Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA s...
Gespeichert in:
| Veröffentlicht in: | PLoS pathogens Jg. 10; H. 2; S. e1003921 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
01.02.2014
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7374, 1553-7366, 1553-7374 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. |
|---|---|
| AbstractList | In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over- expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection.In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection. In plants, RNA silencing plays a key role in developmental regulation and antiviral defense. To successfully infect their hosts, plant viruses encode silencing suppressors (VSRs) as counter-defense measures. These VSRs function to disable host antiviral RNA silencing defenses through various mechanisms that are not well understood. Here we report that a host calmodulin-like protein called Nbrgs-CaM, which appears to be an endogenous suppressor of RNA silencing, plays essential roles in suppression of RNA silencing and induction of symptoms by the VSR βC1, the sole protein encoded by a geminivirus-associated DNA satellite. The Nbrgs-CaM was up-regulated by Tomato yellow leaf curl China geminivirus (TYLCCNV)-encoded VSR βC1 upon virus infection or stable expression via a transgene. Further analyses revealed that up-regulation of Nbrgs-CaM by βC1 suppressed RNA silencing likely through repressing the expression of RNA-DEPENDENT RNA POLYMERASE 6 (RDR6). We have demonstrated that RDR6-mediated RNA silencing plays an important role in antiviral defense in Nicotiana benthamiana and confers host range restriction against TYLCCNV infection on Arabidopsis thaliana. Our study suggests that exploiting a cellular suppressor can be an efficient mechanism for viruses to counteract host RNA silencing defense response. |
| Audience | Academic |
| Author | Li, Zhenghe Huang, Changjun Li, Fangfang Zhou, Xueping |
| AuthorAffiliation | University of California Riverside, United States of America 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China |
| AuthorAffiliation_xml | – name: University of California Riverside, United States of America – name: 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China – name: 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China |
| Author_xml | – sequence: 1 givenname: Fangfang surname: Li fullname: Li, Fangfang – sequence: 2 givenname: Changjun surname: Huang fullname: Huang, Changjun – sequence: 3 givenname: Zhenghe surname: Li fullname: Li, Zhenghe – sequence: 4 givenname: Xueping surname: Zhou fullname: Zhou, Xueping |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24516387$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl9v0zAUxSM0xLbCN0BgiRd4aLHjP4n3gFR1g1WqxtQCr5bjOMUltTPbQdsLnx13bacVISSUh8Tx75x7fX1OsyPrrM6ylwiOEC7Q-5XrvZXtqOtkHCEIMc_Rk-wEUYqHBS7I0aPv4-w0hBWEBGHEnmXHOaGI4bI4yX4t-q7zOgTjLHANmF-NwcK02ipjl6C6AxJct9JGcJ42vhnfB7CQUbetiRrM9U1vkjhBly5EMJHt2tV9a-xwZn5ocO1d1MaC6BJ6XwXMz-cMXNzuSz7PnjayDfrF7j3Ivn68-DK5HM4-f5pOxrOhYpzHIceNgiUmlOgS8iKv0porogisoSyVQjUjTU1oJbGqsMQlyyHKK44hRYRJggfZ661v17ogdqMLAlFYlDgvC5qI6ZaonVyJzpu19HfCSSPufzi_FNJHo1ot8lSVopxppiGpGlZJziqFqqpGPFVlyevDrlpfrXWttI1etgemhzvWfBdL91NgjhiBRTJ4uzPw7qbXIYq1CSpNXVrt-tQ34TyFgNJN32-26FKm1oxtXHJUG1yMMSMlJSgdcZCN_kKlp9Zro1KwmnTnh4J3B4LERH0bl7IPQUwX8_9grw7ZV49H8zCTfSITQLaA8i4Er5sHBEGxCf7-9sQm-GIX_CQ7-0OmTJQxRSwd1LT_Fv8GI0gJoQ |
| CitedBy_id | crossref_primary_10_1093_plcell_koac058 crossref_primary_10_1371_journal_ppat_1009118 crossref_primary_10_1007_s13205_016_0410_1 crossref_primary_10_3390_ijms19030665 crossref_primary_10_1186_s12985_021_01612_1 crossref_primary_10_1007_s00425_019_03122_5 crossref_primary_10_3389_fmicb_2019_01460 crossref_primary_10_3390_v11050442 crossref_primary_10_1099_jgv_0_000254 crossref_primary_10_1186_s12985_015_0263_y crossref_primary_10_3389_fpls_2020_00840 crossref_primary_10_1007_s11427_022_2196_y crossref_primary_10_1099_jgv_0_000814 crossref_primary_10_3390_v10090484 crossref_primary_10_1128_jvi_01444_22 crossref_primary_10_1016_j_virol_2023_05_011 crossref_primary_10_1094_PHYTO_10_22_0371_R crossref_primary_10_3390_microorganisms9040740 crossref_primary_10_3390_v10100536 crossref_primary_10_3390_v8070208 crossref_primary_10_1111_mpp_12851 crossref_primary_10_3390_v14020222 crossref_primary_10_1371_journal_ppat_1007728 crossref_primary_10_1038_s41467_022_28262_3 crossref_primary_10_3390_pathogens10010027 crossref_primary_10_1002_biot_202300736 crossref_primary_10_1016_j_virol_2023_07_003 crossref_primary_10_1371_journal_ppat_1005668 crossref_primary_10_1016_j_ncrops_2025_100087 crossref_primary_10_1016_j_virol_2024_110309 crossref_primary_10_3390_cells8010038 crossref_primary_10_1128_JVI_01414_20 crossref_primary_10_1371_journal_ppat_1007282 crossref_primary_10_1111_jipb_13959 crossref_primary_10_1093_jxb_erad442 crossref_primary_10_1128_JVI_00656_16 crossref_primary_10_3389_fpls_2014_00660 crossref_primary_10_1111_tpj_17037 crossref_primary_10_3390_horticulturae9020231 crossref_primary_10_1016_j_tim_2019_05_007 crossref_primary_10_1094_PHYTO_10_22_0358_IA crossref_primary_10_1128_JVI_00761_17 crossref_primary_10_1016_j_virol_2015_08_015 crossref_primary_10_3390_v10090472 crossref_primary_10_1016_j_coviro_2015_12_001 crossref_primary_10_1146_annurev_virology_010220_054709 crossref_primary_10_1371_journal_ppat_1012064 crossref_primary_10_1016_j_ijbiomac_2016_08_016 crossref_primary_10_1007_s44154_022_00044_3 crossref_primary_10_1007_s12298_025_01579_1 crossref_primary_10_1038_s41467_018_03658_2 crossref_primary_10_3390_v9090256 crossref_primary_10_1007_s00299_015_1795_8 crossref_primary_10_1002_advs_202400978 crossref_primary_10_1080_03235408_2021_1957412 crossref_primary_10_1016_j_molp_2016_03_008 crossref_primary_10_1016_j_virol_2019_06_018 crossref_primary_10_1111_jipb_12463 crossref_primary_10_1371_journal_pone_0225876 crossref_primary_10_1093_plcell_koad254 crossref_primary_10_1002_ps_8252 crossref_primary_10_1111_mpp_12270 crossref_primary_10_1111_nph_13473 crossref_primary_10_3389_fmicb_2021_760937 crossref_primary_10_1111_mpp_13362 crossref_primary_10_1007_s11262_015_1184_y crossref_primary_10_3389_fagro_2023_1235168 crossref_primary_10_3390_v15020510 crossref_primary_10_1080_03235408_2017_1402533 crossref_primary_10_3389_fmicb_2022_964156 crossref_primary_10_3390_v9090247 crossref_primary_10_1016_j_xplc_2025_101490 crossref_primary_10_1016_j_jprot_2016_10_015 crossref_primary_10_1186_s42483_021_00104_y crossref_primary_10_12677_BR_2022_113039 crossref_primary_10_1371_journal_ppat_1006213 crossref_primary_10_1007_s00253_021_11483_9 crossref_primary_10_3389_fpls_2017_02093 crossref_primary_10_1007_s44154_022_00057_y crossref_primary_10_1128_JVI_01307_20 crossref_primary_10_3390_epigenomes2020007 crossref_primary_10_1016_j_virol_2015_02_028 crossref_primary_10_1007_s42452_024_05961_8 crossref_primary_10_1016_j_coviro_2020_12_002 crossref_primary_10_3389_fmicb_2017_02322 crossref_primary_10_3389_fmicb_2020_00102 crossref_primary_10_1111_mpp_12800 crossref_primary_10_1371_journal_ppat_1009956 crossref_primary_10_3390_v11090827 crossref_primary_10_3390_microorganisms9040775 crossref_primary_10_3390_v14020432 crossref_primary_10_1007_s00705_023_05776_9 crossref_primary_10_3390_plants12061411 crossref_primary_10_1128_JVI_00475_21 crossref_primary_10_1007_s11427_020_1654_x crossref_primary_10_1186_s42483_023_00192_y crossref_primary_10_1016_j_coviro_2018_08_002 crossref_primary_10_1007_s00425_022_03948_6 crossref_primary_10_1128_JVI_00300_17 crossref_primary_10_1111_jipb_13452 crossref_primary_10_1007_s00705_021_05338_x crossref_primary_10_1016_j_fmre_2025_06_003 crossref_primary_10_1128_JVI_02290_15 crossref_primary_10_1007_s11262_020_01806_9 crossref_primary_10_1016_j_tplants_2019_03_010 crossref_primary_10_1186_s42483_023_00196_8 crossref_primary_10_1016_j_coviro_2015_01_001 crossref_primary_10_1094_MPMI_06_19_0161_FI crossref_primary_10_3389_fmicb_2016_01552 crossref_primary_10_1038_srep16476 crossref_primary_10_1038_s41598_021_95116_1 crossref_primary_10_3389_fpls_2020_00591 crossref_primary_10_1016_j_plgene_2018_01_001 crossref_primary_10_1111_mpp_12804 crossref_primary_10_1016_j_plaphy_2023_107852 crossref_primary_10_3390_ijms23105312 crossref_primary_10_1111_nph_17657 crossref_primary_10_1111_nph_16208 crossref_primary_10_1016_j_molp_2018_10_007 crossref_primary_10_1098_rsob_180162 crossref_primary_10_1093_jxb_erad002 crossref_primary_10_1371_journal_ppat_1010482 crossref_primary_10_1093_jxb_eraa377 crossref_primary_10_1016_j_virol_2018_05_003 crossref_primary_10_1111_tpj_15972 crossref_primary_10_3390_agronomy12112790 crossref_primary_10_3390_v12030310 crossref_primary_10_1186_s42483_025_00333_5 crossref_primary_10_3390_ijms23020696 crossref_primary_10_1038_s41598_019_44681_7 crossref_primary_10_7717_peerj_16982 crossref_primary_10_3389_fmicb_2019_01000 crossref_primary_10_1186_s42483_023_00209_6 crossref_primary_10_1038_s41598_020_66670_x crossref_primary_10_3389_fcimb_2021_786348 crossref_primary_10_3390_ijms26125814 crossref_primary_10_3389_fmicb_2021_645419 crossref_primary_10_1080_02331934_2024_2411438 crossref_primary_10_3389_fmicb_2020_555194 crossref_primary_10_1016_j_gene_2018_08_009 crossref_primary_10_1111_nph_16268 crossref_primary_10_1038_s41580_022_00496_5 crossref_primary_10_1007_s12042_018_9210_6 crossref_primary_10_1371_journal_ppat_1007228 crossref_primary_10_1038_srep39960 crossref_primary_10_3389_fmicb_2021_780724 crossref_primary_10_1111_jipb_13580 crossref_primary_10_3390_plants9030290 crossref_primary_10_3389_fmicb_2016_01329 crossref_primary_10_1038_srep11324 crossref_primary_10_1093_jxb_ery043 crossref_primary_10_1007_s11262_019_01716_5 crossref_primary_10_1016_j_pmpp_2023_102167 crossref_primary_10_1128_mmbr_00035_22 crossref_primary_10_3390_jof7070493 |
| Cites_doi | 10.1111/j.1365-313X.2004.02103.x 10.1016/j.virol.2009.01.045 10.1016/j.virusres.2009.12.008 10.1111/j.1365-3040.2012.02530.x 10.1128/AEM.01193-09 10.1371/journal.pone.0052717 10.1016/j.chom.2010.06.009 10.1128/JVI.02336-09 10.1016/S0092-8674(02)00682-7 10.1073/pnas.0709036105 10.1105/tpc.107.055319 10.1016/S0092-8674(00)80864-8 10.1099/vir.0.18608-0 10.1073/pnas.1201628109 10.1105/tpc.106.045724 10.1007/s12038-012-9291-6 10.1371/journal.pgen.1003399 10.1093/mp/ssn091 10.1128/JVI.79.16.10764-10775.2005 10.1093/nar/gkj447 10.1104/pp.105.063537 10.1073/pnas.0904086107 10.1038/nri2824 10.1104/pp.126.3.930 10.1016/j.cub.2007.07.061 10.1105/tpc.109.073056 10.1128/JVI.78.24.13966-13974.2004 10.1111/j.1467-7652.2008.00395.x 10.1073/pnas.1208557109 10.1016/S0092-8674(00)80863-6 10.1016/S0092-8674(03)00984-X 10.1371/journal.ppat.1000996 10.1093/nar/gkt152 10.1101/gad.1682208 10.1016/j.tplants.2011.02.010 10.1104/pp.111.178012 10.1016/j.virusres.2007.04.002 10.1128/JVI.00719-08 10.1093/pcp/pcj057 10.1126/science.1241911 10.1146/annurev.cellbio.042308.113417 10.1038/emboj.2009.2 10.1016/j.tplants.2010.09.001 10.1128/JVI.01963-05 10.1126/science.1241930 10.1371/journal.ppat.1002941 10.1007/s00705-007-0957-6 10.1105/tpc.107.056127 10.1104/pp.108.132688 10.1038/embor.2008.118 10.1023/A:1020122104651 10.1016/j.bbagrm.2011.06.002 10.1105/tpc.112.103119 10.1094/MPMI-06-10-0124 10.1093/emboj/17.22.6739 10.1126/science.290.5489.142 10.1111/j.1365-313X.2004.02120.x 10.1046/j.1365-313X.2003.01810.x 10.1038/nsmb1005 10.1038/emboj.2008.129 10.1631/jzus.B1000157 10.1073/pnas.111440998 10.1261/rna.541307 10.1094/MPMI-01-11-0001 10.1016/j.virol.2005.09.041 10.1371/journal.ppat.1002329 10.1016/S0042-6822(03)00200-9 10.1016/j.virol.2004.03.018 10.1105/tpc.110.082305 10.1101/gad.1495506 10.1016/j.virusres.2012.03.012 10.1016/j.virusres.2006.07.014 10.1105/tpc.105.033449 10.1128/JVI.79.24.15209-15217.2005 10.1371/journal.ppat.1000729 10.1038/emboj.2010.215 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2014 Public Library of Science 2014 Li et al 2014 Li et al 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Li F, Huang C, Li Z, Zhou X (2014) Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression. PLoS Pathog 10(2): e1003921. doi:10.1371/journal.ppat.1003921 |
| Copyright_xml | – notice: COPYRIGHT 2014 Public Library of Science – notice: 2014 Li et al 2014 Li et al – notice: 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Li F, Huang C, Li Z, Zhou X (2014) Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression. PLoS Pathog 10(2): e1003921. doi:10.1371/journal.ppat.1003921 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 5PM DOA |
| DOI | 10.1371/journal.ppat.1003921 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Calmodulin in Geminivirus-Suppression of PTGS |
| EISSN | 1553-7374 |
| ExternalDocumentID | 1507832875 oai_doaj_org_article_20d05126e6e04bf6ba96bc1bbd1912b6 PMC3916407 A364854178 24516387 10_1371_journal_ppat_1003921 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ 7X8 PUEGO 5PM - 3V. AAPBV ABPTK ADACO BBAFP M~E PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c699t-93fc083454e80972b3fc9c4c40d0a8cc1d64fd45ba3cb3a3862012b9305146a43 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332085900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7374 1553-7366 |
| IngestDate | Fri Nov 26 17:14:15 EST 2021 Tue Oct 14 19:06:08 EDT 2025 Tue Nov 04 02:01:20 EST 2025 Fri Sep 05 14:40:07 EDT 2025 Tue Nov 11 10:36:09 EST 2025 Tue Nov 04 17:20:56 EST 2025 Thu Nov 13 15:14:23 EST 2025 Thu Nov 13 15:06:03 EST 2025 Mon Jul 21 05:45:31 EDT 2025 Sat Nov 29 02:24:05 EST 2025 Tue Nov 18 20:58:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Tobacco RNA Interference Gene Expression Regulation Polymerase Chain Reaction Immunoblotting Geminiviridae Plant Proteins RNA Replicase Host-Parasite Interactions Calmodulin DNA, Plant |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c699t-93fc083454e80972b3fc9c4c40d0a8cc1d64fd45ba3cb3a3862012b9305146a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: ZL XZ. Performed the experiments: FL CH. Analyzed the data: FL CH ZL XZ. Contributed reagents/materials/analysis tools: FL CH ZL XZ. Wrote the paper: FL ZL XZ. The authors have declared that no competing interests exist. |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.ppat.1003921 |
| PMID | 24516387 |
| PQID | 1499137555 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1507832875 doaj_primary_oai_doaj_org_article_20d05126e6e04bf6ba96bc1bbd1912b6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3916407 proquest_miscellaneous_1499137555 gale_infotracmisc_A364854178 gale_infotracacademiconefile_A364854178 gale_incontextgauss_ISR_A364854178 gale_incontextgauss_ISN_A364854178 pubmed_primary_24516387 crossref_primary_10_1371_journal_ppat_1003921 crossref_citationtrail_10_1371_journal_ppat_1003921 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS pathogens |
| PublicationTitleAlternate | PLoS Pathog |
| PublicationYear | 2014 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | HY Chen (ref18) 2008; 9 K Saunders (ref42) 2004; 324 Q Wu (ref67) 2010; 8 C Llave (ref2) 2010; 15 CJ Huang (ref53) 2011; 12 Z Xie (ref5) 2001; 98 T Kon (ref47) 2007; 152 I Le Masson (ref58) 2012; 24 JY Yang (ref55) 2008; 22 PV Maillard (ref69) 2013; 342 M Aregger (ref74) 2012; 8 H Li (ref79) 2005; 17 R Akbergenov (ref35) 2006; 34 G Haas (ref21) 2008; 27 J Qazi (ref41) 2007; 128 M Taliansky (ref65) 2004; 39 Y Li (ref68) 2013; 342 MC Kim (ref30) 2009; 2 C Huang (ref52) 2009; 7 F Di Serio (ref11) 2010; 84 SW Ding (ref1) 2010; 10 F Qu (ref8) 2010; 23 N Muangsan (ref36) 2004; 38 P Sharma (ref48) 2010; 149 L Xu (ref80) 2006; 47 R Xiong (ref82) 2009; 387 E Glick (ref72) 2008; 105 A Giner (ref22) 2010; 6 JA Chao (ref17) 2005; 12 P Gopal (ref46) 2007; 123 F Qu (ref12) 2005; 79 T Hohn (ref34) 2011; 1809 M Guo (ref78) 2008; 20 XB Wang (ref9) 2010; 107 M Jaubert (ref70) 2011; 156 X Chen (ref31) 2009; 25 I Amin (ref43) 2011; 24 Z Luo (ref76) 2007; 19 X Li (ref59) 2012; 109 H Garcia-Ruiz (ref6) 2010; 22 J Burgyan (ref15) 2011; 16 X Yang (ref66) 2011; 7 F Schwach (ref13) 2005; 138 LK Johansen (ref51) 2001; 126 H Jeske (ref32) 2009; 331 (ref25); 62 KP Hoeflich (ref29) 2002; 108 HJ Han (ref81) 2012; 35 G Brigneti (ref50) 1998; 17 S Mlotshwa (ref63) 2002; 25 XB Wang (ref10) 2011; 23 RW Briddon (ref37) 2003; 312 P Raja (ref77) 2008; 82 SP Dinesh-Kumar (ref54) 2003; 236 MW Endres (ref28) 2010; 6 X Cui (ref44) 2005; 79 R Shukla (ref49) 2013; 38 T Dalmay (ref3) 2000; 101 Q Wu (ref16) 2010; 8 E Varallyay (ref26) 2010; 29 E Glazov (ref56) 2003; 35 R Fukunaga (ref71) 2009; 28 X Zhang (ref23) 2006; 20 ref64 F Naim (ref73) 2012; 7 G Moissiard (ref7) 2007; 13 MG Verlaan (ref75) 2013; 9 DM Bisaro (ref33) 2006; 344 I Gy (ref57) 2007; 19 C Ding (ref40) 2009; 75 R Anandalakshmi (ref27) 2000; 290 O Eini (ref45) 2012; 167 JM Vargason (ref20) 2003; 115 P Mourrain (ref4) 2000; 101 X Zhou (ref38) 2003; 84 Z Merai (ref19) 2006; 80 KS Nakahara (ref61) 2012; 109 FE Vaistij (ref14) 2009; 149 D Bortolamiol (ref24) 2007; 17 ref62 AB Moreno (ref60) 2013; 41 X Cui (ref39) 2004; 78 |
| References_xml | – ident: ref62 – volume: 38 start-page: 1004 year: 2004 ident: ref36 article-title: Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02103.x – volume: 387 start-page: 29 year: 2009 ident: ref82 article-title: Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus publication-title: Virology doi: 10.1016/j.virol.2009.01.045 – volume: 149 start-page: 19 year: 2010 ident: ref48 article-title: Identification of the virulence factors and suppressors of posttranscriptional gene silencing encoded by Ageratum yellow vein virus, a monopartite begomovirus publication-title: Virus Res doi: 10.1016/j.virusres.2009.12.008 – volume: 35 start-page: 1969 year: 2012 ident: ref81 article-title: The transcriptional repressor activity of ASYMMETRIC LEAVES1 is inhibited by direct interaction with calmodulin in Arabidopsis publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02530.x – volume: 75 start-page: 5380 year: 2009 ident: ref40 article-title: Genetic determinants of symptoms on viral DNA satellites publication-title: Appl Environ Microbiol 2009 doi: 10.1128/AEM.01193-09 – volume: 7 start-page: e52717 year: 2012 ident: ref73 article-title: Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein publication-title: PLoS One doi: 10.1371/journal.pone.0052717 – volume: 8 start-page: 12 year: 2010 ident: ref16 article-title: Viral suppressors of RNA-based viral immunity: host targets publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.06.009 – volume: 84 start-page: 2477 year: 2010 ident: ref11 article-title: RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus publication-title: J Virol doi: 10.1128/JVI.02336-09 – volume: 108 start-page: 739 year: 2002 ident: ref29 article-title: Calmodulin in action: diversity in target recognition and activation mechanisms publication-title: Cell doi: 10.1016/S0092-8674(02)00682-7 – volume: 105 start-page: 157 year: 2008 ident: ref72 article-title: Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0709036105 – volume: 19 start-page: 3451 year: 2007 ident: ref57 article-title: Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors publication-title: Plant Cell doi: 10.1105/tpc.107.055319 – volume: 101 start-page: 543 year: 2000 ident: ref3 article-title: An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus publication-title: Cell doi: 10.1016/S0092-8674(00)80864-8 – volume: 84 start-page: 237 year: 2003 ident: ref38 article-title: Characterization of DNA β associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A publication-title: J Gen Virol doi: 10.1099/vir.0.18608-0 – volume: 109 start-page: 10113 year: 2012 ident: ref61 article-title: Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1201628109 – volume: 19 start-page: 943 year: 2007 ident: ref76 article-title: Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.045724 – volume: 38 start-page: 45 year: 2013 ident: ref49 article-title: Suppressors of RNA silencing encoded by tomato leaf curl betasatellites publication-title: J Biosci doi: 10.1007/s12038-012-9291-6 – volume: 9 start-page: e1003399 year: 2013 ident: ref75 article-title: The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA dependent RNA polymerases publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003399 – volume: 2 start-page: 13 year: 2009 ident: ref30 article-title: Calcium and calmodulin-mediated regulation of gene expression in plants publication-title: Mol Plant doi: 10.1093/mp/ssn091 – volume: 79 start-page: 10764 year: 2005 ident: ref44 article-title: A begomovirus DNA β-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus publication-title: J Virol doi: 10.1128/JVI.79.16.10764-10775.2005 – volume: 34 start-page: 462 year: 2006 ident: ref35 article-title: Molecular characterization of geminivirus-derived small RNAs in different plant species publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj447 – volume: 138 start-page: 1842 year: 2005 ident: ref13 article-title: An RNA-dependent RNA polymerase prevents meristem invasion by Potato virus X and is required for the activity but not the production of a systemic silencing signal publication-title: Plant Physiol doi: 10.1104/pp.105.063537 – volume: 107 start-page: 484 year: 2010 ident: ref9 article-title: RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0904086107 – volume: 10 start-page: 632 year: 2010 ident: ref1 article-title: RNA-based antiviral immunity publication-title: Nat Rev Immunol doi: 10.1038/nri2824 – volume: 126 start-page: 930 year: 2001 ident: ref51 article-title: Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system publication-title: Plant Physiol doi: 10.1104/pp.126.3.930 – volume: 17 start-page: 1615 year: 2007 ident: ref24 article-title: The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing publication-title: Curr Biol doi: 10.1016/j.cub.2007.07.061 – volume: 22 start-page: 481 year: 2010 ident: ref6 article-title: Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection publication-title: Plant Cell doi: 10.1105/tpc.109.073056 – volume: 78 start-page: 13966 year: 2004 ident: ref39 article-title: A DNA β associated with Tomato yellow leaf curl China virus is required for symptom induction publication-title: J Virol doi: 10.1128/JVI.78.24.13966-13974.2004 – volume: 7 start-page: 254 year: 2009 ident: ref52 article-title: Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2008.00395.x – volume: 109 start-page: 11425 year: 2012 ident: ref59 article-title: Antisilencing role of the RNA-directed DNA methylation pathway and a histone acetyltransferase in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1208557109 – volume: 101 start-page: 533 year: 2000 ident: ref4 article-title: Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance publication-title: Cell doi: 10.1016/S0092-8674(00)80863-6 – volume: 115 start-page: 799 year: 2003 ident: ref20 article-title: Size selective recognition of siRNA by an RNA silencing suppressor publication-title: Cell doi: 10.1016/S0092-8674(03)00984-X – volume: 6 start-page: e1000996 year: 2010 ident: ref22 article-title: Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000996 – volume: 41 start-page: 4699 year: 2013 ident: ref60 article-title: Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt152 – volume: 22 start-page: 2564 year: 2008 ident: ref55 article-title: βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses publication-title: Genes Dev doi: 10.1101/gad.1682208 – volume: 16 start-page: 265 year: 2011 ident: ref15 article-title: Viral suppressors of RNA silencing publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2011.02.010 – volume: 156 start-page: 1556 year: 2011 ident: ref70 article-title: ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.111.178012 – volume: 128 start-page: 135 year: 2007 ident: ref41 article-title: Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms publication-title: Virus Res doi: 10.1016/j.virusres.2007.04.002 – volume: 82 start-page: 8997 year: 2008 ident: ref77 article-title: Viral genome methylation as an epigenetic defense against geminiviruses publication-title: J Virol doi: 10.1128/JVI.00719-08 – volume: 47 start-page: 853 year: 2006 ident: ref80 article-title: Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcj057 – volume: 342 start-page: 231 year: 2013 ident: ref68 article-title: RNA interference functions as an antiviral immunity mechanism in mammals publication-title: Science doi: 10.1126/science.1241911 – volume: 25 start-page: 21 year: 2009 ident: ref31 article-title: Small RNAs and their roles in plant development publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.042308.113417 – volume: 28 start-page: 545 year: 2009 ident: ref71 article-title: dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants publication-title: EMBO J doi: 10.1038/emboj.2009.2 – volume: 15 start-page: 701 year: 2010 ident: ref2 article-title: Virus-derived small interfering RNAs at the core of plant-virus interactions publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.09.001 – volume: 80 start-page: 5747 year: 2006 ident: ref19 article-title: Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing publication-title: J Virol doi: 10.1128/JVI.01963-05 – ident: ref64 – volume: 342 start-page: 235 year: 2013 ident: ref69 article-title: Antiviral RNA interference in mammalian cells publication-title: Science doi: 10.1126/science.1241930 – volume: 8 start-page: e1002941 issue: 9 year: 2012 ident: ref74 article-title: Primary and secondary siRNAs in geminivirus-induced gene silencing publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002941 – volume: 152 start-page: 1273 year: 2007 ident: ref47 article-title: Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus publication-title: Arch Virol doi: 10.1007/s00705-007-0957-6 – volume: 20 start-page: 48 year: 2008 ident: ref78 article-title: Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.107.056127 – volume: 149 start-page: 1399 year: 2009 ident: ref14 article-title: Compromised virus-induced gene silencing in RDR6-deficient plants publication-title: Plant Physiol doi: 10.1104/pp.108.132688 – volume: 9 start-page: 754 year: 2008 ident: ref18 article-title: Structural basis for RNA-silencing suppression by Tomato aspermy virus protein 2b publication-title: EMBO Rep doi: 10.1038/embor.2008.118 – volume: 236 start-page: 287 year: 2003 ident: ref54 article-title: Virus-induced gene silencing publication-title: Methods Mol Biol – volume: 25 start-page: 207 year: 2002 ident: ref63 article-title: Subcellular location of the helper component-proteinase of Cowpea aphid-borne mosaic virus publication-title: Virus Genes doi: 10.1023/A:1020122104651 – volume: 1809 start-page: 588 year: 2011 ident: ref34 article-title: RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagrm.2011.06.002 – volume: 24 start-page: 3603 year: 2012 ident: ref58 article-title: Mutations in the Arabidopsis H3K4me2/3 demethylase JMJ14 suppress posttranscriptional gene silencing by decreasing transgene transcription publication-title: Plant Cell doi: 10.1105/tpc.112.103119 – volume: 23 start-page: 1248 year: 2010 ident: ref8 article-title: Antiviral role of plant-encoded RNA-dependent RNA polymerases revisited with deep sequencing of small interfering RNAs of virus origin publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-06-10-0124 – volume: 17 start-page: 6739 year: 1998 ident: ref50 article-title: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana publication-title: EMBO J doi: 10.1093/emboj/17.22.6739 – volume: 290 start-page: 142 year: 2000 ident: ref27 article-title: A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants publication-title: Science doi: 10.1126/science.290.5489.142 – volume: 39 start-page: 194 year: 2004 ident: ref65 article-title: Escape of a plant virus from amplicon-mediated RNA silencing is associated with biotic or abiotic stress publication-title: Plant J doi: 10.1111/j.1365-313X.2004.02120.x – volume: 35 start-page: 342 year: 2003 ident: ref56 article-title: A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01810.x – volume: 12 start-page: 952 year: 2005 ident: ref17 article-title: Dual modes of RNA-silencing suppression by flock house virus protein B2 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb1005 – volume: 62 start-page: 463 ident: ref25 article-title: Csorba T, Lozsa R, Hutvagner G, Burgyan J. 2010. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1 publication-title: Plant J – volume: 331 start-page: 185 year: 2009 ident: ref32 article-title: Geminiviruses publication-title: Curr Top Microbiol Immunol – volume: 27 start-page: 2102 year: 2008 ident: ref21 article-title: Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4 publication-title: EMBO J doi: 10.1038/emboj.2008.129 – volume: 12 start-page: 83 year: 2011 ident: ref53 article-title: Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite publication-title: J Zhejiang Univ Sci B doi: 10.1631/jzus.B1000157 – volume: 8 start-page: 12 year: 2010 ident: ref67 article-title: Viral suppressors of RNA-based viral immunity: host targets publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.06.009 – volume: 98 start-page: 6516 year: 2001 ident: ref5 article-title: An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.111440998 – volume: 13 start-page: 1268 year: 2007 ident: ref7 article-title: Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins publication-title: RNA doi: 10.1261/rna.541307 – volume: 24 start-page: 973 year: 2011 ident: ref43 article-title: Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-01-11-0001 – volume: 344 start-page: 158 year: 2006 ident: ref33 article-title: Silencing suppression by geminivirus proteins publication-title: Virology doi: 10.1016/j.virol.2005.09.041 – volume: 7 start-page: e1002329 year: 2011 ident: ref66 article-title: Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002329 – volume: 312 start-page: 106 year: 2003 ident: ref37 article-title: Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses publication-title: Virology doi: 10.1016/S0042-6822(03)00200-9 – volume: 324 start-page: 37 year: 2004 ident: ref42 article-title: The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1) publication-title: Virology doi: 10.1016/j.virol.2004.03.018 – volume: 23 start-page: 1625 year: 2011 ident: ref10 article-title: The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.110.082305 – volume: 20 start-page: 3255 year: 2006 ident: ref23 article-title: Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis ARGONAUTE1 cleavage activity to counter plant defense publication-title: Genes Dev doi: 10.1101/gad.1495506 – volume: 167 start-page: 97 year: 2012 ident: ref45 article-title: Silencing suppressor activity of a begomovirus DNA β encoded protein and its effect on heterologous helper virus replication publication-title: Virus Res doi: 10.1016/j.virusres.2012.03.012 – volume: 123 start-page: 9 year: 2007 ident: ref46 article-title: Differential roles of C4 and βC1 in mediating suppression of post-transcriptional gene silencing: Evidence for transactivation by the C2 of Bhendi yellow vein mosaic virus, a monopartite begomovirus publication-title: Virus Res doi: 10.1016/j.virusres.2006.07.014 – volume: 17 start-page: 2157 year: 2005 ident: ref79 article-title: The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development publication-title: Plant Cell doi: 10.1105/tpc.105.033449 – volume: 79 start-page: 15209 year: 2005 ident: ref12 article-title: RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana publication-title: J Virol doi: 10.1128/JVI.79.24.15209-15217.2005 – volume: 6 start-page: e1000729 year: 2010 ident: ref28 article-title: Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing publication-title: PloS Pathog doi: 10.1371/journal.ppat.1000729 – volume: 29 start-page: 3507 year: 2010 ident: ref26 article-title: Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation publication-title: EMBO J doi: 10.1038/emboj.2010.215 |
| SSID | ssj0041316 |
| Score | 2.5188575 |
| Snippet | In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that... In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs)... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1003921 |
| SubjectTerms | Arabidopsis thaliana Biology Calmodulin Calmodulin - metabolism Deoxyribonucleic acid DNA DNA, Plant Experiments Geminiviridae Gene Expression Regulation - physiology Genetic aspects Genetic engineering Health aspects Host-Parasite Interactions - physiology Immunoblotting Leaves Nicotiana - genetics Nicotiana - metabolism Nicotiana - virology Plant Proteins - genetics Plant Proteins - metabolism Polymerase Chain Reaction Proteins RNA Interference - physiology RNA polymerase RNA-Dependent RNA Polymerase - biosynthesis RNA-Dependent RNA Polymerase - genetics Satellites Science Seeds Tobacco Viruses |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVQBRIXxPcGFmQQEqdAUjt2ciwsK7hUqIC0N8t2bIgoSdSkK_bCb2cmTqoNAu2FY-oXRZ55_hh15g0hL7RgzEtTxGluPQQo3sSGcRvjUkqE9k4aPTSbkOt1fnZWfLzU6gtzwoI8cDAcBOcl8GYpnHAJN14YXQhjU2NKiDSWZhDbTmQxBVNhD4adeWh6ik1xYsmEGIvmmExfjz561bYa5aMTuCCks0Np0O4_7NCLdtt0f7t-_plFeelYOr1Nbo33SboK87hDrrn6LrkROkxe3CO_sGtnSHWtaePpZr2iXYWFRnBkUXNBNW23YFx6AgPn1W7f0U4PIp29ozuHacKuAxDWglBw54-mxNT1eFt9d3TQeKhq2jd0FxJq6eZkI6j7OX3yPvly-u7z2_fx2HIhtqIo-rhg3sKljGfc5SjsY-C5sNxy8ILOrU1LwX3JM6OZNUwziIfghDMFQxl1oTl7QBZ1U7sjQguZ6WzppOCZ5M5Zk1rhcyZYqvXSMxMRNtlc2VGPHNtibNXwJ5uEuCSYUKGn1OipiMSHt9qgx3EF_g2684BFNe3hB-CYGjmmruJYRJ4jGRTqZdSYkPNV77tOffi0VismeJ7xVOb_BG1moJcjyDcwWavHIggwGepwzZDHMySsejsbPkJiTnPuFF7sYXeG8DMizyayKnwLs-hq1-wBA-EtWCrLAPMwkPdgmCV2bGa5jIic0XpmuflIXX0b9Mixdpsn8tH_MPVjchMYxUNe_DFZ9Lu9e0Ku2_O-6nZPh0X-G0BKWAU priority: 102 providerName: Directory of Open Access Journals |
| Title | Suppression of RNA Silencing by a Plant DNA Virus Satellite Requires a Host Calmodulin-Like Protein to Repress RDR6 Expression |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24516387 https://www.proquest.com/docview/1499137555 https://pubmed.ncbi.nlm.nih.gov/PMC3916407 https://doaj.org/article/20d05126e6e04bf6ba96bc1bbd1912b6 http://dx.doi.org/10.1371/journal.ppat.1003921 |
| Volume | 10 |
| WOSCitedRecordID | wos000332085900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: M7P dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: 7X7 dateStart: 20050901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: BENPR dateStart: 20050901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: PIMPY dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagA4kXfsMKozIIiaewJHbs5LHbWm3SqKIWUHmKbNeBiJJUTYrYC387d0layESFeInU-LMSn8_nu-b8HSGvlWAslTpyvNCkEKCk2tGMGweXkitUaqVWdbEJOZmE83kU_w4Ur33BZ9I7bmX6drVSSPfswoYO0c6Bz4TAYGscX24tL9hjT7TH4_b17Gw_NUv_zhb3Vsui_JujeT1f8o8NaHzvf1_9Prnbupp02OjGA3LD5g_J7ab45NUj8hMLejZZsDktUjqdDOkswzNIsJtRfUUVxYpGFT2Dho_ZelPSmar5OytLpxYziG0JoPOirOipWn4rFpjV7lxmXy2Nkf4hy2lVALR-Cp2eTQUd_dg-8jH5MB69Pz132moMjhFRVDkRSw34azzgNkTOHw2_I8MNdxeuCo3xFoKnCx5oxYxmikGoBJufjhgyrAvF2RPSy4vcHhIayUAFvpWCB5Jba7RnRBoywTyl_JTpPmHbSUpMS1WOFTOWSf39TULI0ogwQckmrWT7xNn1WjVUHf_An-D877BItF3fgClM2nWb-DA68ImEFdblOhVaRUIbT-sFBLq-Fn3yCrUnQSqNHHN1PqtNWSYXs0kyZIKHAfdkuBc07YDetKC0gMEa1Z6PAJEhRVcHedRBgkEwneZD1OTtmMsEfX4w3BCZ9snLrXYn2AsT7HJbbAADkS9IKggA87TR9p1gfCzmzELZJ7KzDjqS67bk2ZeaqhyPdXNXPtv_Ss_JHdAT3iTCH5Fetd7YF-SW-V5l5XpAbsq5rK_hgBycjCbxdFD_bTKoV_4AU3VjaIkv3sWffgHBSFfa |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQAbEX3rCFBQxC4pTdpHbs5Fj2oa4oVdUuaG-W7ToQbUmqJkXshd_OTB4VQVRcuDX1ZyUe2zMeeeYbQt5qwVgiTewFkU3AQUmMZxi3Hm4lX-jESaOrYhNyMokuL-NpQymEuTCNBMFHXOZFdZOPP_LMHTWSrC9ODwMmgxZ8uFppZIL2wdaDI3RTxmCEkPFxOm6VMqjqQDSZc7t6dixTReC_VdM9_Ii_nUH_DKX8zTad3fuPo7pP7jYHVDqsezwgN1z2kNyuS1ZePyI_sQxoHTub0Tyhs8mQzlPMXAIbSM011RTrIJX0BBo-p-tNQee6Yv0sHZ05jDt2BYBGeVHSY738li8wFt4bp1eOTpE0Is1omQO0egudncwEPf3RvvIx-XR2enE88poaDp4VcVx6MUssnPJ4yF2ETEEGnmPLLfcXvo6sDRaCJwseGs2sYZqBgwUm08QMedmF5uwJ6WUgqH1CYxnqcOCk4KHkzlkTWJFETLBA60HCTJ-wdv6UbQjOsc7GUlW3dhIcnVqECiWrGsn2ibfttaoJPv6Bf49LY4tFeu7qD5hV1cymGsDo4CQlnHA-N4kwOhbGBsYswD0eGNEnb3BhKSTgyDDC54veFIU6n0_UkAkehTyQ0U7QrAN614CSHAZrdZNVASJDYq8O8qCDBDViO837uCbbMRcKPQVQ9-DP9snrduEr7IVheZnLN4ABfxkkFYaAeVpvhK1gBlgCmkWyT2Rni3Qk123J0q8VwTkmg3NfPtv9Sa_IndHFx7Ean08-PCd7sGZ4HUp_QHrleuNekFv2e5kW65eVGvgFQodpwQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW8hAX3rCFBQxCcMpuUjt2cizbXe2KqqpaQHtBlu06EFGSqkkRe-G3M5NHRRAVJ25p_DmJx4_x1DPfEPJKC8YSaWIviGwCBkpiPMO49XAq-UInThpdJZuQk0l0cRFP98inNhamkSDYiMu8qE7y8SLP3FEjySPkK6pPTw8DJoO2xuFqpZEO2geFH7yuGIfwn7ESA5CukKsyBlMGWSCn43ahhuU7EE003a4HdbRVReq_Xbp7-GF_25f-6V75m746vf2fW3qH3Go2snRYP-Uu2XPZPXK9Tm15eZ_8xHShtY9tRvOEziZDOk8xwgl0JTWXVFPMl1TSERR8TNebgs51xQ5aOjpz6J_sCgCd5UVJj_XyW75An3lvnH51dIrkEmlGyxyg1VvobDQT9ORH-8oH5MPpyfvjM6_J9eBZEcelF7PEwm6Qh9xFyChk4HdsueX-wteRtcFC8GTBQ6OZNUwzMMRAtZqYIX-70Jw9JL0MhLdPaCxDHQ6cFDyU3DlrAiuSiAkWaD1ImOkT1vapsg0ROubjWKrqdE-CQVSLUKGgVSPoPvG2tVY1Ecg_8G9xuGyxSONd3YCeVk0PqwG0DnZcwgnnc5MIo2NhbGDMAszogRF98hIHm0Kijgw9gT7rTVGo8_lEDZngUcgDGe0EzTqgNw0oyaGxVjfRFyAyHGYd5EEHCcuN7RTv4zht21wotChALYDd2ycv2smgsBa672Uu3wAG7GqQVBgC5lE9ObaCGWCqaBbJPpGdadORXLckS79UROgYNM59-Xj3Jz0nN6ajUzU-n7x7Qm7CkOG1x_0B6ZXrjXtKrtnvZVqsn1Urwy_rHXj2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppression+of+RNA+Silencing+by+a+Plant+DNA+Virus+Satellite+Requires+a+Host+Calmodulin-Like+Protein+to+Repress+RDR6+Expression&rft.jtitle=PLoS+pathogens&rft.au=Li%2C+Fangfang&rft.au=Huang%2C+Changjun&rft.au=Li%2C+Zhenghe&rft.au=Zhou%2C+Xueping&rft.date=2014-02-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=10&rft.issue=2&rft.spage=e1003921&rft_id=info:doi/10.1371%2Fjournal.ppat.1003921&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_ppat_1003921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |