Ensemble learning algorithm
Genetic vectors
Grey pseudo amino acid composition
Information gain
Learning algorithms
Life Sciences
Lysine
Machine learning
Microarrays
Multiple features
Physicochemical properties
Post-translation
Post-translational modifications
Predict succinylation sites
Predictions
Protein structure
Proteins
Research Article
Results and data
Support Vector Machine - standards
Support vector machines
SVM
System theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kKPgi3o1WWUUQlNBsstfHein6UsQqFF-WzV7qgTanNCeF_ntnNjnHpqK--HIesrOQzMzO7ndm9htCXirGJKbnSlUpX3KpTakDgJXAK-fbICuTXG42ofb39eGh-Xyp1RfWhI30wKPidnwQTLf4ozxnOjltkpGxrURMIbGI0bdSZg2mpvwBMvVPOUym5U7PkKcNYDN4BeCNks92oUzW_3tIvrQnXa2XvJI0zXvR3m1yazpE0t3x5e-Qa7G7S26MbSUv7pHv7yOmBmAqPRi8X3QXY8EbxUxxT_FGCc38DAt4tC6lplgBf0QB1caT9jjSfjjFozk9z3_r05NcdBnvk297H76--1hOPRRKD2t5BSEWjOGV0wj-XNKtEcrLJnDhQW08eOGZb5TjtTJYscab1KTgndFwMIyCNQ_IVrfs4iNCQ2ogBCQpeVtzV0vjYgXTVWDGpcrVBanWOrV-IhjHPhfHNgMNLe1oBgtmsGgGywvyejPldGTX-JvwWzTURhCJsfMDcBc7uYv9l7sU5AWa2SL1RYe1NUdu6Hv76eCL3RWYI27gSFeQV5NQWsIXeDddVQA9IFvWTHJ7Jglr08-H195kp9jQ2xrvjAlAkqIgzzfDOBPr3bq4HFBGAHAFOF4V5OHofJvvhgMER07xgqiZW84UMx_pFj8yczhy78DWWJA3awf-9Vp_1Pvj_6H3J-RmjcuvkmUttsnW6myIT8l1f75a9GfP8uL9Ccr3R28
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQUEBISKCoceJXTqg8KrhUFQWp4mI5fiwrtdlls1up_54Zx7slRfTCZQ_xeHfHMx7PeCbfEPJKUiowPVfIUtqCCdUUykGw4lhpbOtE2QQTm03I_X11dNQcpAu3PpVVrm1iNNRuZvGOHG9CKOPgf_N3818Fdo3C7GpqoXGVXEOUhCqW7h1ssgiI158ymVSJnZ4iWhsEz6AbEHUUbHQWRcj-vw3zHyfTxarJC6nTeCLt3f5fXu6QW8kXzXcH5blLrvjuHrkxdKc8u09-fPSYYYDfzg9X1k67s6FuLsev6XN8MSWPMA9TeLSuyM6xkH6SQ3DsT9pjn_erOXr4-WnMDuQnsXbTPyDf9z59-_C5SK0YCgsmYQmWGmRqpVEYQ5qg2oZLK2rHuAVmmLPcUltLwyrZYOEbq0MdnDWNAv_Sc1o_JFvdrPOPSe5CDZYkCMHaiplKNMaXMF062phQmioj5Voo2iaccmyXcaxjvKKEHuSoQY4a5ahZRt5spswHkI7LiN-jpDeEiK8dH8wWE522q7aOU9Xih7SMqmBUExrh25L74AL1GXmJeqIRQaPDEp2JWfW9_nL4Ve9yTDXX4Blm5HUiCjPgwJr0xgOsA4JujSi3R5Swxe14eK1HOpmYXp8rUUZebIZxJpbNdX62QhoO8S9E9WVGHg3au-Eb_BCG0OQZkSO9Hi3MeKSb_owA5AjhAydsRt6ud8D53_rnuj-5nImn5GaFO7MURcW3ydZysfLPyHV7upz2i-dxX_8G-XpUHQ
  priority: 102
  providerName: ProQuest
Title Detecting Succinylation sites from protein sequences using ensemble support vector machine
URI https://link.springer.com/article/10.1186/s12859-018-2249-4
https://www.ncbi.nlm.nih.gov/pubmed/29940836
https://www.proquest.com/docview/2071458625
https://www.proquest.com/docview/2059562100
https://pubmed.ncbi.nlm.nih.gov/PMC6016146
https://doaj.org/article/cd518bd5187c418fa89f96eb05efdf1e
Volume 19
WOSCitedRecordID wos000436131900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSRe-P4IjCogJCRQtHw5dh432MSEqKoWUNmL5Th2qbSlU9NO2n_PnZMUMj4kePFDfI7i8_l8lzv_DuAlj6KMwnMBD7kO0kzkgSjRWSnTUOmizMLcKldsgg-HYjrNR-097rrLdu9Ckk5Tu20tsr06Iqw1dH1xZdFnCNIt2MHTTlC9hvHkyyZ0QCD9bfjyt8N6B5DD6f9VG_90HF1NlbwSL3XH0NHt_5rAHbjVWp3-fiMmd-Gaqe7BjaYO5eV9OHlnKJaAL_Mna63n1WWTIedTaLn26QqK7wAd5vioy732KWV-5qMbbM6KU-PX63Oy5f0LFwfwz1yWpnkAn48OP719H7RFFwKNm3-FOhlXT3MlyFtUVhQ54zpLypTpGM2NUjMd6YSrNOY5pbiliU1sqVUu0JI0LEoewna1qMxj8EuboM6wWZYWcariLFcmxOG8jHJlQxV7EHYrIXWLSE6FMU6l80xEJhuWSWSZJJbJ1IPXmyHnDRzH34gPaHk3hISk7R4sljPZbkypSxaJghqu00hYJXKbZ6YImbGljYwHL0g4JGFlVJSMM1PrupbHk7HcZxRUTtAG9OBVS2QXOAOt2rsNyAeC1-pR7vYocTPrfncng7JVJrWM6ZIZQ9eTefB8000jKUGuMos10TD0dNF_Dz141IjsZt5ocaQEQu4B7wlzjzH9nmr-zUGNE1gPnqUevOlE-sdn_ZHvT_6J-incjGlPhFkQs13YXi3X5hlc1xereb0cwBafcteKAewcHA5H44H7b4LtBx4MKFd3hO2InWD_6Pjj6OvA6YPv-YFSmQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NAYIXvj8CAwICIYEi4sSJnQeEBmNa1TEhtkkTL8Z17FJpS0vTDvWf4m_kLh8dGWJve-ClD_G59bm_O9_lzncAzwVjKYXnAhEKE_BUZoHM0VnJeajNIE_DzOmq2YTY2ZEHB9nnFfjV3oWhtMpWJ1aKOh8bekdOb0IYT9D-Tt5NfgTUNYqiq20LjRoWfbv4iS5b-ba3gf_viyja_Lj3YStougoEBtE9Q6WDyzNCS3KHtJODLBEmjXOeGPwNnpvEMBMLzSORUQ4Xj13scqMziaaSTViM33sBLvJYCpKrvgiWUQvqD9BETplM35SMqsOhs45YRC8n4J2zr2oR8PdB8MdJeDpL81SotjoBN6__b3t3A641tra_XgvHTVixxS24XHffXNyGrxuWIijIq787N2ZULOq8QJ-WXfp08cavyliM8FGbce7TRYGhj86_PRocWr-cT8iD8Y-r6Id_VOWm2juwfy6M3YXVYlzY--DnLkZN6dKUDyKuozTTNsTpImeZdqGOPAhbECjT1GGndiCHqvLHZKpq3CjEjSLcKO7Bq-WUSV2E5Czi94SsJSHVD68ejKdD1agjZfKEyQF9CMOZdFpmLkvtIEysyx2zHjwjXCqqEFJQCtJQz8tS9Xa_qPWEQukxWr4evGyI3Bg5MLq50YH7QEXFOpRrHUpUYaY73OJWNSq0VCeg9eDpcphmUlpgYcdzoknQv49YGHpwr5aWJd9oZ3Eqve6B6MhRZ2O6I8Xoe1VgnUoUoQXhwetW4k6W9c99f3A2E0_gytbep2213dvpP4SrEWmFMA2iZA1WZ9O5fQSXzPFsVE4fVzrFh2_nLYi_AcVmrbM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxRBEG40HvjifYxGbUUQlCFz9DWP0bgYlCW4KiEvTU8f60Iyu-zsBvLvrZpjdeIB4ss8TFcP09VV1VVU9VeEvJBpKjA9F8tE2pgJVcTKQbDiWGJs6URSBNM0m5DjsTo8LA66Pqd1X-3epyTbOw2I0lStdhYutCquxE6dIu4ahMGwyxA_xOwiucSwjh7D9cnXTRoBAfu7VOZvpw0Oowaz_1fL_NPRdL5s8lzutDmSRjf-ezE3yfXOG6W7rfjcIhd8dZtcaftTnt0hR3secwzwYTpZWzurztrKOYop55ri1RTaAD3M4FVfk02xlH5KITz2J-Wxp_V6gT4-PW3yA_Skqd70d8mX0bvPb9_HXTOG2IJRWIGthl210iiMIk1QZcGlFblj3GbghjjLbWpzaVgmCyx9Y3nIg7OmUOBhep7m98hWNa_8A0JdyMGWBCFYmTGTicL4BKZLlxYmJCaLSNLvirYdUjk2zDjWTcSihG5ZpoFlGlmmWURebaYsWpiOvxG_wa3eECLCdvNivpzqTmG1dTxVJT6kZakKRhWhEL5MuA8upD4iz1FQNGJoVFikMzXrutb7k096l2OyOQffMCIvO6IwhxVY0915AD4g7NaAcntACUpuh8O9POrOyNQ6w8tnHEJSHpFnm2GciYVzlZ-vkYZDBAxxfRKR-634btYNnghDcPKIyIFgDxgzHKlm3xoIcgTxgTM2Iq978f7xW3_k-8N_on5Krh7sjfTH_fGHR-RahuqRiDjj22RrtVz7x-SyPV3N6uWTRuW_AxwQVYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Succinylation+sites+from+protein+sequences+using+ensemble+support+vector+machine&rft.jtitle=BMC+bioinformatics&rft.au=Ning%2C+Qiao&rft.au=Zhao%2C+Xiaosa&rft.au=Bao%2C+Lingling&rft.au=Ma%2C+Zhiqiang&rft.date=2018-06-25&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=19&rft_id=info:doi/10.1186%2Fs12859-018-2249-4&rft_id=info%3Apmid%2F29940836&rft.externalDocID=PMC6016146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon