Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads

Background Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequenci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 15; H. 1; S. 182
Hauptverfasser: Jiang, Hongshan, Lei, Rong, Ding, Shou-Wei, Zhu, Shuifang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 12.06.2014
BioMed Central Ltd
Springer Nature B.V
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. Results To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm , which has O ( k n ) expected time with O ( m ) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer ( https://sourceforge.net/projects/skewer ). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. Conclusions Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
AbstractList Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing.BACKGROUNDAdapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing.To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing.RESULTSTo improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing.Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.CONCLUSIONSSkewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
Background: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. Results: To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(k n) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer ( https://sourceforge.net/projects/skewer ). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. Conclusions: Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
Background Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. Results To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm , which has O ( k n ) expected time with O ( m ) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer ( https://sourceforge.net/projects/skewer ). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. Conclusions Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
Background Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. Results To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer ( Conclusions Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound. Keywords: Next generation sequencing, Adapter trimming, Approximate string matching, Local sequence alignment, Barcode demultiplexing
Doc number: 182 Abstract Background: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. Results: To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm , which has O (k n ) expected time with O (m ) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer ). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. Conclusions: Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments. Although typically used in small RNA sequencing, adapter trimming is also used widely in other applications, such as genome DNA sequencing and transcriptome RNA/cDNA sequencing, where fragments shorter than a read are sometimes obtained because of the limitations of NGS protocols. For the newly emerged Nextera long mate-pair (LMP) protocol, junction adapters are located in the middle of all properly constructed fragments; hence, adapter trimming is essential to gain the correct paired reads. However, our investigations have shown that few adapter trimming tools meet both efficiency and accuracy requirements simultaneously. The performances of these tools can be even worse for paired-end and/or mate-pair sequencing. To improve the efficiency of adapter trimming, we devised a novel algorithm, the bit-masked k-difference matching algorithm, which has O(kn) expected time with O(m) space, where k is the maximum number of differences allowed, n is the read length, and m is the adapter length. This algorithm makes it possible to fully enumerate all candidates that meet a specified threshold, e.g. error ratio, within a short period of time. To improve the accuracy of this algorithm, we designed a simple and easy-to-explain statistical scoring scheme to evaluate candidates in the pattern matching step. We also devised scoring schemes to fully exploit the paired-end/mate-pair information when it is applicable. All these features have been implemented in an industry-standard tool named Skewer (https://sourceforge.net/projects/skewer). Experiments on simulated data, real data of small RNA sequencing, paired-end RNA sequencing, and Nextera LMP sequencing showed that Skewer outperforms all other similar tools that have the same utility. Further, Skewer is considerably faster than other tools that have comparative accuracies; namely, one times faster for single-end sequencing, more than 12 times faster for paired-end sequencing, and 49% faster for LMP sequencing. Skewer achieved as yet unmatched accuracies for adapter trimming with low time bound.
ArticleNumber 182
Audience Academic
Author Ding, Shou-Wei
Zhu, Shuifang
Jiang, Hongshan
Lei, Rong
AuthorAffiliation 1 Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, Beijing, 100029 China
2 Department of Plant Pathology and Microbiology and Institute for Integrative Biology, University of California, Riverside, 900 University Ave, 92521 Riverside, USA
AuthorAffiliation_xml – name: 2 Department of Plant Pathology and Microbiology and Institute for Integrative Biology, University of California, Riverside, 900 University Ave, 92521 Riverside, USA
– name: 1 Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Huixinli 241, Beijing, 100029 China
Author_xml – sequence: 1
  givenname: Hongshan
  surname: Jiang
  fullname: Jiang, Hongshan
  email: hongshan.jiang@gmail.com
  organization: Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine
– sequence: 2
  givenname: Rong
  surname: Lei
  fullname: Lei, Rong
  organization: Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine
– sequence: 3
  givenname: Shou-Wei
  surname: Ding
  fullname: Ding, Shou-Wei
  organization: Department of Plant Pathology and Microbiology and Institute for Integrative Biology, University of California
– sequence: 4
  givenname: Shuifang
  surname: Zhu
  fullname: Zhu, Shuifang
  organization: Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24925680$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNUbPt070oG3NjF1GS-krgQSqlaKAhWVy5CXnIzps7LPJOMH_-9d3xtfa-oSAIJye8cbm7OIdkLYwBCHjN6zJjonrOGs7JitC0ZTlHdIwe3R3tb-31ymNIVpYwL2j4g-1Ujq7YT9IB8vPwM3yC-KHThdMqFDrbQxkxRZyi01esMscjRr1a4ujEWAb7nsocASPgxFAm-TBCMD32x1j6CLQEtImibHpL7Tg8JHl2vC_Lh1dn70zflxdvX56cnF6XppMyldY1saFsZC1UtNWvBcQfSCrDOdZUTltd11TAtlqCNrFuLlTMhhamXlnNaL8jLje96Wq7AGgg56kGtsWodf6hRe7V7E_wn1Y9fVUN5U4sWDZ5dG8QRX5OyWvlkYBh0gHFKirUNFx2nHfsftKJUzsYL8vQOejVOMWAnZopVUsiu_k31egDlgxuxRDObqpO2lk1HheBIHf-BwmFh5Q2Gwnk83xEc7QiQyfhzvZ5SUueX73bZJ9v9u23cTUoQ6DaAiWNKEZwyPv_6fqzCD4pRNcdRzXlTc97wgQrjiEJ6R3jj_Q8J20gSoqGHuNW1v2l-ArWa7d4
CitedBy_id crossref_primary_10_1186_s13020_020_0298_x
crossref_primary_10_7554_eLife_49117
crossref_primary_10_1007_s11738_020_3013_8
crossref_primary_10_1007_s00401_024_02694_1
crossref_primary_10_3389_fmars_2024_1529684
crossref_primary_10_1016_j_ygeno_2024_110858
crossref_primary_10_1007_s00253_023_12863_z
crossref_primary_10_1016_j_molcel_2022_12_029
crossref_primary_10_1016_j_cmet_2018_01_014
crossref_primary_10_1007_s12264_024_01324_w
crossref_primary_10_1016_j_molcel_2019_04_008
crossref_primary_10_1128_Spectrum_00287_21
crossref_primary_10_1038_s42003_024_07310_2
crossref_primary_10_1128_IAI_00270_21
crossref_primary_10_3389_fpls_2022_857016
crossref_primary_10_1038_s41396_020_0665_8
crossref_primary_10_3389_fimmu_2023_1158493
crossref_primary_10_1111_plb_12955
crossref_primary_10_1093_gigascience_gix120
crossref_primary_10_1038_s41467_025_57363_y
crossref_primary_10_1038_s41467_021_24575_x
crossref_primary_10_1002_1873_3468_13549
crossref_primary_10_1002_jmv_24839
crossref_primary_10_1093_nar_gkaa500
crossref_primary_10_1136_bmjdrc_2021_002285
crossref_primary_10_1210_endocr_bqac031
crossref_primary_10_1128_mra_00957_22
crossref_primary_10_3389_fmicb_2022_890686
crossref_primary_10_1093_bib_bbab030
crossref_primary_10_1111_mms_13195
crossref_primary_10_1038_s41525_024_00390_3
crossref_primary_10_1016_j_ymthe_2024_04_029
crossref_primary_10_1080_23802359_2020_1749157
crossref_primary_10_1016_j_celrep_2025_115673
crossref_primary_10_1371_journal_pone_0222004
crossref_primary_10_3389_fpls_2019_01249
crossref_primary_10_1038_s41398_019_0517_3
crossref_primary_10_3390_jof8010061
crossref_primary_10_1038_s41598_020_68394_4
crossref_primary_10_1038_s41536_023_00316_0
crossref_primary_10_1038_s41467_024_49473_w
crossref_primary_10_1038_s41586_022_04416_7
crossref_primary_10_3390_v16101538
crossref_primary_10_1128_mra_01162_24
crossref_primary_10_1080_23802359_2020_1749167
crossref_primary_10_1016_j_ebiom_2024_105453
crossref_primary_10_1016_j_gene_2024_148984
crossref_primary_10_1016_j_molcel_2022_11_002
crossref_primary_10_1080_23802359_2020_1749166
crossref_primary_10_3390_genes12101622
crossref_primary_10_1038_s41467_022_34063_5
crossref_primary_10_1186_s13020_021_00502_6
crossref_primary_10_1038_s41593_020_0650_6
crossref_primary_10_1242_dmm_049463
crossref_primary_10_1038_s41536_019_0079_2
crossref_primary_10_1038_s41467_025_63031_y
crossref_primary_10_1016_j_molcel_2025_01_017
crossref_primary_10_1016_j_cell_2021_05_009
crossref_primary_10_3390_ijms231911191
crossref_primary_10_3390_cells11203266
crossref_primary_10_1093_protein_gzz022
crossref_primary_10_1038_s41435_020_00118_0
crossref_primary_10_1038_srep45125
crossref_primary_10_3389_fpls_2021_645735
crossref_primary_10_1007_s12264_024_01302_2
crossref_primary_10_1186_s13024_022_00547_7
crossref_primary_10_1111_eva_13229
crossref_primary_10_1016_j_dnarep_2021_103172
crossref_primary_10_1038_s41598_018_28217_z
crossref_primary_10_1038_s41598_021_90938_5
crossref_primary_10_7717_peerj_7170
crossref_primary_10_1186_s12866_025_04146_6
crossref_primary_10_3389_fmicb_2021_743126
crossref_primary_10_1186_s12881_019_0795_x
crossref_primary_10_1007_s12672_020_00377_3
crossref_primary_10_1016_j_stem_2023_12_012
crossref_primary_10_1073_pnas_2016950118
crossref_primary_10_3389_fonc_2023_1200387
crossref_primary_10_1007_s11033_025_11060_7
crossref_primary_10_3390_ijms222212461
crossref_primary_10_1093_nar_gky171
crossref_primary_10_3897_vz_74_e125958
crossref_primary_10_3389_fped_2021_649043
crossref_primary_10_3390_biology11010068
crossref_primary_10_1016_j_jss_2022_04_017
crossref_primary_10_3390_ijms21186762
crossref_primary_10_1038_s41467_020_16051_9
crossref_primary_10_3390_biomedicines9010056
crossref_primary_10_1016_j_indcrop_2022_115379
crossref_primary_10_1111_mec_17271
crossref_primary_10_1186_s13046_024_03211_8
crossref_primary_10_3389_fsufs_2021_644230
crossref_primary_10_2217_fon_2020_1183
crossref_primary_10_1016_j_psj_2022_102097
crossref_primary_10_1371_journal_pone_0280354
crossref_primary_10_1016_j_celrep_2025_115237
crossref_primary_10_1038_srep20200
crossref_primary_10_1371_journal_pgen_1006404
crossref_primary_10_1038_s41419_017_0046_z
crossref_primary_10_1093_nar_gkaa551
crossref_primary_10_1016_j_chom_2021_08_001
crossref_primary_10_1038_s41467_021_24967_z
crossref_primary_10_1038_s41598_018_20372_7
crossref_primary_10_1038_s41591_021_01623_z
crossref_primary_10_1016_j_stem_2020_06_015
crossref_primary_10_1073_pnas_2101164118
crossref_primary_10_1016_j_molcel_2024_08_030
crossref_primary_10_2196_50733
crossref_primary_10_3389_fmicb_2019_02461
crossref_primary_10_3390_genes11010050
crossref_primary_10_1128_mra_01070_22
crossref_primary_10_1128_MRA_01255_19
crossref_primary_10_3389_fmicb_2021_705679
crossref_primary_10_1038_s41467_022_34899_x
crossref_primary_10_1038_s41598_017_13347_7
crossref_primary_10_1158_0008_5472_CAN_25_0999
crossref_primary_10_1101_gr_198473_115
crossref_primary_10_1038_s41467_021_21021_w
crossref_primary_10_1093_genetics_iyae032
crossref_primary_10_1134_S1022795424701795
crossref_primary_10_1371_journal_pbio_2002266
crossref_primary_10_3390_cells10081923
crossref_primary_10_1007_s11230_023_10106_3
crossref_primary_10_1186_s13104_016_1900_2
crossref_primary_10_1038_s41564_022_01252_3
crossref_primary_10_1101_gr_259044_119
crossref_primary_10_1371_journal_ppat_1009861
crossref_primary_10_1099_jgv_0_001749
crossref_primary_10_1128_AAC_01324_19
crossref_primary_10_1111_nph_20463
crossref_primary_10_1128_mbio_01320_25
crossref_primary_10_1111_mec_14892
crossref_primary_10_3390_ijms251910698
crossref_primary_10_1016_j_yexcr_2023_113819
crossref_primary_10_1093_nar_gkx1263
crossref_primary_10_1084_jem_20201354
crossref_primary_10_1371_journal_pone_0209694
crossref_primary_10_1016_j_jid_2023_11_006
crossref_primary_10_1038_s41588_021_00880_5
crossref_primary_10_1038_s41598_023_29782_8
crossref_primary_10_1007_s10530_024_03386_3
crossref_primary_10_1093_molbev_msaf057
crossref_primary_10_1093_nar_gkad612
crossref_primary_10_3389_fpls_2025_1543229
crossref_primary_10_1038_s41598_019_46550_9
crossref_primary_10_1038_s41591_024_03040_4
crossref_primary_10_5114_bta_2023_132775
crossref_primary_10_1093_brain_awab403
crossref_primary_10_1371_journal_pcbi_1011001
crossref_primary_10_1111_andr_12832
crossref_primary_10_7554_eLife_66063
crossref_primary_10_1186_s12864_021_07788_8
crossref_primary_10_1371_journal_pone_0247928
crossref_primary_10_1016_j_jaci_2022_01_028
crossref_primary_10_1038_s44161_023_00219_9
crossref_primary_10_1093_ismeco_ycae112
crossref_primary_10_1016_j_aquatox_2019_105230
crossref_primary_10_1016_j_ijantimicag_2019_03_001
crossref_primary_10_1093_ve_veac065
crossref_primary_10_1371_journal_ppat_1009602
crossref_primary_10_1016_j_cell_2024_02_023
crossref_primary_10_1038_s41590_024_01814_z
crossref_primary_10_3390_cancers13122954
crossref_primary_10_1002_ps_8775
crossref_primary_10_1002_mbo3_1286
crossref_primary_10_1186_s43556_020_00023_y
crossref_primary_10_1371_journal_pone_0266430
crossref_primary_10_1186_s12862_021_01773_1
crossref_primary_10_1080_21505594_2024_2348251
crossref_primary_10_3390_vetsci12020099
crossref_primary_10_3389_fphar_2021_746910
crossref_primary_10_1093_zoolinnean_zlad063
crossref_primary_10_1128_mSphere_01071_20
crossref_primary_10_1038_s41590_019_0343_z
crossref_primary_10_1002_ece3_5804
crossref_primary_10_1534_genetics_120_303231
crossref_primary_10_1186_s12931_022_02156_w
crossref_primary_10_1016_j_indcrop_2020_112567
crossref_primary_10_1038_s41698_022_00298_0
crossref_primary_10_1093_nar_gkac356
crossref_primary_10_1016_j_jse_2025_06_004
crossref_primary_10_7554_eLife_10005
crossref_primary_10_1038_s44318_024_00035_2
crossref_primary_10_3390_v13060982
crossref_primary_10_1016_j_funeco_2020_100921
crossref_primary_10_1016_j_immuni_2019_12_002
crossref_primary_10_1136_gutjnl_2024_333353
crossref_primary_10_3390_ijms26010056
crossref_primary_10_1038_s41467_020_18781_2
crossref_primary_10_1182_blood_2021011798
crossref_primary_10_1038_s41698_025_00860_6
crossref_primary_10_1007_s00204_020_02969_y
crossref_primary_10_3390_plants13233439
crossref_primary_10_3389_fgene_2021_699280
crossref_primary_10_1093_molbev_msz010
crossref_primary_10_1002_adma_202306158
crossref_primary_10_1038_s41598_020_67679_y
crossref_primary_10_1007_s10295_020_02328_x
crossref_primary_10_1186_s12920_019_0557_9
crossref_primary_10_3389_fmicb_2021_812436
crossref_primary_10_3390_ph16121723
crossref_primary_10_1515_jpm_2025_0214
crossref_primary_10_1016_j_chom_2019_03_001
crossref_primary_10_1016_j_yexcr_2019_03_028
crossref_primary_10_12688_wellcomeopenres_19680_1
crossref_primary_10_12688_wellcomeopenres_19680_2
crossref_primary_10_1186_s12915_023_01665_4
crossref_primary_10_3389_fgene_2021_740437
crossref_primary_10_7554_eLife_70619
crossref_primary_10_1371_journal_pone_0198957
crossref_primary_10_1016_j_omtm_2020_03_024
crossref_primary_10_3389_fcell_2024_1344070
crossref_primary_10_7554_eLife_59974
crossref_primary_10_3389_fmicb_2024_1476845
crossref_primary_10_1073_pnas_1911024116
crossref_primary_10_1186_s13068_025_02688_5
crossref_primary_10_1016_j_virol_2023_02_014
crossref_primary_10_1159_000542220
crossref_primary_10_1371_journal_pgen_1010063
crossref_primary_10_2196_30291
crossref_primary_10_1016_j_xgen_2025_100780
crossref_primary_10_1146_annurev_phyto_080614_120030
crossref_primary_10_3389_fcimb_2022_922031
crossref_primary_10_1038_s41467_022_33176_1
crossref_primary_10_3389_fmicb_2016_01213
crossref_primary_10_1038_s41467_018_06353_4
crossref_primary_10_1126_scitranslmed_adk0642
crossref_primary_10_1016_j_cub_2024_04_050
crossref_primary_10_1038_s41598_024_74002_6
crossref_primary_10_1016_j_ympev_2018_12_032
crossref_primary_10_1111_1462_2920_16578
crossref_primary_10_3390_jof10030180
crossref_primary_10_1016_j_ecoenv_2019_110116
crossref_primary_10_1016_j_vaccine_2023_07_019
crossref_primary_10_1111_mec_15231
crossref_primary_10_1371_journal_pbio_2004830
crossref_primary_10_1016_j_molcel_2018_06_015
crossref_primary_10_1126_science_aav1898
crossref_primary_10_1126_sciimmunol_ads1556
crossref_primary_10_1016_j_ympev_2023_107708
crossref_primary_10_3390_cells14110774
crossref_primary_10_1038_s41588_018_0278_6
crossref_primary_10_1016_j_cell_2025_03_031
crossref_primary_10_1093_femsyr_fox049
crossref_primary_10_1183_23120541_00150_2017
crossref_primary_10_1016_j_ympev_2025_108357
crossref_primary_10_7554_eLife_35989
crossref_primary_10_1289_EHP3281
crossref_primary_10_3389_fcell_2021_663032
crossref_primary_10_1128_mra_00001_25
crossref_primary_10_1186_s13023_022_02424_4
crossref_primary_10_1371_journal_pone_0206586
crossref_primary_10_1371_journal_pone_0173421
crossref_primary_10_3390_genes16070739
crossref_primary_10_1038_s41598_020_78876_0
crossref_primary_10_1126_scitranslmed_adj7308
crossref_primary_10_1139_cjb_2020_0014
crossref_primary_10_1167_iovs_63_9_4
crossref_primary_10_3201_eid2711_210124
crossref_primary_10_1016_j_jbc_2023_104768
crossref_primary_10_1126_science_aam9425
crossref_primary_10_1093_femsec_fiae140
crossref_primary_10_1016_j_plaphy_2019_12_035
crossref_primary_10_1002_humu_24064
crossref_primary_10_1038_s41390_020_01347_9
crossref_primary_10_3390_biology11111681
crossref_primary_10_1128_spectrum_01906_24
crossref_primary_10_1038_s41398_017_0022_5
crossref_primary_10_1186_s12864_017_3840_1
crossref_primary_10_1038_s41598_020_76313_w
crossref_primary_10_1371_journal_pone_0231752
crossref_primary_10_1016_j_molcel_2022_01_024
crossref_primary_10_1186_s12864_016_3445_0
crossref_primary_10_1371_journal_pgen_1008229
crossref_primary_10_1093_jhered_esaa031
crossref_primary_10_1128_MRA_00618_23
crossref_primary_10_1073_pnas_1718406115
crossref_primary_10_1128_mra_00575_24
crossref_primary_10_1016_j_ecoenv_2019_110132
crossref_primary_10_1016_j_neuron_2019_12_007
crossref_primary_10_1016_j_ccell_2025_02_014
crossref_primary_10_1126_scitranslmed_abj3860
crossref_primary_10_3390_ijms252413349
crossref_primary_10_1186_s12859_016_1069_7
crossref_primary_10_1016_j_cub_2020_01_064
crossref_primary_10_1126_sciimmunol_aay3994
crossref_primary_10_1111_gbb_12619
crossref_primary_10_1186_s12915_022_01425_w
crossref_primary_10_1099_mgen_0_000492
crossref_primary_10_1016_j_plaphy_2019_12_019
crossref_primary_10_3390_medicina61091649
crossref_primary_10_1038_s41598_020_77606_w
crossref_primary_10_1038_s41598_018_19430_x
crossref_primary_10_1371_journal_pgen_1010770
crossref_primary_10_3389_fmicb_2018_01581
crossref_primary_10_1016_j_celrep_2023_113322
crossref_primary_10_1038_s41598_020_67798_6
crossref_primary_10_1016_j_ebiom_2023_104778
crossref_primary_10_1038_s41598_019_38532_8
crossref_primary_10_1002_pmic_201700359
crossref_primary_10_1016_j_jviromet_2019_113703
crossref_primary_10_1093_jac_dky291
crossref_primary_10_1128_aem_01320_23
crossref_primary_10_1371_journal_pone_0287524
crossref_primary_10_1016_j_jcz_2021_06_002
crossref_primary_10_3390_life11060540
crossref_primary_10_3390_ijms26125839
crossref_primary_10_3390_ijms24054262
crossref_primary_10_1038_s41588_021_00875_2
crossref_primary_10_1080_23802359_2021_1944388
crossref_primary_10_1038_s43018_024_00787_0
crossref_primary_10_1038_s41590_021_00928_y
crossref_primary_10_3390_genes13091664
crossref_primary_10_1098_rsos_201788
crossref_primary_10_1099_jgv_0_001307
crossref_primary_10_1038_s41396_019_0438_4
crossref_primary_10_1126_science_aaz5284
crossref_primary_10_1016_j_ympev_2024_108282
crossref_primary_10_1186_s13099_021_00409_5
crossref_primary_10_3390_ijms22094936
crossref_primary_10_1016_j_ympev_2024_108043
crossref_primary_10_1515_jpm_2024_0310
crossref_primary_10_1016_j_ebiom_2023_104555
crossref_primary_10_3389_fgene_2018_00094
crossref_primary_10_3390_plants13131765
crossref_primary_10_1016_j_cub_2025_03_026
crossref_primary_10_1111_mec_15891
crossref_primary_10_1016_j_nbd_2024_106469
crossref_primary_10_1099_mgen_0_000434
crossref_primary_10_1038_s41592_025_02648_9
crossref_primary_10_1016_j_cbd_2020_100714
crossref_primary_10_1016_j_nbd_2024_106460
crossref_primary_10_1038_s41467_024_54543_0
crossref_primary_10_15252_embj_2019103209
crossref_primary_10_7717_peerj_5428
crossref_primary_10_3390_ijms25021115
crossref_primary_10_1186_s13104_024_07035_9
crossref_primary_10_1089_omi_2023_0078
crossref_primary_10_1016_j_stem_2024_08_007
crossref_primary_10_1038_s41419_021_03539_5
crossref_primary_10_1016_j_margen_2019_03_004
crossref_primary_10_1016_j_devcel_2018_12_026
crossref_primary_10_3389_fgene_2022_764534
crossref_primary_10_1038_s41598_018_37177_3
crossref_primary_10_1038_s41564_019_0513_7
crossref_primary_10_1038_s41588_019_0477_9
crossref_primary_10_1038_s41467_020_15047_9
crossref_primary_10_1016_j_ympev_2024_108237
crossref_primary_10_1128_mra_00101_24
crossref_primary_10_1016_j_devcel_2017_02_021
crossref_primary_10_1128_mSphere_00354_17
crossref_primary_10_1159_000539994
crossref_primary_10_1126_sciimmunol_aas9822
crossref_primary_10_1186_s40850_017_0013_2
crossref_primary_10_1038_s41467_023_40315_9
crossref_primary_10_1093_nar_gkz855
crossref_primary_10_3389_fmicb_2023_1092216
crossref_primary_10_2217_epi_2023_0351
crossref_primary_10_3389_fonc_2021_650891
crossref_primary_10_1371_journal_pone_0205407
crossref_primary_10_1016_j_jid_2019_09_026
crossref_primary_10_3390_cells13201735
crossref_primary_10_1534_genetics_116_194050
crossref_primary_10_1093_hmg_ddac010
crossref_primary_10_3390_genes15080996
crossref_primary_10_3389_fgene_2021_593515
crossref_primary_10_1002_ana_25480
crossref_primary_10_1016_j_apsb_2022_11_015
crossref_primary_10_1002_path_6304
crossref_primary_10_1016_j_humpath_2021_10_002
crossref_primary_10_3390_genes13020242
crossref_primary_10_15252_emmm_202217175
crossref_primary_10_1007_s10592_025_01695_1
crossref_primary_10_1093_gigascience_giz022
crossref_primary_10_3389_fmicb_2018_03140
crossref_primary_10_1128_msystems_01368_23
crossref_primary_10_3389_fmicb_2020_573857
crossref_primary_10_1371_journal_pone_0216992
crossref_primary_10_1016_j_omtn_2022_04_031
crossref_primary_10_1016_j_stem_2025_02_013
crossref_primary_10_1007_s13311_021_01024_7
crossref_primary_10_1007_s00425_023_04223_y
crossref_primary_10_1016_j_jaridenv_2020_104316
crossref_primary_10_1128_MRA_00736_21
crossref_primary_10_1099_mgen_0_000872
crossref_primary_10_1371_journal_pntd_0011499
crossref_primary_10_3389_fcell_2023_1176115
crossref_primary_10_3390_molecules23102426
crossref_primary_10_1093_gigascience_gix093
crossref_primary_10_1126_sciimmunol_adg3517
crossref_primary_10_1016_j_jgeb_2023_100341
crossref_primary_10_1128_MRA_00949_20
crossref_primary_10_3390_cancers12051101
crossref_primary_10_3390_ijms25042259
crossref_primary_10_1186_s12915_024_02073_y
crossref_primary_10_1111_ajt_16244
crossref_primary_10_1038_s41467_019_11237_2
crossref_primary_10_1016_j_immuni_2023_12_005
crossref_primary_10_1038_s41423_019_0218_0
crossref_primary_10_3390_genes16090993
crossref_primary_10_1038_s41598_019_40285_3
crossref_primary_10_1038_s41467_025_62874_9
crossref_primary_10_1038_s42003_021_01846_3
crossref_primary_10_1111_1748_5967_12164
crossref_primary_10_1002_JLB_2MA1119_300R
crossref_primary_10_3389_fpls_2023_1103857
crossref_primary_10_3389_fonc_2021_752579
crossref_primary_10_1097_ALN_0000000000004874
crossref_primary_10_3389_fphar_2024_1466578
crossref_primary_10_1136_jitc_2023_006821
crossref_primary_10_1186_s12958_021_00715_2
crossref_primary_10_1093_hmg_ddz014
crossref_primary_10_1038_s41467_022_33994_3
crossref_primary_10_1242_dmm_049068
crossref_primary_10_4049_jimmunol_2001028
crossref_primary_10_1093_bib_bbaa083
crossref_primary_10_2337_db19_0043
crossref_primary_10_1016_j_cell_2023_12_032
crossref_primary_10_1093_gastro_goaf015
crossref_primary_10_1186_s13059_025_03691_7
crossref_primary_10_1186_s13046_025_03356_0
crossref_primary_10_1534_g3_116_036194
crossref_primary_10_3390_v15030735
crossref_primary_10_1038_s41598_018_24126_3
crossref_primary_10_1093_molbev_msab268
crossref_primary_10_3390_vaccines13090943
crossref_primary_10_1038_s41467_019_14081_6
crossref_primary_10_3390_ijms26125432
crossref_primary_10_1038_s41467_022_32041_5
crossref_primary_10_3389_fimmu_2024_1437391
crossref_primary_10_3390_genes10010009
crossref_primary_10_3389_fimmu_2023_1294565
crossref_primary_10_1038_s41598_024_56480_w
crossref_primary_10_1111_1755_0998_12768
crossref_primary_10_1111_1755_0998_12769
crossref_primary_10_1101_gad_324715_119
crossref_primary_10_3389_fmicb_2023_1080017
crossref_primary_10_3390_cancers11101485
crossref_primary_10_3390_v15030747
crossref_primary_10_1038_s41438_021_00641_9
crossref_primary_10_1007_s10123_023_00372_y
crossref_primary_10_1111_mec_15257
crossref_primary_10_1038_s44161_022_00128_3
crossref_primary_10_1007_s10681_016_1655_9
crossref_primary_10_1161_ATVBAHA_119_313800
crossref_primary_10_1186_s12920_021_01045_3
crossref_primary_10_1128_MRA_00761_21
crossref_primary_10_1128_spectrum_00724_24
crossref_primary_10_1038_s41597_019_0313_1
crossref_primary_10_1080_23802359_2017_1413307
crossref_primary_10_1111_1462_2920_15910
crossref_primary_10_1186_s12859_019_2961_8
crossref_primary_10_1038_s41598_024_84163_z
crossref_primary_10_21926_obm_genet_2503300
crossref_primary_10_7554_eLife_52896
crossref_primary_10_1038_s41597_023_02598_x
crossref_primary_10_1093_plphys_kiab264
crossref_primary_10_1007_s12035_023_03866_y
crossref_primary_10_1186_s12920_017_0295_9
crossref_primary_10_1016_j_cell_2018_08_067
crossref_primary_10_3390_plants9070820
crossref_primary_10_1182_blood_2020005780
crossref_primary_10_3390_ijms26073145
crossref_primary_10_1080_23802359_2020_1768940
crossref_primary_10_1038_s41588_019_0413_z
crossref_primary_10_1016_j_cell_2018_07_029
crossref_primary_10_3390_cells11152342
crossref_primary_10_3390_cancers11101466
crossref_primary_10_1530_REP_22_0192
crossref_primary_10_3390_ijms26125648
crossref_primary_10_1007_s13562_020_00575_8
crossref_primary_10_1186_s12915_019_0711_z
crossref_primary_10_3390_w14162456
crossref_primary_10_1002_ps_7370
crossref_primary_10_1093_nar_gkac822
crossref_primary_10_1007_s13127_024_00659_6
crossref_primary_10_1038_s41698_025_00854_4
crossref_primary_10_3390_ijms21093307
crossref_primary_10_1128_mra_01081_23
crossref_primary_10_1534_genetics_117_300679
crossref_primary_10_3390_cancers12061574
crossref_primary_10_21307_jofnem_2021_065
crossref_primary_10_3390_agronomy11101908
crossref_primary_10_1038_ncomms14529
crossref_primary_10_3390_ijms19072052
crossref_primary_10_1016_j_ymeth_2022_05_001
crossref_primary_10_7554_eLife_47040
crossref_primary_10_1016_j_aquatox_2020_105443
crossref_primary_10_1093_zoolinnean_zlad158
crossref_primary_10_3390_nu13051457
crossref_primary_10_1016_j_ijantimicag_2023_106747
crossref_primary_10_1093_nargab_lqab101
crossref_primary_10_1371_journal_pone_0239804
crossref_primary_10_3390_ijms241914833
crossref_primary_10_1038_s41586_022_05202_1
crossref_primary_10_1093_g3journal_jkab367
crossref_primary_10_1038_s41588_019_0493_9
crossref_primary_10_3390_genes12122007
crossref_primary_10_3390_v12111286
crossref_primary_10_1261_rna_080215_124
crossref_primary_10_1186_s13287_025_04280_y
crossref_primary_10_1371_journal_pone_0192898
crossref_primary_10_1016_j_cell_2023_02_017
crossref_primary_10_1038_s42255_021_00386_8
crossref_primary_10_1186_s12931_022_02077_8
crossref_primary_10_3390_microorganisms13071532
crossref_primary_10_1186_s13059_018_1458_5
crossref_primary_10_7717_peerj_3720
crossref_primary_10_1007_s00203_023_03715_5
crossref_primary_10_3389_fmicb_2024_1407904
crossref_primary_10_1126_scitranslmed_aay1163
crossref_primary_10_1111_febs_16595
crossref_primary_10_1038_s41598_019_43141_6
crossref_primary_10_3390_min10030208
crossref_primary_10_3390_nu16070942
crossref_primary_10_1007_s00251_021_01251_4
crossref_primary_10_1080_22221751_2024_2322655
crossref_primary_10_3390_md21120621
crossref_primary_10_1007_s10295_018_2087_4
crossref_primary_10_1126_science_adn5606
crossref_primary_10_1186_s12964_025_02184_1
crossref_primary_10_1152_japplphysiol_00432_2025
crossref_primary_10_1111_evo_13581
crossref_primary_10_1007_s10815_025_03509_2
crossref_primary_10_3389_fmicb_2019_00120
crossref_primary_10_3389_fmicb_2024_1324403
crossref_primary_10_3389_fpls_2020_563187
crossref_primary_10_1038_s41589_024_01635_z
crossref_primary_10_1038_s42003_021_02412_7
crossref_primary_10_3390_ani12233328
crossref_primary_10_1038_s41598_020_61273_y
crossref_primary_10_1038_s41467_018_07394_5
crossref_primary_10_3389_fmicb_2023_1239538
crossref_primary_10_3390_cancers11091329
crossref_primary_10_7554_eLife_52611
crossref_primary_10_1016_S1875_5364_20_30068_6
crossref_primary_10_1128_mra_00776_25
crossref_primary_10_1080_19490976_2021_1902771
crossref_primary_10_1186_s12867_018_0108_5
crossref_primary_10_1093_femsec_fiaa143
crossref_primary_10_5713_ab_21_0420
crossref_primary_10_1016_j_tranon_2018_04_002
crossref_primary_10_1038_s41586_021_03795_7
crossref_primary_10_1038_s41587_024_02313_0
crossref_primary_10_1186_s12864_017_3529_5
crossref_primary_10_1073_pnas_1907787116
crossref_primary_10_1038_s41419_022_05021_2
crossref_primary_10_1111_mec_17173
crossref_primary_10_1371_journal_pgen_1009813
crossref_primary_10_1016_j_vetmic_2022_109459
crossref_primary_10_3390_microorganisms13040854
crossref_primary_10_1016_j_bbr_2019_02_043
crossref_primary_10_1016_j_jaci_2023_01_006
crossref_primary_10_1111_pbi_13635
crossref_primary_10_1038_s41598_020_70249_x
crossref_primary_10_1038_s41591_018_0078_7
crossref_primary_10_1136_jitc_2024_011070
crossref_primary_10_3389_fnmol_2020_00043
crossref_primary_10_1111_nph_16281
crossref_primary_10_1186_s13148_024_01623_z
crossref_primary_10_1093_gigascience_gix035
crossref_primary_10_1016_j_ccell_2023_01_004
crossref_primary_10_1093_gigascience_giy132
crossref_primary_10_3390_plants10061092
crossref_primary_10_1111_bjh_20089
crossref_primary_10_1016_j_envpol_2018_09_034
crossref_primary_10_1128_mra_00922_24
crossref_primary_10_1186_s13567_025_01566_0
crossref_primary_10_1038_s41591_020_0915_3
crossref_primary_10_1038_s41598_025_96204_2
crossref_primary_10_1016_j_ydbio_2020_07_016
crossref_primary_10_1007_s13353_020_00603_2
crossref_primary_10_1038_s41467_022_28973_7
crossref_primary_10_1038_s41563_019_0287_6
crossref_primary_10_1038_s41588_024_01668_z
crossref_primary_10_1128_aac_00735_23
crossref_primary_10_1016_j_jaci_2023_02_028
crossref_primary_10_3390_cells9061534
crossref_primary_10_1038_s41388_024_03026_z
crossref_primary_10_12688_f1000research_124724_1
crossref_primary_10_1038_s41467_023_37783_4
crossref_primary_10_1038_s42003_024_07106_4
crossref_primary_10_3390_ijms23031199
crossref_primary_10_1093_molbev_msz188
crossref_primary_10_1016_j_omtn_2016_12_001
crossref_primary_10_1093_genetics_iyac117
crossref_primary_10_4049_jimmunol_1900856
crossref_primary_10_1038_s41586_022_04962_0
crossref_primary_10_1016_j_molp_2022_05_013
crossref_primary_10_1038_s41467_019_09276_w
crossref_primary_10_1016_j_aquatox_2020_105462
crossref_primary_10_1136_gutjnl_2021_326314
crossref_primary_10_1007_s11295_020_01454_y
crossref_primary_10_3897_vz_75_e150370
crossref_primary_10_1016_S1002_0160_17_60357_6
crossref_primary_10_1093_g3journal_jkab344
crossref_primary_10_3390_ijms25179638
crossref_primary_10_1016_j_ijpara_2017_11_008
crossref_primary_10_1371_journal_pone_0328922
crossref_primary_10_1371_journal_pone_0163235
crossref_primary_10_1016_j_cell_2020_06_006
crossref_primary_10_1016_j_ymthe_2020_05_019
crossref_primary_10_1128_AAC_00554_20
crossref_primary_10_1177_10732748251327720
crossref_primary_10_1007_s00425_024_04454_7
crossref_primary_10_1016_j_ejca_2024_114314
crossref_primary_10_1261_rna_075523_120
crossref_primary_10_1038_s41467_019_08637_9
crossref_primary_10_1017_S0031182024000386
crossref_primary_10_3389_fimmu_2019_00116
crossref_primary_10_3389_fvets_2024_1463342
crossref_primary_10_1186_s12864_023_09786_4
crossref_primary_10_1016_j_ygeno_2022_110333
crossref_primary_10_1128_MRA_00616_21
crossref_primary_10_1007_s13105_024_01023_0
crossref_primary_10_1038_s41467_022_29551_7
crossref_primary_10_1371_journal_pone_0220365
crossref_primary_10_1016_j_ygeno_2020_11_034
crossref_primary_10_1093_ibd_izab116
crossref_primary_10_1186_s12934_017_0679_8
crossref_primary_10_1016_j_cub_2025_03_013
crossref_primary_10_1038_s41598_018_29305_w
crossref_primary_10_1186_s13104_024_06951_0
crossref_primary_10_1111_pbi_13838
crossref_primary_10_1186_s13059_024_03187_w
crossref_primary_10_5187_jast_2022_e127
crossref_primary_10_1186_s12885_017_3815_2
crossref_primary_10_3389_fgene_2021_656061
crossref_primary_10_1111_gbb_12908
crossref_primary_10_1038_s41564_019_0531_5
crossref_primary_10_1094_PDIS_10_24_2151_SC
crossref_primary_10_3389_fgeed_2022_1031275
crossref_primary_10_1038_s42003_021_02079_0
crossref_primary_10_1093_nar_gkad773
crossref_primary_10_1016_j_omtn_2019_12_012
crossref_primary_10_3390_ijms25116054
crossref_primary_10_3390_cancers16183158
crossref_primary_10_1111_mec_14525
crossref_primary_10_1371_journal_ppat_1009732
crossref_primary_10_1101_gr_277698_123
crossref_primary_10_3389_fmicb_2016_00032
crossref_primary_10_1038_nmeth_3542
crossref_primary_10_1093_femsyr_foac053
crossref_primary_10_1371_journal_pone_0178706
crossref_primary_10_1093_gbe_evaf037
crossref_primary_10_3390_jpm11030175
crossref_primary_10_1016_j_stem_2022_03_009
crossref_primary_10_1016_j_stem_2018_06_014
crossref_primary_10_3389_fmars_2022_784807
crossref_primary_10_1128_AEM_02346_18
crossref_primary_10_3390_cimb46110778
crossref_primary_10_3389_fimmu_2024_1475126
crossref_primary_10_1038_s41467_024_52464_6
crossref_primary_10_1093_nargab_lqac054
crossref_primary_10_1002_lno_11257
crossref_primary_10_3390_plants12233995
crossref_primary_10_1186_s13072_025_00579_5
crossref_primary_10_1158_0008_5472_CAN_20_1518
crossref_primary_10_1016_j_scitotenv_2022_156486
crossref_primary_10_1089_crispr_2022_0072
crossref_primary_10_1038_srep13426
crossref_primary_10_1038_s41588_021_00904_0
crossref_primary_10_1186_s13028_022_00653_y
crossref_primary_10_1371_journal_pone_0291995
crossref_primary_10_3390_ijms241713646
crossref_primary_10_3390_pathogens9121031
crossref_primary_10_1016_j_jbiotec_2017_06_1203
crossref_primary_10_1128_mra_01104_22
crossref_primary_10_1186_s13072_017_0147_z
crossref_primary_10_1371_journal_ppat_1008869
crossref_primary_10_1099_mgen_0_000497
crossref_primary_10_1186_s12985_015_0305_5
crossref_primary_10_1038_s41598_017_01082_y
crossref_primary_10_1038_s41418_024_01278_6
crossref_primary_10_1093_nargab_lqaa070
crossref_primary_10_1186_s12864_019_5954_0
crossref_primary_10_3389_fonc_2020_01771
crossref_primary_10_3897_zookeys_1088_78990
crossref_primary_10_1093_nar_gky1172
crossref_primary_10_1186_s13059_024_03337_0
crossref_primary_10_3390_ijms161226213
crossref_primary_10_3389_fpls_2021_708286
crossref_primary_10_1002_aqc_4226
crossref_primary_10_3390_data7110167
crossref_primary_10_1038_hdy_2016_102
crossref_primary_10_14814_phy2_12942
crossref_primary_10_1007_s12230_021_09846_z
crossref_primary_10_3201_eid3109_241923
crossref_primary_10_1101_gr_202200_115
crossref_primary_10_1093_zoolinnean_zlae057
crossref_primary_10_1371_journal_pone_0142951
crossref_primary_10_1016_j_plasmid_2018_04_001
crossref_primary_10_1073_pnas_2506976122
crossref_primary_10_3389_fcimb_2024_1289134
crossref_primary_10_3389_fpls_2020_00180
crossref_primary_10_1038_s41467_025_57503_4
crossref_primary_10_1186_s12885_017_3726_2
crossref_primary_10_3390_genes15050628
crossref_primary_10_1111_his_15068
crossref_primary_10_1002_jgm_3322
crossref_primary_10_1007_s00018_022_04229_x
crossref_primary_10_1038_s41598_024_80142_6
crossref_primary_10_3389_fnut_2023_1287312
crossref_primary_10_1080_07060661_2023_2290041
crossref_primary_10_1016_j_jphotobiol_2025_113225
crossref_primary_10_1128_JCM_00466_19
crossref_primary_10_7554_eLife_55002
crossref_primary_10_3390_ani9080523
crossref_primary_10_1007_s00253_017_8151_6
crossref_primary_10_1089_scd_2021_0202
crossref_primary_10_1016_j_steroids_2018_09_003
crossref_primary_10_1093_treephys_tpz053
crossref_primary_10_1016_j_fm_2023_104450
crossref_primary_10_1111_1755_0998_70020
crossref_primary_10_1016_j_dib_2018_08_034
crossref_primary_10_1016_j_cropro_2023_106478
crossref_primary_10_1128_mSphere_00402_19
crossref_primary_10_1158_2159_8290_CD_19_0138
crossref_primary_10_1111_mec_15598
crossref_primary_10_1016_j_cub_2021_03_084
crossref_primary_10_1016_j_jhazmat_2016_06_055
crossref_primary_10_1128_mra_00952_22
crossref_primary_10_1016_j_ccell_2022_12_004
crossref_primary_10_1016_j_vprsr_2023_100961
crossref_primary_10_1371_journal_pcbi_1009433
crossref_primary_10_1038_s41598_019_49065_5
crossref_primary_10_1186_s12934_022_01862_w
crossref_primary_10_1093_molbev_msy232
crossref_primary_10_1038_s41598_019_49219_5
crossref_primary_10_1080_03014223_2020_1766520
crossref_primary_10_1093_jhered_esab009
crossref_primary_10_3389_fevo_2022_907889
crossref_primary_10_1038_ncomms11938
crossref_primary_10_1128_mra_01235_22
crossref_primary_10_1038_s41598_022_07672_9
crossref_primary_10_1080_02648725_2023_2197717
crossref_primary_10_1186_s12879_018_3626_3
crossref_primary_10_1093_molbev_msx158
crossref_primary_10_1038_s41598_022_21836_7
crossref_primary_10_1111_acel_12999
crossref_primary_10_1093_emph_eow016
crossref_primary_10_1016_j_ympev_2023_107813
crossref_primary_10_1089_ten_tea_2020_0033
crossref_primary_10_1093_femsec_fiac084
crossref_primary_10_1016_j_jbc_2025_108327
crossref_primary_10_1038_s42003_024_07384_y
crossref_primary_10_3390_toxins16100436
crossref_primary_10_3389_fmicb_2018_02559
crossref_primary_10_3390_ani15101487
crossref_primary_10_1038_s42003_020_01176_w
crossref_primary_10_1002_ajb2_16365
crossref_primary_10_1038_s41388_019_0861_z
crossref_primary_10_1126_science_aao2774
crossref_primary_10_1093_femsec_fiac078
crossref_primary_10_1093_femsec_fiad164
crossref_primary_10_1186_s12864_024_10040_8
crossref_primary_10_1016_j_jid_2022_07_010
crossref_primary_10_3389_fmolb_2023_1128739
crossref_primary_10_1111_1759_7714_14046
crossref_primary_10_1007_s00253_016_7588_3
crossref_primary_10_1080_23802359_2021_1942261
crossref_primary_10_1038_s41467_024_49874_x
crossref_primary_10_3390_ijms22136663
crossref_primary_10_1038_s41467_021_23240_7
crossref_primary_10_3390_genes13061056
crossref_primary_10_3390_cancers15153818
crossref_primary_10_1016_j_stem_2020_09_001
crossref_primary_10_3389_fcimb_2023_1153387
crossref_primary_10_1016_j_eng_2024_04_022
crossref_primary_10_1172_JCI133934
crossref_primary_10_1002_mco2_317
crossref_primary_10_1109_TCBB_2019_2897558
crossref_primary_10_3390_ijms25137391
crossref_primary_10_1038_s41467_024_48141_3
crossref_primary_10_1002_evl3_110
crossref_primary_10_1126_scitranslmed_aan6735
crossref_primary_10_3389_fimmu_2021_651475
crossref_primary_10_1038_nmeth_4121
crossref_primary_10_1093_g3journal_jkaf067
crossref_primary_10_1101_gr_266429_120
crossref_primary_10_3389_fendo_2023_1280847
crossref_primary_10_1038_s41588_018_0046_7
crossref_primary_10_1038_s41525_021_00232_6
crossref_primary_10_1038_s41590_020_0786_2
crossref_primary_10_1016_j_sleep_2023_11_024
crossref_primary_10_1038_srep13258
crossref_primary_10_15252_embj_2022112140
crossref_primary_10_3390_agronomy12092037
crossref_primary_10_1093_femsec_fiae075
crossref_primary_10_1371_journal_pone_0244755
crossref_primary_10_3389_fpls_2023_1121811
crossref_primary_10_1128_MRA_01256_19
crossref_primary_10_1128_JB_00257_20
crossref_primary_10_1186_s12864_016_3070_y
crossref_primary_10_1038_s41591_023_02631_x
crossref_primary_10_3389_fonc_2020_596040
crossref_primary_10_1158_1078_0432_CCR_22_0611
crossref_primary_10_1111_mec_15301
crossref_primary_10_1371_journal_pgen_1009495
crossref_primary_10_3390_ani11030825
crossref_primary_10_1016_j_ijfoodmicro_2017_06_024
crossref_primary_10_1186_s13567_023_01240_3
crossref_primary_10_1128_mra_01168_24
crossref_primary_10_1534_g3_119_0011
crossref_primary_10_1371_journal_pone_0299891
crossref_primary_10_1016_j_biologicals_2019_03_008
crossref_primary_10_3389_fmicb_2022_812116
crossref_primary_10_1186_s13046_024_03097_6
crossref_primary_10_1017_S0031182024000568
crossref_primary_10_1038_s41598_021_94789_y
crossref_primary_10_1242_bio_059189
crossref_primary_10_3390_genes13040569
crossref_primary_10_1007_s12035_025_04974_7
crossref_primary_10_1007_s10592_021_01340_7
crossref_primary_10_1016_j_bbagrm_2020_194521
crossref_primary_10_1016_j_aquatox_2019_02_009
crossref_primary_10_1126_science_abj7484
crossref_primary_10_3390_biomedicines10102412
crossref_primary_10_1186_s40168_022_01327_7
crossref_primary_10_1161_CIRCULATIONAHA_116_024545
crossref_primary_10_1007_s00262_023_03581_6
crossref_primary_10_1093_nargab_lqae036
crossref_primary_10_3389_fimmu_2024_1512578
crossref_primary_10_1186_s13068_016_0547_5
crossref_primary_10_1016_j_xpro_2024_103040
crossref_primary_10_1111_mpp_13446
crossref_primary_10_1016_j_envpol_2023_121869
crossref_primary_10_3390_ijms26030975
crossref_primary_10_3389_fmolb_2021_612881
crossref_primary_10_1128_mra_00515_24
crossref_primary_10_1186_s12864_023_09908_y
crossref_primary_10_1128_mra_00687_25
crossref_primary_10_1007_s15010_024_02378_8
crossref_primary_10_1016_j_devcel_2024_05_013
crossref_primary_10_1186_s12866_020_01859_8
crossref_primary_10_15252_msb_202211301
crossref_primary_10_4049_jimmunol_1900542
crossref_primary_10_1186_s13059_020_1929_3
crossref_primary_10_1534_genetics_119_301922
crossref_primary_10_1016_j_molcel_2018_12_009
crossref_primary_10_1128_mra_00800_25
crossref_primary_10_1038_s41467_025_62568_2
crossref_primary_10_7554_eLife_92173_3
crossref_primary_10_1016_j_biocon_2025_111319
crossref_primary_10_1016_j_diagmicrobio_2024_116526
crossref_primary_10_1084_jem_20200938
crossref_primary_10_1158_2159_8290_CD_17_0891
crossref_primary_10_1038_s41598_021_82299_w
crossref_primary_10_1128_MRA_00153_20
crossref_primary_10_1016_j_molp_2018_11_005
crossref_primary_10_1128_IAI_00886_16
crossref_primary_10_1038_s41598_020_77816_2
crossref_primary_10_4103_jomfp_jomfp_455_21
crossref_primary_10_1002_advs_202400969
crossref_primary_10_1016_j_cmi_2017_02_002
crossref_primary_10_1128_msphere_00393_22
crossref_primary_10_1128_aem_02420_24
crossref_primary_10_1111_pce_14258
crossref_primary_10_1038_s41416_023_02178_1
crossref_primary_10_1094_PDIS_03_17_0306_RE
crossref_primary_10_1016_j_ympev_2024_108135
crossref_primary_10_1038_s41598_019_54019_y
crossref_primary_10_1128_spectrum_02037_23
crossref_primary_10_1093_molbev_msaa030
crossref_primary_10_1002_ece3_6680
crossref_primary_10_1098_rsos_240132
crossref_primary_10_1186_s12864_020_07037_4
crossref_primary_10_1128_mSphere_00298_19
crossref_primary_10_1128_spectrum_03804_23
crossref_primary_10_1126_science_abb4776
crossref_primary_10_1523_ENEURO_0504_24_2025
crossref_primary_10_1128_msystems_00627_24
crossref_primary_10_1371_journal_pcbi_1004393
crossref_primary_10_1038_s43018_023_00612_0
crossref_primary_10_1038_s41417_024_00745_z
crossref_primary_10_1038_s41477_024_01741_9
crossref_primary_10_1038_s41586_022_04760_8
crossref_primary_10_1016_j_csbj_2021_10_029
crossref_primary_10_1038_s41598_019_42310_x
crossref_primary_10_3389_fgene_2020_560248
crossref_primary_10_1038_s41587_020_0555_7
crossref_primary_10_1002_ajmg_b_32981
crossref_primary_10_1126_science_aax0249
crossref_primary_10_1016_j_jss_2022_03_029
crossref_primary_10_1128_aac_01354_22
crossref_primary_10_1158_2159_8290_CD_23_1161
crossref_primary_10_3389_fmicb_2021_713669
crossref_primary_10_3390_v13030426
crossref_primary_10_1089_hs_2014_0076
crossref_primary_10_1186_s12859_019_2799_0
crossref_primary_10_1371_journal_pntd_0005752
crossref_primary_10_1038_s41598_021_93855_9
crossref_primary_10_1038_s41598_022_17721_y
crossref_primary_10_1038_s41598_025_02014_x
crossref_primary_10_1016_j_ijpara_2025_05_006
crossref_primary_10_1016_j_molcel_2023_03_026
crossref_primary_10_1007_s10682_020_10050_4
crossref_primary_10_1371_journal_pgen_1010879
crossref_primary_10_1016_j_watres_2024_122538
crossref_primary_10_7554_eLife_92173
crossref_primary_10_1007_s11046_020_00449_6
crossref_primary_10_1016_j_trsl_2022_04_004
crossref_primary_10_1038_s41586_023_05989_7
crossref_primary_10_3390_ijerph19095144
crossref_primary_10_1038_s42003_021_02818_3
crossref_primary_10_1016_j_celrep_2024_114498
crossref_primary_10_1093_plphys_kiad347
crossref_primary_10_1111_aab_12345
crossref_primary_10_1016_j_chembiol_2023_04_005
crossref_primary_10_3390_ijms232012610
crossref_primary_10_1038_s41596_022_00692_9
crossref_primary_10_1016_j_immuni_2021_03_007
crossref_primary_10_3390_plants11192614
crossref_primary_10_1128_mra_00178_25
crossref_primary_10_1016_j_celrep_2025_115639
crossref_primary_10_1128_mSphere_00532_18
crossref_primary_10_1371_journal_ppat_1009138
crossref_primary_10_1016_j_sajb_2019_02_009
crossref_primary_10_12688_wellcomeopenres_16559_1
crossref_primary_10_1007_s10722_021_01282_6
crossref_primary_10_1186_s13059_021_02265_7
crossref_primary_10_1371_journal_pgen_1010862
crossref_primary_10_3389_fenrg_2018_00030
crossref_primary_10_1038_ng_3523
crossref_primary_10_1096_fj_202301475R
crossref_primary_10_1186_s12864_023_09514_y
crossref_primary_10_3390_molecules23020246
crossref_primary_10_1038_s41467_024_48034_5
crossref_primary_10_1038_s41467_023_37512_x
crossref_primary_10_1155_2024_2383886
crossref_primary_10_1098_rsos_160239
crossref_primary_10_1038_s41589_018_0205_2
crossref_primary_10_1016_j_molcel_2023_03_009
crossref_primary_10_1161_CIRCULATIONAHA_120_051921
crossref_primary_10_1016_j_syapm_2025_126591
crossref_primary_10_1038_srep25280
crossref_primary_10_1111_pbi_70000
crossref_primary_10_1016_j_gca_2021_10_010
crossref_primary_10_1371_journal_pone_0291072
Cites_doi 10.1016/0022-2836(81)90087-5
10.1093/nar/gkg094
10.1186/1756-0500-5-337
10.1038/nmeth.1179
10.1016/j.ygeno.2013.07.011
10.1016/0196-6774(85)90023-9
10.1093/bioinformatics/btt702
10.1186/gb-2013-14-4-r36
10.1186/gb-2009-10-5-r54
10.1016/j.ygeno.2011.05.009
10.14806/ej.17.1.200
10.1093/nar/gks540
10.1038/nmeth.2762
10.1038/nmeth.1923
10.1371/journal.pone.0085024
10.1101/gr.089532.108
10.1093/bioinformatics/btp120
10.1145/316542.316550
10.1016/0022-2836(70)90057-4
10.1093/bioinformatics/btr708
10.1186/1471-2105-11-38
10.1186/1471-2105-11-341
ContentType Journal Article
Copyright Jiang et al.; licensee BioMed Central Ltd. 2014
COPYRIGHT 2014 BioMed Central Ltd.
2014 Jiang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Copyright © 2014 Jiang et al.; licensee BioMed Central Ltd. 2014 Jiang et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Jiang et al.; licensee BioMed Central Ltd. 2014
– notice: COPYRIGHT 2014 BioMed Central Ltd.
– notice: 2014 Jiang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
– notice: Copyright © 2014 Jiang et al.; licensee BioMed Central Ltd. 2014 Jiang et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1186/1471-2105-15-182
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database



Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 182
ExternalDocumentID PMC4074385
3354464331
A539460887
24925680
10_1186_1471_2105_15_182
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c699t-df494052cde239a15ef7fe9d8edff62f8d733241a8beac935d6801898c3bd7703
IEDL.DBID RSV
ISICitedReferencesCount 1111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338258500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 01:59:22 EST 2025
Tue Oct 07 09:43:06 EDT 2025
Thu Sep 04 19:13:39 EDT 2025
Mon Oct 06 18:31:49 EDT 2025
Tue Nov 11 10:56:04 EST 2025
Tue Nov 04 18:15:20 EST 2025
Thu Nov 13 16:20:14 EST 2025
Thu Apr 03 07:05:02 EDT 2025
Sat Nov 29 05:39:56 EST 2025
Tue Nov 18 22:07:43 EST 2025
Sat Sep 06 07:27:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Approximate string matching
Next generation sequencing
Adapter trimming
Barcode demultiplexing
Local sequence alignment
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c699t-df494052cde239a15ef7fe9d8edff62f8d733241a8beac935d6801898c3bd7703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/1471-2105-15-182
PMID 24925680
PQID 1541298963
PQPubID 44065
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4074385
proquest_miscellaneous_1547867061
proquest_miscellaneous_1542009074
proquest_journals_1541298963
gale_infotracmisc_A539460887
gale_infotracacademiconefile_A539460887
gale_incontextgauss_ISR_A539460887
pubmed_primary_24925680
crossref_citationtrail_10_1186_1471_2105_15_182
crossref_primary_10_1186_1471_2105_15_182
springer_journals_10_1186_1471_2105_15_182
PublicationCentury 2000
PublicationDate 2014-06-12
PublicationDateYYYYMMDD 2014-06-12
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-12
  day: 12
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2014
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
References C Del Fabbro (6464_CR22) 2013; 8
R Schmieder (6464_CR8) 2010; 11
M Dodt (6464_CR9) 2012; 1
A Criscuolo (6464_CR13) 2013; 102
SB Needleman (6464_CR10) 1970; 48
M Martin (6464_CR3) 2011; 17
B Langmead (6464_CR18) 2012; 9
M Lohse (6464_CR11) 2012; 40
D Kim (6464_CR20) 2013; 14
J Falgueras (6464_CR7) 2010; 11
G Myers (6464_CR5) 1999; 46
Y Kong (6464_CR6) 2011; 98
C Trapnell (6464_CR19) 2009; 25
M Kato (6464_CR16) 2009; 10
W Huang (6464_CR15) 2012; 28
F Consortium (6464_CR21) 2003; 31
HH He (6464_CR1) 2014; 11
E Ukkonen (6464_CR4) 1985; 6
S Lindgreen (6464_CR12) 2012; 5
RM Leggett (6464_CR14) 2014; 30
TF Smith (6464_CR2) 1981; 147
LW Hillier (6464_CR17) 2008; 5
JT Simpson (6464_CR23) 2009; 19
22748135 - BMC Res Notes. 2012;5:337
19460142 - Genome Biol. 2009;10(5):R54
21651976 - Genomics. 2011 Aug;98(2):152-3
24297520 - Bioinformatics. 2014 Feb 15;30(4):566-8
19251739 - Genome Res. 2009 Jun;19(6):1117-23
7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7
24376861 - PLoS One. 2013;8(12):e85024
12519974 - Nucleic Acids Res. 2003 Jan 1;31(1):172-5
23912058 - Genomics. 2013 Nov-Dec;102(5-6):500-6
24832523 - Biology (Basel). 2012 Dec 14;1(3):895-905
18204455 - Nat Methods. 2008 Feb;5(2):183-8
5420325 - J Mol Biol. 1970 Mar;48(3):443-53
20089148 - BMC Bioinformatics. 2010;11:38
22388286 - Nat Methods. 2012 Apr;9(4):357-9
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
20573248 - BMC Bioinformatics. 2010;11:341
24317252 - Nat Methods. 2014 Jan;11(1):73-8
22199392 - Bioinformatics. 2012 Feb 15;28(4):593-4
22684630 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7
23618408 - Genome Biol. 2013;14(4):R36
References_xml – volume: 147
  start-page: 195
  issue: 1
  year: 1981
  ident: 6464_CR2
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(81)90087-5
– volume: 31
  start-page: 172
  issue: 1
  year: 2003
  ident: 6464_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg094
– volume: 5
  start-page: 337
  year: 2012
  ident: 6464_CR12
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-5-337
– volume: 5
  start-page: 183
  issue: 2
  year: 2008
  ident: 6464_CR17
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1179
– volume: 102
  start-page: 500
  issue: 5–6
  year: 2013
  ident: 6464_CR13
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2013.07.011
– volume: 6
  start-page: 132
  issue: 1
  year: 1985
  ident: 6464_CR4
  publication-title: J Algorithm
  doi: 10.1016/0196-6774(85)90023-9
– volume: 30
  start-page: 566
  issue: 4
  year: 2014
  ident: 6464_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt702
– volume: 14
  start-page: 36
  issue: 4
  year: 2013
  ident: 6464_CR20
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r36
– volume: 10
  start-page: 54
  issue: 5
  year: 2009
  ident: 6464_CR16
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-5-r54
– volume: 98
  start-page: 152
  issue: 2
  year: 2011
  ident: 6464_CR6
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.05.009
– volume: 17
  start-page: 10
  year: 2011
  ident: 6464_CR3
  publication-title: EMBnet.journal
  doi: 10.14806/ej.17.1.200
– volume: 40
  start-page: 622
  issue: Web Server issu
  year: 2012
  ident: 6464_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks540
– volume: 11
  start-page: 73
  issue: 1
  year: 2014
  ident: 6464_CR1
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2762
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 6464_CR18
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 1
  start-page: 895
  issue: 3
  year: 2012
  ident: 6464_CR9
  publication-title: Biology (Basel)
– volume: 8
  start-page: 85024
  issue: 12
  year: 2013
  ident: 6464_CR22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085024
– volume: 19
  start-page: 1117
  issue: 6
  year: 2009
  ident: 6464_CR23
  publication-title: Genome Res
  doi: 10.1101/gr.089532.108
– volume: 25
  start-page: 1105
  issue: 9
  year: 2009
  ident: 6464_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 46
  start-page: 395
  issue: 3
  year: 1999
  ident: 6464_CR5
  publication-title: J ACM
  doi: 10.1145/316542.316550
– volume: 48
  start-page: 443
  issue: 3
  year: 1970
  ident: 6464_CR10
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(70)90057-4
– volume: 28
  start-page: 593
  issue: 4
  year: 2012
  ident: 6464_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr708
– volume: 11
  start-page: 38
  year: 2010
  ident: 6464_CR7
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-38
– volume: 11
  start-page: 341
  year: 2010
  ident: 6464_CR8
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-341
– reference: 20089148 - BMC Bioinformatics. 2010;11:38
– reference: 18204455 - Nat Methods. 2008 Feb;5(2):183-8
– reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23
– reference: 24317252 - Nat Methods. 2014 Jan;11(1):73-8
– reference: 22199392 - Bioinformatics. 2012 Feb 15;28(4):593-4
– reference: 24832523 - Biology (Basel). 2012 Dec 14;1(3):895-905
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 22684630 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7
– reference: 24297520 - Bioinformatics. 2014 Feb 15;30(4):566-8
– reference: 7265238 - J Mol Biol. 1981 Mar 25;147(1):195-7
– reference: 24376861 - PLoS One. 2013;8(12):e85024
– reference: 5420325 - J Mol Biol. 1970 Mar;48(3):443-53
– reference: 23618408 - Genome Biol. 2013;14(4):R36
– reference: 19460142 - Genome Biol. 2009;10(5):R54
– reference: 22748135 - BMC Res Notes. 2012;5:337
– reference: 22388286 - Nat Methods. 2012 Apr;9(4):357-9
– reference: 12519974 - Nucleic Acids Res. 2003 Jan 1;31(1):172-5
– reference: 20573248 - BMC Bioinformatics. 2010;11:341
– reference: 23912058 - Genomics. 2013 Nov-Dec;102(5-6):500-6
– reference: 21651976 - Genomics. 2011 Aug;98(2):152-3
SSID ssj0017805
Score 2.645686
Snippet Background Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA...
Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA fragments....
Background Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA...
Doc number: 182 Abstract Background: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than...
Background: Adapter trimming is a prerequisite step for analyzing next-generation sequencing (NGS) data when the reads are longer than the target DNA/RNA...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 182
SubjectTerms Algorithms
Analysis
Animals
Arabidopsis
Bioinformatics
Biomedical and Life Sciences
Caenorhabditis elegans
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deoxyribonucleic acid
DNA
Drosophila
Dynamic programming
Genetic testing
Genomes
High-Throughput Nucleotide Sequencing - methods
Humans
Life Sciences
Methodology
Methodology Article
Methods
Microarrays
RNA sequencing
Sequence analysis (methods)
Sequence Analysis, RNA
Software
Time Factors
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96Kvji92n1lCiCKIS9fuTLFznEQ0GOw1M58CGkSXouSnfddhX_e2fatF4X3Behb5m0TWcyH5npbwh5KoR0QZT7rIRQhxUl18xybWG777vCeet6MJ3P7-XRkTo91cfxwK2JZZWDTuwUtV84PCOfgalPES1c5K-WPxh2jcLsamyhcZFcQpSErCvdOx6zCIjXP6QmlZiloIgZhDicpXCpbGKKNhXyOYu0WS25kTLtLNHh9f9dww1yLfqg9KAXmpvkQqhvkSt9V8rft8mXk2_hV1i9pJZWtmmprT21zq0RVIJab5fACtqu5njkTcHnpTVGz2cdfjWymcbybHh5urSgUj0LcAvwTn1zh3w6fPPx9VsWezAwJ7Ruma8KDT5d5nzIcm1THipZBe1V8FUlskp5mYNPllpVggrXOfcCbJ7SyuWll6BOdslOvajDPUJdlpVFYdPCCgjKeVCFqySXzlU6h7hKJWQ2sMO4CFCOfTK-my5QUcIgAw0y0KRwqSwhz8cZyx6cYwvtE-SwQcyLGotqzuy6acy7kw_mgOe6EKhuE_IsElULeLSz8R8FWADCZE0o9yaUsCnddHiQABOVQmP-sj8hj8dhnImFbnVYrDsazFeBY7eVRiohwRNLyN1eNsflIwAkBxYkRE6kdiRAOPHpSD3_2sGKF-hNKp6QF4N8n3v1f3zV-9vX-YBcBQezYF2vpz2y067W4SG57H6282b1qNusfwD_xEWQ
  priority: 102
  providerName: ProQuest
Title Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads
URI https://link.springer.com/article/10.1186/1471-2105-15-182
https://www.ncbi.nlm.nih.gov/pubmed/24925680
https://www.proquest.com/docview/1541298963
https://www.proquest.com/docview/1542009074
https://www.proquest.com/docview/1547867061
https://pubmed.ncbi.nlm.nih.gov/PMC4074385
Volume 15
WOSCitedRecordID wos000338258500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_OOwW_-H5UzyWKIArhro-8_HbKHR7qUnb1OPVDSZP0XJTust1V_O-dZNvluuiBQsmXTNo0mZnMdKa_AXjKuTCOl_u0RFeHZiVTVDOlUdz3TWasNiswnZN3YjiUp6cq34Kk-xcmZLt3IcmgqYNYS74Xoxql6KAwGuMlUe3u4GEnfbmG0fhkHTnwGP1dOPIPo3rHz6YSPncKbWZIboRJw-lzdP1_5n0DrrW2JjlYMcdN2HL1Lbiyqj756zZ8GX9zP938JdGk0s2C6NoSbczSg0cQbfUMl5ws5hP_aZugbUtq7yWfBZxqv52kTcPGyZCZRtVpqcNboBVqmzvw8ejww-s3tK21QA1XakFtlSm03RJjXZIqHTNXicopK52tKp5U0ooUba9YyxJVtUqZ5Xi2SSVNWlqBauMubNfT2t0HYpKkzDIdZ5qj882czEwlmDCmUin6TzKCvW4LCtMCkft6GN-L4JBIXvglK_ySFTFeMong-XrEbAXCcQHtE7-rhce2qH3yzJleNk1xPB4VByxVGfdqNYJnLVE1xUcb3f6LgC_g4bB6lLs9ShQ-0-_umKdohb_BiWSxB7bnaQSP191-pE9oq910GWh8XAoNuAtphOQCLa4I7q34cf36HuiR4RZEIHqcuibwsOH9nnryNcCHZ95qlCyCFx2_npv6X1b1wb8QP4SraFZmNFR42oXtxXzpHsFl82MxaeYDuCRORWjlAHZeHQ7z0SB8CcH2raADn32bY5uzz9ifH7_PPw2CiP8Gq-tCZQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMEL90tggEEgBJLVJnF8QUJoAqZVLRViG5rEQ3BsZ1SgtDQt0_4Uv5FzcilrJfq2B6S8-eRi-1x9Tr5DyFMhpPUi67IMQh3Gs0Qzk2gD4t613DpjazCdzwM5HKrDQ_1xg_xu_4XBsspWJ1aK2o0tnpF3wNSHiBYu4jeTnwy7RmF2tW2hUbNF358cQ8hWvu69g_19FkU77_ff7rKmqwCzQusZcznX4KVE1vko1iZMfC5zr53yLs9FlCsnY_AyQqMyUEo6TpwALa60snHmJAgIPPccOc9jJVGu-pItshbYH6BNhSrRCUHxMwipEhbCpaIl07dqAE5ZwNXqzJUUbWX5dq7-b2t2jVxpfGy6XQvFdbLhixvkYt118-Qm-bL33R_76StqaG7KGTWFo8baOYJmUOPMBFiNzqYjPNKn4NPTAk8Hjip8bmRj2pSfw2LRiQGT4ZiHR4D37cpb5OBMZnabbBbjwt8l1EZRxrkJuRFdLhKvuM1lIq3NdQxxowpIp93-1DYA7NgH5EdaBWJKpMgwKTJMGsKlooC8WNwxqcFH1tA-QY5KEdOjwKKhIzMvy7S39yndTmLNBZqTgDxviPIxvNqa5h8MmADCgC1Rbi1RgtKxy8Mtx6WN0ivTv-wWkMeLYbwTC_kKP55XNJiPA8d1LY1UQoKnGZA7tSwspo8AlwlsQUDkkpQsCBAufXmkGH2rYNM5essqCcjLVp5Offo_VvXe-nk-Ipd29z8M0kFv2L9PLoMzzVnV12qLbM6mc_-AXLC_ZqNy-rBSFJR8PWsp-wMsXqOL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA9yPvCL70f11CiCKIS9tmma-O1QFw-P5XD1OPBDSPM4F6W7bLuK_70zfXFd9ECEfstkN8lMJr_pTH8h5LkQufWi2GMFhDqMF5liJlMGtvue5dYZ25LpHB_ms5k8OVFH3Qu3qq9271OS7TcNyNJU1pOVC-0Wl2ISg0tlEKxkLIZHggu-yLGMHqP1-fGQRUC-_j41-Ydeo6No2yGfOZG2qyW3UqbNSTS9_r9zuEGudRiU7rdGc5Nc8OUtcrm9lfLXbfJl_s3_9OvX1NBgqpqa0lFj7QZJJahxZgWqoPV6ga-8KWBeWmL0fNrwV6OaaVeeDQOjKwMu1TEPPwHo1FV3yOfpu09v3rPuDgZmhVI1c4ErwHSJdT5JlYkzH_LglZPehSCSIF2eAiaLjSzAhas0cwLOPKmkTQuXgzu5S3bKZenvE2qTpODcxNwICMozL7kNeZZbG1QKcZWMyKRXh7YdQTnek_FdN4GKFBqXTOOS6RgemUTk5dBj1ZJznCP7DDWskfOixKKaU7OpKn0w_6j3s1Rxge42Ii86obCEv7am-0YBJoA0WSPJ3ZEkbEo7bu4NSXdOoYKB8BgJ70UakadDM_bEQrfSLzeNDOarANidK5NLkQMSi8i91jaH6SMBZAYqiEg-stpBAOnExy3l4mtDK84RTcosIq962z0z9L-s6oN_EX5Crhy9nerDg9mHh-QqIE_OmkugdslOvd74R-SS_VEvqvXjZhf_BtNZRVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skewer%3A+a+fast+and+accurate+adapter+trimmer+for+next-generation+sequencing+paired-end+reads&rft.jtitle=BMC+bioinformatics&rft.au=Jiang%2C+Hongshan&rft.au=Lei%2C+Rong&rft.au=Ding%2C+Shou-Wei&rft.au=Zhu%2C+Shuifang&rft.date=2014-06-12&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=15&rft_id=info:doi/10.1186%2F1471-2105-15-182&rft.externalDocID=A539460887
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon