Robust Multiarmed Bandit Problems
The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment design, Internet advertising, dynamic pricing, and the control of queues. The standard mathematical formulation for a bandit problem makes t...
Uložené v:
| Vydané v: | Management science Ročník 62; číslo 1; s. 264 - 285 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Linthicum
Institute for Operations Research and the Management Sciences
01.01.2016
|
| Predmet: | |
| ISSN: | 0025-1909, 1526-5501 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment design, Internet advertising, dynamic pricing, and the control of queues. The standard mathematical formulation for a bandit problem makes the strong assumption that the decision maker has a full characterization of the joint distribution of the rewards, and that ″arms″ under this distribution are independent. These assumptions are not satisfied in many applications, and the outof-sample performance of policies that optimize a misspecified model can be poor. Motivated by these concerns, we formulate a robust bandit problem in which a decision maker accounts for distrust in the nominal model by solving a worst-case problem against an adversary (″nature″) who has the ability to alter the underlying reward distribution and does so to minimize the decision maker's expected total profit. Structural properties of the optimal worst-case policy are characterized by using the robust Bellman (dynamic programming) equation, and arms are shown to be no longer independent under nature's worst-case response. One implication of this is that index policies are not optimal for the robust problem, and we propose, as an alternative, a robust version of the Gittins index. Performance bounds for the robust Gittins index are derived by using structural properties of the value function together with ideas from stochastic dynamic programming duality. We also investigate the performance of the robust Gittins index policy when applied to a Bayesian webpage design problem. In the presence of model misspecification, numerical experiments show that the robust Gittins index policy not only outperforms the classical Gittins index policy, but also substantially reduces the variability in the out-of-sample performance. |
|---|---|
| AbstractList | The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment design, Internet advertising, dynamic pricing, and the control of queues. The standard mathematical formulation for a bandit problem makes the strong assumption that the decision maker has a full characterization of the joint distribution of the rewards, and that "arms" under this distribution are independent. These assumptions are not satisfied in many applications, and the out-of- sample performance of policies that optimize a misspecified model can be poor. Motivated by these concerns, we formulate a robust bandit problem in which a decision maker accounts for distrust in the nominal model by solving a worst-case problem against an adversary ("nature") who has the ability to alter the underlying reward distribution and does so to minimize the decision maker's expected total profit. Structural properties of the optimal worst-case policy are characterized by using the robust Bellman (dynamic programming) equation, and arms are shown to be no longer independent under nature's worst-case response. One implication of this is that index policies are not optimal for the robust problem, and we propose, as an alternative, a robust version of the Gittins index. Performance bounds for the robust Gittins index are derived by using structural properties of the value function together with ideas from stochastic dynamic programming duality. We also investigate the performance of the robust Gittins index policy when applied to a Bayesian webpage design problem. In the presence of model misspecification, numerical experiments show that the robust Gittins index policy not only outperforms the classical Gittins index policy, but also substantially reduces the variability in the out-of-sample performance. The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment design, Internet advertising, dynamic pricing, and the control of queues. The standard mathematical formulation for a bandit problem makes the strong assumption that the decision maker has a full characterization of the joint distribution of the rewards, and that ″arms″ under this distribution are independent. These assumptions are not satisfied in many applications, and the outof-sample performance of policies that optimize a misspecified model can be poor. Motivated by these concerns, we formulate a robust bandit problem in which a decision maker accounts for distrust in the nominal model by solving a worst-case problem against an adversary (″nature″) who has the ability to alter the underlying reward distribution and does so to minimize the decision maker's expected total profit. Structural properties of the optimal worst-case policy are characterized by using the robust Bellman (dynamic programming) equation, and arms are shown to be no longer independent under nature's worst-case response. One implication of this is that index policies are not optimal for the robust problem, and we propose, as an alternative, a robust version of the Gittins index. Performance bounds for the robust Gittins index are derived by using structural properties of the value function together with ideas from stochastic dynamic programming duality. We also investigate the performance of the robust Gittins index policy when applied to a Bayesian webpage design problem. In the presence of model misspecification, numerical experiments show that the robust Gittins index policy not only outperforms the classical Gittins index policy, but also substantially reduces the variability in the out-of-sample performance. The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment design, Internet advertising, dynamic pricing, and the control of queues. The standard mathematical formulation for a bandit problem makes the strong assumption that the decision maker has a full characterization of the joint distribution of the rewards, and that "arms" under this distribution are independent. These assumptions are not satisfied in many applications, and the out-of- sample performance of policies that optimize a misspecified model can be poor. Motivated by these concerns, we formulate a robust bandit problem in which a decision maker accounts for distrust in the nominal model by solving a worst-case problem against an adversary ("nature") who has the ability to alter the underlying reward distribution and does so to minimize the decision maker's expected total profit. Structural properties of the optimal worst-case policy are characterized by using the robust Bellman (dynamic programming) equation, and arms are shown to be no longer independent under nature's worst-case response. One implication of this is that index policies are not optimal for the robust problem, and we propose, as an alternative, a robust version of the Gittins index. Performance bounds for the robust Gittins index are derived by using structural properties of the value function together with ideas from stochastic dynamic programming duality. We also investigate the performance of the robust Gittins index policy when applied to a Bayesian webpage design problem. In the presence of model misspecification, numerical experiments show that the robust Gittins index policy not only outperforms the classical Gittins index policy, but also substantially reduces the variability in the out-of-sample performance. Keywords: bandit problems; robust control; model uncertainty; relative entropy; games against nature History: Received February 28, 2013; accepted November 30, 2014, by Dimitris Bertsimas, optimization. Published online in Articles in Advance August 5, 2015. The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment design, Internet advertising, dynamic pricing, and the control of queues. The standard mathematical formulation for a bandit problem makes the strong assumption that the decision maker has a full characterization of the joint distribution of the rewards, and that “arms” under this distribution are independent. These assumptions are not satisfied in many applications, and the out-of-sample performance of policies that optimize a misspecified model can be poor. Motivated by these concerns, we formulate a robust bandit problem in which a decision maker accounts for distrust in the nominal model by solving a worst-case problem against an adversary (“nature”) who has the ability to alter the underlying reward distribution and does so to minimize the decision maker’s expected total profit. Structural properties of the optimal worst-case policy are characterized by using the robust Bellman (dynamic programming) equation, and arms are shown to be no longer independent under nature’s worst-case response. One implication of this is that index policies are not optimal for the robust problem, and we propose, as an alternative, a robust version of the Gittins index. Performance bounds for the robust Gittins index are derived by using structural properties of the value function together with ideas from stochastic dynamic programming duality. We also investigate the performance of the robust Gittins index policy when applied to a Bayesian webpage design problem. In the presence of model misspecification, numerical experiments show that the robust Gittins index policy not only outperforms the classical Gittins index policy, but also substantially reduces the variability in the out-of-sample performance. This paper was accepted by Dimitris Bertsimas, optimization. |
| Audience | Trade Academic |
| Author | Kim, Michael Jong Lim, Andrew E.B. |
| Author_xml | – sequence: 1 givenname: Michael Jong surname: Kim fullname: Kim, Michael Jong – sequence: 2 givenname: Andrew E.B. surname: Lim fullname: Lim, Andrew E.B. |
| BookMark | eNp1kctLAzEQh4MoWB9Xb0JF8OTWSTbZpEctvkBRRM8hm01qyj5qkgX9702pqJVKIIHh-zLD_HbQZtu1BqEDDCNMBD9r2qBHBDAbEczyDTTAjBQZY4A30QCAsAyPYbyNdkKYAQAXvBigo6eu7EMc3vd1dMo3phpeqLZycfjou7I2TdhDW1bVwex_vbvo5eryeXKT3T1c307O7zLNAWImCqA5sRobogTnmmFjqRECBGWqSvWKMG4tAdCCKSxwKSwvNRc6CaWBfBcdL_-d--6tNyHKWdf7NrWUpOACQ8Go-KGmqjbStbaLXunGBS3PKWV5wSnkicrWUFPTGq_qtDXrUnmFH63h06lM4_Ra4WRFSEw073Gq-hDkKnj6C0yrdq0J6Qpu-hrDkl83iPZdCN5YOfeuUf5DYpCLlOUiZblIWS5STgL9I2gXVXRpHq9c_b92uNRmIXb-uwnNRc4gBfkJCjOzBQ |
| CitedBy_id | crossref_primary_10_1109_TAC_2017_2747405 crossref_primary_10_1080_24725854_2021_1973156 crossref_primary_10_1287_opre_2020_0464 crossref_primary_10_1109_TAC_2017_2731817 crossref_primary_10_1287_opre_2021_0393 crossref_primary_10_1287_moor_2019_1019 crossref_primary_10_1287_opre_2017_1631 crossref_primary_10_1016_j_ejor_2020_08_028 crossref_primary_10_1007_s00199_020_01328_3 crossref_primary_10_1287_opre_2021_2209 crossref_primary_10_1002_asmb_2355 crossref_primary_10_1111_poms_13239 crossref_primary_10_1287_opre_2019_1918 crossref_primary_10_1016_j_jmateco_2018_10_002 crossref_primary_10_1016_j_jmp_2024_102844 crossref_primary_10_1287_opre_2016_1495 crossref_primary_10_1016_j_ejor_2023_08_004 crossref_primary_10_1007_s10479_015_1965_7 crossref_primary_10_1016_j_ejor_2024_07_040 crossref_primary_10_1016_j_omega_2022_102780 crossref_primary_10_1287_opre_2022_2403 crossref_primary_10_1016_j_orl_2018_05_005 crossref_primary_10_3390_en17194883 crossref_primary_10_1017_jpr_2023_24 crossref_primary_10_1007_s10479_025_06821_3 crossref_primary_10_1007_s42488_020_00024_0 crossref_primary_10_1287_msom_2022_0325 crossref_primary_10_1287_opre_2020_2041 crossref_primary_10_1109_TAC_2019_2895253 |
| Cites_doi | 10.1109/TAC.2009.2031725 10.1109/TAC.1986.1104332 10.1287/opre.1050.0216 10.1016/0167-6911(90)90110-G 10.1016/S0167-6377(99)00016-4 10.1287/opre.1090.0796 10.1016/j.jet.2006.06.010 10.1109/9.85059 10.1137/050642885 10.1016/0196-8858(85)90002-8 10.1287/opre.1030.0065 10.1287/opre.1100.0866 10.1515/9781400829385 10.1016/j.jet.2005.06.006 10.1214/aos/1176344552 10.1287/moor.1040.0129 10.1287/educ.1063.0021 10.1111/j.2517-6161.1979.tb01068.x 10.1287/mnsc.1120.1518 10.1090/S0002-9904-1952-09620-8 10.1109/TAC.2015.2418672 10.1137/S0097539701398375 10.1109/9.847720 10.1007/s10898-012-9969-1 10.1111/j.2517-6161.1980.tb01111.x 10.1145/1273496.1273587 10.1109/SFCS.1995.492488 10.1137/S0363012992237273 10.1007/PL00011380 10.1016/j.orl.2012.08.010 10.1137/120878768 10.1007/BF01211853 10.1002/asmb.874 10.1109/TAC.1973.1100265 10.1287/moor.1080.0364 10.1002/9781118165904 10.1287/opre.2013.1164 10.1287/moor.23.4.769 10.1007/s10479-015-1965-7 10.1287/opre.1110.0999 10.2307/1426972 10.1016/j.ejor.2012.02.033 10.1016/S0022-0531(03)00097-8 10.1137/S0363012901383837 10.1287/mnsc.1060.0613 10.1111/j.1467-937X.2007.00464.x 10.1287/moor.21.2.257 10.1137/S0895479896298130 10.1287/moor.1120.0566 10.1017/CBO9780511546921 10.1111/j.2517-6161.1996.tb02080.x 10.1287/opre.1070.0385 10.1023/A:1013689704352 |
| ContentType | Journal Article |
| Copyright | 2016 INFORMS COPYRIGHT 2016 Institute for Operations Research and the Management Sciences COPYRIGHT 2016 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Jan 2016 |
| Copyright_xml | – notice: 2016 INFORMS – notice: COPYRIGHT 2016 Institute for Operations Research and the Management Sciences – notice: COPYRIGHT 2016 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Jan 2016 |
| DBID | AAYXX CITATION N95 8BJ FQK JBE |
| DOI | 10.1287/mnsc.2015.2153 |
| DatabaseName | CrossRef Gale Business: Insights International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1526-5501 |
| EndPage | 285 |
| ExternalDocumentID | A445367403 10_1287_mnsc_2015_2153 43835004 |
| GroupedDBID | -~X 18M 29M 2AX 3EH 3R3 4.4 5GY 7WY 7X5 85S 8FL 8VB AAAZS AABCJ AAIKC AAMNW AAWTO AAXLS ABAWQ ABBHK ABDNZ ABIVO ABKVW ABLWH ABPPZ ABUWG ABXSQ ABYYQ ABZEH ACGFO ACHJO ACHQT ACNCT ACXJH ADEPB ADGDI ADMHG ADNFJ ADNWM ADULT AEGXH AEILP AEMOZ AENEX AEUPB AFAIT AFTQD AGKTX AHAJD AHQJS AIAGR AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS APTMU ASMEE AZQEC BAAKF BENPR BEZIV BPHCQ CBXGM CCKSF CS3 CYVLN DU5 DWQXO EBA EBE EBO EBR EBS EBU EJD F5P FRNLG FYUFA GENNL GNUQQ GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_RESEARCH IAO IEA IOF IPC IPO IPSME IPY ISL ISM ITC JAAYA JAV JBC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU JST K1G K60 K6~ M0C M2M MV1 N95 NEJ NIEAY OFU P2P QWB REX RPU SA0 SJN TH9 TN5 U5U WH7 XSW XZL Y99 YNT YZZ ZL0 .-4 0R1 1OL 41~ 8AO 8FI 8FJ AADHG AAYJJ AAYXX ABDPE ABEFU ABUFD ACTDY ACYGS ADBBV AFFDN AFFHD AFFNX AFKRA AQUVI BVXVI CCPQU CITATION GUPYA HGD HVGLF H~9 LPU M0T P-O PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQQKQ PROAC PSYQQ RNS UKHRP UKR VOH YYP ZCG 8BJ FQK JBE |
| ID | FETCH-LOGICAL-c700t-860432fc1e2a877c51ef4e880845adfc1d257ff200c85a181b8f7bc78ce2abe03 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000372114300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-1909 |
| IngestDate | Mon Nov 10 06:32:15 EST 2025 Mon Oct 20 22:15:29 EDT 2025 Sat Nov 29 11:28:17 EST 2025 Mon Oct 20 16:43:07 EDT 2025 Thu Oct 16 16:18:54 EDT 2025 Sat Nov 29 09:04:36 EST 2025 Tue Nov 18 21:19:39 EST 2025 Sat Nov 29 04:10:06 EST 2025 Thu May 29 13:25:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c700t-860432fc1e2a877c51ef4e880845adfc1d257ff200c85a181b8f7bc78ce2abe03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2678106548 |
| PQPubID | 40737 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2678106548 gale_infotracmisc_A445367403 gale_infotracgeneralonefile_A445367403 gale_infotracacademiconefile_A445367403 gale_incontextgauss__A445367403 gale_businessinsightsgauss_A445367403 crossref_primary_10_1287_mnsc_2015_2153 crossref_citationtrail_10_1287_mnsc_2015_2153 jstor_primary_43835004 |
| PublicationCentury | 2000 |
| PublicationDate | 20160101 2016-01-00 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 1 year: 2016 text: 20160101 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Linthicum |
| PublicationPlace_xml | – name: Linthicum |
| PublicationTitle | Management science |
| PublicationYear | 2016 |
| Publisher | Institute for Operations Research and the Management Sciences |
| Publisher_xml | – name: Institute for Operations Research and the Management Sciences |
| References | B20 B21 B22 B23 B25 B26 B27 B28 B29 B30 B31 B33 B34 B35 B36 B37 B39 Bertsekas DP (B9) 1995 B1 B2 White JM (B52) 2013 B3 B4 B5 B6 B7 B8 Kleinberg R (B32) 2004 B40 B41 B42 B43 B44 B45 B46 B47 B48 Lim AEB (B38) 2011; 21 B50 B51 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B16 B17 B18 B19 Gittins JC (B24) 1979; 41 Whittle P (B53) 1980; 42 |
| References_xml | – ident: B39 doi: 10.1109/TAC.2009.2031725 – ident: B51 doi: 10.1109/TAC.1986.1104332 – volume-title: Dynamic Programming and Optimal Control Volume II year: 1995 ident: B9 – start-page: 697 volume-title: Advances in Neural Information Processing Systems 17 year: 2004 ident: B32 – ident: B40 doi: 10.1287/opre.1050.0216 – ident: B55 doi: 10.1016/0167-6911(90)90110-G – ident: B7 doi: 10.1016/S0167-6377(99)00016-4 – ident: B13 doi: 10.1287/opre.1090.0796 – ident: B27 doi: 10.1016/j.jet.2006.06.010 – ident: B56 doi: 10.1109/9.85059 – ident: B45 doi: 10.1137/050642885 – ident: B33 doi: 10.1016/0196-8858(85)90002-8 – ident: B11 doi: 10.1287/opre.1030.0065 – ident: B46 doi: 10.1287/opre.1100.0866 – ident: B28 doi: 10.1515/9781400829385 – ident: B26 doi: 10.1016/j.jet.2005.06.006 – ident: B20 doi: 10.1214/aos/1176344552 – ident: B30 doi: 10.1287/moor.1040.0129 – ident: B36 doi: 10.1287/educ.1063.0021 – volume: 41 start-page: 148 issue: 2 year: 1979 ident: B24 publication-title: J. Royal Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1979.tb01068.x – ident: B37 doi: 10.1287/mnsc.1120.1518 – ident: B44 doi: 10.1090/S0002-9904-1952-09620-8 – ident: B58 doi: 10.1109/TAC.2015.2418672 – ident: B4 doi: 10.1137/S0097539701398375 – ident: B43 doi: 10.1109/9.847720 – ident: B34 doi: 10.1007/s10898-012-9969-1 – volume: 42 start-page: 143 issue: 2 year: 1980 ident: B53 publication-title: J. Royal Statist. Soc. Ser. B doi: 10.1111/j.2517-6161.1980.tb01111.x – ident: B42 doi: 10.1145/1273496.1273587 – ident: B3 doi: 10.1109/SFCS.1995.492488 – ident: B1 doi: 10.1137/S0363012992237273 – ident: B8 doi: 10.1007/PL00011380 – ident: B29 doi: 10.1016/j.orl.2012.08.010 – ident: B5 doi: 10.1137/120878768 – ident: B18 doi: 10.1007/BF01211853 – ident: B48 doi: 10.1002/asmb.874 – ident: B31 doi: 10.1109/TAC.1973.1100265 – ident: B17 doi: 10.1287/moor.1080.0364 – ident: B19 doi: 10.1002/9781118165904 – ident: B12 doi: 10.1287/opre.2013.1164 – ident: B6 doi: 10.1287/moor.23.4.769 – ident: B15 doi: 10.1007/s10479-015-1965-7 – ident: B47 doi: 10.1287/opre.1110.0999 – ident: B54 doi: 10.2307/1426972 – ident: B41 doi: 10.1016/j.ejor.2012.02.033 – ident: B22 doi: 10.1016/S0022-0531(03)00097-8 – ident: B25 doi: 10.1137/S0363012901383837 – ident: B14 doi: 10.1287/mnsc.1060.0613 – ident: B23 doi: 10.1111/j.1467-937X.2007.00464.x – ident: B10 doi: 10.1287/moor.21.2.257 – ident: B21 doi: 10.1137/S0895479896298130 – volume-title: Bandit Algorithms for Website Optimization: Developing, Deploying, Debugging year: 2013 ident: B52 – ident: B57 doi: 10.1287/moor.1120.0566 – ident: B16 doi: 10.1017/CBO9780511546921 – volume: 21 start-page: 643 issue: 4 year: 2011 ident: B38 publication-title: Math. Finance – ident: B50 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: B35 doi: 10.1287/opre.1070.0385 – ident: B2 doi: 10.1023/A:1013689704352 |
| SSID | ssj0007876 |
| Score | 2.3914523 |
| Snippet | The multiarmed bandit problem is a popular framework for studying the exploration versus exploitation trade-off. Recent applications include dynamic assortment... |
| SourceID | proquest gale crossref jstor |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 264 |
| SubjectTerms | Advertisements Algorithms Bayesian analysis Decision making Decisions Distribution Dynamic programming Entropy (Information theory) Experiments Exploitation Game theory Indexes Internet Mathematical research Online advertising Profitability Property Rewards Stochastic models Tradeoff analysis |
| Title | Robust Multiarmed Bandit Problems |
| URI | https://www.jstor.org/stable/43835004 https://www.proquest.com/docview/2678106548 |
| Volume | 62 |
| WOSCitedRecordID | wos000372114300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: 7WY dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global (OCUL) customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: M0C dateStart: 19870101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: BENPR dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: M2M dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQixAXxKtioZRFAnpYpc3LsXNsq624dKmqIsopchx7hcRmV-ss6s9nJnZeXZDKgYuVdWbjx-eMx874G0I-MCEkj2TusYJrL1aB9niYR15EIy0LP86lKOpgE2w24zc36aULxmnqcAKsLPntbbr6r1BDHoCNR2f_Ae72oZAB1wA6pAA7pPcC_mqZb0xlPQXFeoEWJh5dqSYudozp26Od98vEzYXdR_lFz60ed9nnrfOOvWV9ISfTo9P-1kFwd-ugc0dAj8YvK7V23neN01_rxNmrjFM5_Z1EjIgLdkXaV6pJuDV4nIa0pOVbmjvEvY_zRWmQVzKgR2CKRN0c1XyXn9mInHcosk_imEYJi5H1dTdkNEWFx759b6dk0EpJE7sXa-rYO6HM42GJA-vEzdHWT3Vrrq4NkOun5IlbOYxPLOLPyANVPiePmoMLL8h7C_y4A35sgR83wL8kX8-n12efPRcAw5PM9yuPJ0iYqGWgQsEZkzRQOlagcXlMRQH5BShcrWH0S04F2Go51yyXjGOUt1z50R7ZKZelekXGoc5TEaeaJorikj6N4aka7N1CQ1G-HhGvaXgmHTs8Bin5meEqEToqw47KsKMy7KgROWzlV5YX5a-SH7EfMxdUFRKD205mLjbGZB10I_KulkNSkhK9nqzAQOLQSegl1E0Kd4IEWogkZgPJTwPJuaVw_5Pg_kAQdKsc3N6rwW-biMS-FJQN_K8ZDZl7900WguEX4GFt_vqebX5DHnfv5T7ZqdYb9ZY8lL-qH2Z9UI_hA7J7Op1dXsGvC_8M0_DiN_64rfk |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+multiarmed+bandit+problems&rft.jtitle=Management+science&rft.au=Kim%2C+Michael+Jong&rft.au=Lim%2C+Andrew+E.B&rft.date=2016-01-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0025-1909&rft.volume=62&rft.issue=1&rft.spage=264&rft_id=info:doi/10.1287%2Fmnsc.2015.2153&rft.externalDBID=N95&rft.externalDocID=A445367403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon |