Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?
Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address...
Saved in:
| Published in: | Frontiers in microbiology Vol. 7; no. C; p. 214 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
Frontiers Media
24.02.2016
Frontiers Research Foundation Frontiers Media S.A |
| Subjects: | |
| ISSN: | 1664-302X, 1664-302X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. |
|---|---|
| AbstractList | Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. |
| Author | Hartmann, Martin Pastorelli, Roberta Foulquier, Arnaud Richter, Andreas Hallin, Sara Barba, Josep Siciliano, Steven Bürgmann, Helmut Peltoniemi, Krista Basiliko, Nathan Yuste, Jorge C. Newton, Ryan J. Bañeras, Lluís Schindlbacher, Andreas Knelman, Joseph E. Kaisermann, Aurore Nogaro, Geraldine Beman, J. M. Isobe, Kazuo Lopes, Ana R. Prosser, James Banerjee, Samiran Potthast, Karin Papaspyrou, Sokratis Ingram, Lachlan J. Nunes, Olga C. Jones, Davey L. Chatterjee, Amitava Nemergut, Diana R. Castle, Sarah C. Lagomarsino, Alessandra Hamer, Ute Siljanen, Henri M. P. Kang, Hojeong Abell, Guy Yannarell, Anthony Koranda, Marianne Breulmann, Marc Strickland, Michael S. Garcia-Pausas, Jordi Graham, Emily B. Goberna, Marta Philippot, Laurent Lindström, Eva S. Glanville, Helen C. Yu, Ri-Qing Song, Bongkeun Cao, Yiping Angel, Roey Salminen, Janne |
| AuthorAffiliation | 24 Institute of Aquatic Ecology, Facultat de Ciències, University of Girona Girona, Spain 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, USA 19 Centre for Carbon, Water and Food, The University of Sydney, Sydney NSW, Australia 21 Department of Environmental and Biological Sciences, University of Eastern Finland Kuopio, Finland 45 Research Centre for Agrobiology and Pedology Florence, Italy 15 Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria 18 Department of Surface Waters, Eawag: Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland 31 Department of Ecosystem and Conservation Sciences, University of Montana, Missoula MT, USA 28 EDF R&D, National Hydraulics and Environmental Laboratory Chatou, France 35 LEPABE - Laboratory for Process Engineering, Environmental, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto Porto, Portugal 47 Vale Living with Lakes Centre and Depa |
| AuthorAffiliation_xml | – name: 43 Department of Applied Biological Chemistry, The University of Tokyo Tokyo, Japan – name: 4 Department of Forest Ecology, Federal Research and Training Centre for Forests, Bundesforschungs- und Ausbildungszentrum für Wald Vienna, Austria – name: 16 Häme University of Applied Sciences Hämeenlinna, Finland – name: 13 Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain – name: 3 US Department of Energy, Joint Genome Institute, Walnut Creek CA, USA – name: 21 Department of Environmental and Biological Sciences, University of Eastern Finland Kuopio, Finland – name: 26 CSIRO Agriculture Flagship, Crace ACT, Australia – name: 12 Irstea, UR MALY, Centre de Lyon-Villeurbanne Villeurbanne, France – name: 38 Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences Uppsala, Sweden – name: 27 Department of Biology, University of Texas at Tyler, Tyler TX, USA – name: 29 Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria – name: 6 Helmholtz Centre for Environmental Research – Centre for Environmental Biotechnology Leipzig, Germany – name: 42 School of Civil and Environmental Engineering, Yonsei University Seoul, South Korea – name: 20 Institute of Landscape Ecology, University of Münster Münster, Germany – name: 34 AES School of Natural Resources Sciences, North Dakota State University, Fargo ND, USA – name: 8 Life and Environmental Sciences and Sierra Nevada Research Institute, University of California – Merced, Merced CA, USA – name: 40 Centre Tecnològic Forestal de Catalunya Solsona, Spain – name: 35 LEPABE - Laboratory for Process Engineering, Environmental, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto Porto, Portugal – name: 41 Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès Barcelona, Spain – name: 1 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder CO, USA – name: 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, USA – name: 47 Vale Living with Lakes Centre and Department of Biology, Laurentian University, Sudbury ON, Canada – name: 7 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana IL, USA – name: 44 Department of Biomedicine, Biotechnology and Public Health, University of Cadiz Puerto Real, Spain – name: 19 Centre for Carbon, Water and Food, The University of Sydney, Sydney NSW, Australia – name: 45 Research Centre for Agrobiology and Pedology Florence, Italy – name: 48 Biology Department, Duke University, Durham NC, USA – name: 17 School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee WI, USA – name: 32 Centro de Investigación y Docencia Económicas – Consejo Superior de Investigaciones Científicas Valencia, Spain – name: 18 Department of Surface Waters, Eawag: Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland – name: 39 Department of Biological Sciences, Virginia Polytechnic Institute, State University, Blacksburg VA, USA – name: 36 Southern California Coastal Water Research Project Authority, Costa Mesa CA, USA – name: 10 Institut National de la Recherche Agronomique – Agroecology Dijon, France – name: 28 EDF R&D, National Hydraulics and Environmental Laboratory Chatou, France – name: 31 Department of Ecosystem and Conservation Sciences, University of Montana, Missoula MT, USA – name: 14 Environment Centre Wales, Bangor University Gwynedd, UK – name: 33 Department of Biological Science, Virginia Institute of Marine Science, Gloucester Point VA, USA – name: 46 Department of Ecology and Genetics/Limnology, Uppsala University Uppsala, Sweden – name: 25 Institute for Sustainability Sciences – Agroscope Zurich, Switzerland – name: 5 Department of Soil Science, University of Saskatchewan, Saskatoon SK, Canada – name: 23 Institute of Soil Science and Site Ecology, Technische University Dresden, Germany – name: 30 Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria – name: 15 Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria – name: 22 Natural Resources Institute Vantaa, Finland – name: 9 School of Medicine, Flinders University, Adelaide SA, Australia – name: 24 Institute of Aquatic Ecology, Facultat de Ciències, University of Girona Girona, Spain – name: 37 UMR, Interactions Sol Plante Atmosphère, INRA Bordeaux Villenave d’Ornon, France – name: 11 Institute of Biological and Environmental Sciences, University of Aberdeen Aberdeen, UK |
| Author_xml | – sequence: 1 givenname: Emily B. surname: Graham fullname: Graham, Emily B. – sequence: 2 givenname: Joseph E. surname: Knelman fullname: Knelman, Joseph E. – sequence: 3 givenname: Andreas surname: Schindlbacher fullname: Schindlbacher, Andreas – sequence: 4 givenname: Steven surname: Siciliano fullname: Siciliano, Steven – sequence: 5 givenname: Marc surname: Breulmann fullname: Breulmann, Marc – sequence: 6 givenname: Anthony surname: Yannarell fullname: Yannarell, Anthony – sequence: 7 givenname: J. M. surname: Beman fullname: Beman, J. M. – sequence: 8 givenname: Guy surname: Abell fullname: Abell, Guy – sequence: 9 givenname: Laurent surname: Philippot fullname: Philippot, Laurent – sequence: 10 givenname: James surname: Prosser fullname: Prosser, James – sequence: 11 givenname: Arnaud surname: Foulquier fullname: Foulquier, Arnaud – sequence: 12 givenname: Jorge C. surname: Yuste fullname: Yuste, Jorge C. – sequence: 13 givenname: Helen C. surname: Glanville fullname: Glanville, Helen C. – sequence: 14 givenname: Davey L. surname: Jones fullname: Jones, Davey L. – sequence: 15 givenname: Roey surname: Angel fullname: Angel, Roey – sequence: 16 givenname: Janne surname: Salminen fullname: Salminen, Janne – sequence: 17 givenname: Ryan J. surname: Newton fullname: Newton, Ryan J. – sequence: 18 givenname: Helmut surname: Bürgmann fullname: Bürgmann, Helmut – sequence: 19 givenname: Lachlan J. surname: Ingram fullname: Ingram, Lachlan J. – sequence: 20 givenname: Ute surname: Hamer fullname: Hamer, Ute – sequence: 21 givenname: Henri M. P. surname: Siljanen fullname: Siljanen, Henri M. P. – sequence: 22 givenname: Krista surname: Peltoniemi fullname: Peltoniemi, Krista – sequence: 23 givenname: Karin surname: Potthast fullname: Potthast, Karin – sequence: 24 givenname: Lluís surname: Bañeras fullname: Bañeras, Lluís – sequence: 25 givenname: Martin surname: Hartmann fullname: Hartmann, Martin – sequence: 26 givenname: Samiran surname: Banerjee fullname: Banerjee, Samiran – sequence: 27 givenname: Ri-Qing surname: Yu fullname: Yu, Ri-Qing – sequence: 28 givenname: Geraldine surname: Nogaro fullname: Nogaro, Geraldine – sequence: 29 givenname: Andreas surname: Richter fullname: Richter, Andreas – sequence: 30 givenname: Marianne surname: Koranda fullname: Koranda, Marianne – sequence: 31 givenname: Sarah C. surname: Castle fullname: Castle, Sarah C. – sequence: 32 givenname: Marta surname: Goberna fullname: Goberna, Marta – sequence: 33 givenname: Bongkeun surname: Song fullname: Song, Bongkeun – sequence: 34 givenname: Amitava surname: Chatterjee fullname: Chatterjee, Amitava – sequence: 35 givenname: Olga C. surname: Nunes fullname: Nunes, Olga C. – sequence: 36 givenname: Ana R. surname: Lopes fullname: Lopes, Ana R. – sequence: 37 givenname: Yiping surname: Cao fullname: Cao, Yiping – sequence: 38 givenname: Aurore surname: Kaisermann fullname: Kaisermann, Aurore – sequence: 39 givenname: Sara surname: Hallin fullname: Hallin, Sara – sequence: 40 givenname: Michael S. surname: Strickland fullname: Strickland, Michael S. – sequence: 41 givenname: Jordi surname: Garcia-Pausas fullname: Garcia-Pausas, Jordi – sequence: 42 givenname: Josep surname: Barba fullname: Barba, Josep – sequence: 43 givenname: Hojeong surname: Kang fullname: Kang, Hojeong – sequence: 44 givenname: Kazuo surname: Isobe fullname: Isobe, Kazuo – sequence: 45 givenname: Sokratis surname: Papaspyrou fullname: Papaspyrou, Sokratis – sequence: 46 givenname: Roberta surname: Pastorelli fullname: Pastorelli, Roberta – sequence: 47 givenname: Alessandra surname: Lagomarsino fullname: Lagomarsino, Alessandra – sequence: 48 givenname: Eva S. surname: Lindström fullname: Lindström, Eva S. – sequence: 49 givenname: Nathan surname: Basiliko fullname: Basiliko, Nathan – sequence: 50 givenname: Diana R. surname: Nemergut fullname: Nemergut, Diana R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26941732$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1249360$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282313$$DView record from Swedish Publication Index (Uppsala universitet) https://res.slu.se/id/publ/78294$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet) |
| BookMark | eNp1kt1P1TAYxheDEUTuvTKLV154sB9bu3qBIQdQEowkft413bt3nJKtxbbT8N_bs4MESFjStV1_z9P3XZ7nxZbzDoviJSX7nDfqXT9aaPcZoWKfEEarJ8UOFaJacMJ-bd1Zbxd7MV6S_FSE5fezYpsJVVHJ2U6RPlsIvsVYmlgeuwvr8tL35TH4eB0TjuXJ5CBZ796XP1foyiOfgaUfx8nZdF1-TWGCNAXM4pVxgOV5wM7OigdG58EDxojxw4viaW-GiHs3827x_eT42_LT4uzLx9Pl4dkChFJpwTpqaqVq0su-M4yIVrS1ZC3UDFHUHFpBZGcoSNG0CnoGEjpaExScc5Q93y1ON76dN5f6KtjRhGvtjdXzBx8utAnJwoC6AQCqSM0aWlc1UtVSpaoWSa1MW3U0ey02XvEvXk3tPbc4TK0J60lH1LJhqsr820f5I_vjcL59mjRrGKc84wcbPLMjdoAuBTPcU90_cXalL_wfXUlRSVVng9cbAx9TrghsQliBdw4hacoqxQXJEN1AECfQAQEDmDS7327WgxHJNGcVJ-vK3txUFvzvCWPSo42Aw2Ac-ilqKiVpGsrmJl7dbeK2-v9xywC5uT_4GAP2twgleh1qPYdar0Ot51BniXggya2Zdbzyb7DD48J_FYf-Pw |
| CitedBy_id | crossref_primary_10_3389_fenvs_2024_1421850 crossref_primary_10_1128_MMBR_00002_17 crossref_primary_10_3390_jof7121066 crossref_primary_10_1128_AEM_00598_18 crossref_primary_10_1002_2017GB005622 crossref_primary_10_3389_fmicb_2017_01271 crossref_primary_10_3389_fmicb_2020_596589 crossref_primary_10_1016_j_foreco_2020_118473 crossref_primary_10_1128_spectrum_02483_22 crossref_primary_10_1016_j_jclepro_2021_127076 crossref_primary_10_1016_j_envpol_2021_117205 crossref_primary_10_3389_fevo_2019_00391 crossref_primary_10_1016_j_apsoil_2023_105095 crossref_primary_10_1073_pnas_1811269115 crossref_primary_10_3389_fmicb_2021_754698 crossref_primary_10_1016_j_jenvman_2019_109584 crossref_primary_10_1038_s41598_018_35397_1 crossref_primary_10_1111_gcb_14995 crossref_primary_10_3389_fmicb_2021_684386 crossref_primary_10_3390_jox15030065 crossref_primary_10_1128_msystems_01220_22_test crossref_primary_10_1016_j_watres_2020_116579 crossref_primary_10_1007_s00248_020_01660_0 crossref_primary_10_1007_s10533_020_00672_9 crossref_primary_10_3389_fpls_2024_1367773 crossref_primary_10_1007_s00449_022_02777_x crossref_primary_10_1007_s11104_016_3118_4 crossref_primary_10_3390_app11020688 crossref_primary_10_1016_j_scitotenv_2018_05_073 crossref_primary_10_1007_s11368_017_1710_8 crossref_primary_10_1038_s41396_021_00988_w crossref_primary_10_1016_j_scitotenv_2020_139173 crossref_primary_10_1098_rstb_2020_0183 crossref_primary_10_1186_s40168_021_01213_8 crossref_primary_10_3389_fmicb_2021_790554 crossref_primary_10_1111_ejss_13425 crossref_primary_10_1111_ejss_13307 crossref_primary_10_1007_s00248_019_01367_x crossref_primary_10_1093_femsle_fnae009 crossref_primary_10_1016_j_ecss_2020_107116 crossref_primary_10_1016_j_tim_2019_03_003 crossref_primary_10_1016_j_aquaculture_2022_738953 crossref_primary_10_1038_s41396_018_0230_x crossref_primary_10_1128_spectrum_01889_24 crossref_primary_10_1038_s41396_022_01312_w crossref_primary_10_1016_j_scitotenv_2020_143667 crossref_primary_10_1016_j_wroa_2025_100391 crossref_primary_10_1016_j_scitotenv_2023_167678 crossref_primary_10_1016_j_soilbio_2022_108586 crossref_primary_10_3389_fmicb_2024_1428815 crossref_primary_10_3389_fmicb_2020_01261 crossref_primary_10_1093_femsec_fiab118 crossref_primary_10_1111_gcb_14605 crossref_primary_10_1093_femsec_fiaa144 crossref_primary_10_1016_j_pmpp_2025_102596 crossref_primary_10_1016_j_scitotenv_2023_169203 crossref_primary_10_3390_w16131931 crossref_primary_10_1007_s11104_021_04976_z crossref_primary_10_1111_ele_13392 crossref_primary_10_1111_nph_19560 crossref_primary_10_3390_agronomy14112712 crossref_primary_10_1093_femsec_fiy234 crossref_primary_10_3390_microorganisms10091763 crossref_primary_10_1146_annurev_environ_012320_082720 crossref_primary_10_1007_s00284_023_03207_1 crossref_primary_10_1016_j_jhazmat_2022_128293 crossref_primary_10_1111_1365_2745_14112 crossref_primary_10_1016_j_scitotenv_2020_139479 crossref_primary_10_1007_s00374_022_01688_z crossref_primary_10_1016_j_soilbio_2020_107881 crossref_primary_10_1186_s42523_020_00066_0 crossref_primary_10_1016_j_geoderma_2025_117408 crossref_primary_10_1016_j_geoderma_2024_117018 crossref_primary_10_1111_1365_2435_13056 crossref_primary_10_1093_femsec_fiaa256 crossref_primary_10_3390_ijerph20065015 crossref_primary_10_1016_j_soilbio_2020_107875 crossref_primary_10_1371_journal_pone_0268461 crossref_primary_10_1038_s41396_019_0487_8 crossref_primary_10_3389_fmicb_2016_01949 crossref_primary_10_1007_s42729_024_02144_7 crossref_primary_10_3389_fmicb_2021_629852 crossref_primary_10_1016_j_envres_2021_111418 crossref_primary_10_1093_femsec_fiaa122 crossref_primary_10_1016_j_scitotenv_2023_169544 crossref_primary_10_3389_fmicb_2022_830668 crossref_primary_10_1029_2024JG008369 crossref_primary_10_1016_j_jenvman_2023_119274 crossref_primary_10_1016_j_tree_2019_07_003 crossref_primary_10_1007_s00248_021_01943_0 crossref_primary_10_1016_j_soilbio_2023_108952 crossref_primary_10_1016_j_ejsobi_2022_103441 crossref_primary_10_3389_fmicb_2022_730340 crossref_primary_10_7554_eLife_62983 crossref_primary_10_1016_j_micres_2022_127259 crossref_primary_10_1016_j_scitotenv_2017_06_203 crossref_primary_10_1016_j_apsoil_2025_106304 crossref_primary_10_1038_ismej_2017_115 crossref_primary_10_1002_ece3_4346 crossref_primary_10_1093_femsec_fix116 crossref_primary_10_1016_j_geoderma_2021_115633 crossref_primary_10_1016_j_scitotenv_2023_167358 crossref_primary_10_3390_microorganisms10112171 crossref_primary_10_1128_spectrum_02204_21 crossref_primary_10_3389_fmicb_2021_727468 crossref_primary_10_1111_1758_2229_12558 crossref_primary_10_1111_1755_0998_13126 crossref_primary_10_1111_1758_2229_12675 crossref_primary_10_1016_j_apsoil_2024_105649 crossref_primary_10_1111_1462_2920_70070 crossref_primary_10_1186_s13717_024_00516_6 crossref_primary_10_1002_ldr_4304 crossref_primary_10_3389_fmicb_2021_772149 crossref_primary_10_1016_j_soilbio_2018_07_020 crossref_primary_10_3389_fmicb_2018_01412 crossref_primary_10_1029_2018JG004682 crossref_primary_10_1128_mSystems_00803_19 crossref_primary_10_1016_j_scitotenv_2024_174448 crossref_primary_10_1002_lol2_10273 crossref_primary_10_1111_1462_2920_14371 crossref_primary_10_1016_j_ecss_2022_107973 crossref_primary_10_1080_03650340_2022_2070159 crossref_primary_10_1016_j_scitotenv_2019_134096 crossref_primary_10_1038_s41396_019_0383_2 crossref_primary_10_1038_s41522_025_00700_2 crossref_primary_10_1002_2688_8319_12031 crossref_primary_10_1038_s41598_017_08554_1 crossref_primary_10_1016_j_still_2023_105825 crossref_primary_10_1111_gcb_70404 crossref_primary_10_1111_1462_2920_14587 crossref_primary_10_1016_j_apsoil_2019_103427 crossref_primary_10_1111_1462_2920_14463 crossref_primary_10_3390_agronomy11071428 crossref_primary_10_1111_1462_2920_13491 crossref_primary_10_1007_s10533_017_0354_5 crossref_primary_10_1016_j_soilbio_2022_108637 crossref_primary_10_1038_s41396_020_00735_7 crossref_primary_10_1016_j_scitotenv_2023_166758 crossref_primary_10_1016_j_foreco_2018_10_032 crossref_primary_10_1111_1365_2664_14780 crossref_primary_10_3389_fmicb_2024_1494070 crossref_primary_10_3389_fmicb_2018_02721 crossref_primary_10_3389_fmicb_2017_00317 crossref_primary_10_1016_j_ejsobi_2019_103121 crossref_primary_10_1007_s10533_017_0320_2 crossref_primary_10_1093_femsec_fiaa035 crossref_primary_10_1016_j_jes_2020_03_040 crossref_primary_10_1016_j_soilbio_2022_108865 crossref_primary_10_3390_environments12050136 crossref_primary_10_1093_femsle_fnab010 crossref_primary_10_1002_ecy_4005 crossref_primary_10_1371_journal_pone_0229387 crossref_primary_10_1016_j_microc_2019_04_026 crossref_primary_10_3390_microorganisms9020211 crossref_primary_10_1016_j_watres_2020_116631 crossref_primary_10_1111_1462_2920_15326 crossref_primary_10_3390_f12060767 crossref_primary_10_1002_lno_11382 crossref_primary_10_1111_btp_12931 crossref_primary_10_3389_fmicb_2017_02321 crossref_primary_10_1093_femsec_fiz160 crossref_primary_10_1093_femsec_fiz161 crossref_primary_10_1146_annurev_bioeng_082120_022836 crossref_primary_10_1016_j_scitotenv_2024_173141 crossref_primary_10_1186_s40793_022_00428_y crossref_primary_10_1002_etc_5679 crossref_primary_10_3389_fmicb_2016_01782 crossref_primary_10_1016_j_scitotenv_2021_147409 crossref_primary_10_3389_fmicb_2022_847964 crossref_primary_10_1002_ldr_4863 crossref_primary_10_1371_journal_pone_0164531 crossref_primary_10_3390_microbiolres15020052 crossref_primary_10_1007_s00248_025_02522_3 crossref_primary_10_1016_j_trac_2018_11_041 crossref_primary_10_1002_imt2_50 crossref_primary_10_1073_pnas_1904896116 crossref_primary_10_1002_mlf2_12025 crossref_primary_10_1093_ismejo_wrae158 crossref_primary_10_1093_femsec_fiad009 crossref_primary_10_3389_fmicb_2022_832477 crossref_primary_10_1007_s11104_023_06257_3 crossref_primary_10_1186_s40168_023_01480_7 crossref_primary_10_1016_j_scitotenv_2024_176546 crossref_primary_10_3389_fmicb_2023_1089630 crossref_primary_10_1016_j_ecoenv_2024_116726 crossref_primary_10_1111_1462_2920_15260 crossref_primary_10_3389_fimmu_2018_02868 crossref_primary_10_1016_j_ecolind_2022_108887 crossref_primary_10_1007_s10967_024_09389_7 crossref_primary_10_1016_j_apsoil_2020_103521 crossref_primary_10_1128_AEM_00324_19 crossref_primary_10_1002_ldr_3523 crossref_primary_10_1016_j_ecolind_2023_110702 crossref_primary_10_1007_s10533_020_00659_6 crossref_primary_10_1038_s41598_017_04485_z crossref_primary_10_1016_j_scitotenv_2021_147433 crossref_primary_10_1016_j_ecoleng_2025_107733 crossref_primary_10_1007_s00792_016_0911_1 crossref_primary_10_1007_s11356_023_25195_2 crossref_primary_10_1007_s13205_019_1980_5 crossref_primary_10_1093_gigascience_giad088 crossref_primary_10_1073_pnas_1908117117 crossref_primary_10_1002_mlf2_12043 crossref_primary_10_1093_femsec_fiaa091 crossref_primary_10_1016_j_soilbio_2016_11_028 crossref_primary_10_3389_fmicb_2020_01342 crossref_primary_10_1016_j_apsoil_2024_105313 crossref_primary_10_1016_j_pedsph_2024_05_011 crossref_primary_10_1093_femsec_fiac134 crossref_primary_10_1093_femsec_fiad102 crossref_primary_10_1016_j_scitotenv_2024_171079 crossref_primary_10_1016_j_fmre_2023_10_025 crossref_primary_10_3390_plants13010006 crossref_primary_10_1002_ldr_3508 crossref_primary_10_1016_j_ecoinf_2018_12_008 crossref_primary_10_1016_j_apsoil_2020_103667 crossref_primary_10_3389_fenvs_2022_834829 crossref_primary_10_1007_s00248_025_02534_z crossref_primary_10_1016_j_soilbio_2021_108401 crossref_primary_10_1016_j_still_2022_105507 crossref_primary_10_3389_fmicb_2022_774514 crossref_primary_10_1038_ismej_2017_99 crossref_primary_10_1128_mSystems_01106_21 crossref_primary_10_1007_s00374_025_01922_4 crossref_primary_10_1007_s00248_016_0782_0 crossref_primary_10_1016_j_scitotenv_2023_165719 crossref_primary_10_1111_1440_1703_12030 crossref_primary_10_3389_fmicb_2023_1161043 crossref_primary_10_3390_microorganisms10071398 crossref_primary_10_1128_spectrum_03562_23 crossref_primary_10_1098_rspb_2025_0729 crossref_primary_10_1016_j_soilbio_2020_108013 crossref_primary_10_1111_mec_15472 crossref_primary_10_1016_j_apsoil_2017_05_006 crossref_primary_10_3390_f16010148 crossref_primary_10_1016_j_soilbio_2019_03_023 crossref_primary_10_1080_08927014_2023_2255141 crossref_primary_10_1007_s11104_022_05850_2 crossref_primary_10_1371_journal_pone_0214089 crossref_primary_10_3389_frwa_2021_596260 crossref_primary_10_3389_fmicb_2022_858125 crossref_primary_10_5194_soil_11_247_2025 crossref_primary_10_1111_fwb_14253 crossref_primary_10_1007_s11104_022_05523_0 crossref_primary_10_1111_gcb_17465 crossref_primary_10_1111_1365_2435_13536 crossref_primary_10_3390_jof8070735 crossref_primary_10_1111_1365_2745_13807 crossref_primary_10_1016_j_apsoil_2019_02_006 crossref_primary_10_1002_lno_11641 crossref_primary_10_3389_fenvs_2018_00145 crossref_primary_10_1093_nargab_lqaf061 crossref_primary_10_3390_pr5040065 crossref_primary_10_1016_j_envres_2020_109933 crossref_primary_10_24072_pcjournal_534 crossref_primary_10_1016_j_watres_2024_122000 crossref_primary_10_1016_j_chnaes_2022_05_008 crossref_primary_10_1111_ele_13861 crossref_primary_10_3390_su15032745 crossref_primary_10_1128_msystems_01112_23 crossref_primary_10_1016_j_jhazmat_2020_122224 crossref_primary_10_1038_s41396_019_0500_2 crossref_primary_10_1111_1365_2435_13550 crossref_primary_10_1111_ele_13746 crossref_primary_10_1016_j_scitotenv_2021_147888 crossref_primary_10_1016_j_envres_2021_111076 crossref_primary_10_5194_bg_22_4221_2025 crossref_primary_10_1016_j_pedobi_2022_150859 crossref_primary_10_5194_bg_15_7141_2018 crossref_primary_10_1016_j_geoderma_2019_114004 crossref_primary_10_1016_j_soilbio_2024_109479 crossref_primary_10_1111_1751_7915_13623 crossref_primary_10_1093_femsec_fiab091 crossref_primary_10_1002_ecy_3553 crossref_primary_10_1016_j_scitotenv_2020_138636 crossref_primary_10_5194_bg_14_4243_2017 crossref_primary_10_3389_fmicb_2022_945927 crossref_primary_10_1007_s11104_023_06364_1 crossref_primary_10_3389_fmicb_2024_1476016 crossref_primary_10_3390_su15032338 crossref_primary_10_1016_j_algal_2019_101461 crossref_primary_10_1128_mSystems_00768_19 crossref_primary_10_1111_1462_2920_16504 crossref_primary_10_1371_journal_pone_0241371 crossref_primary_10_1038_s41396_020_0614_6 crossref_primary_10_1128_spectrum_01347_22 crossref_primary_10_3389_fmicb_2019_01931 crossref_primary_10_1002_ece3_11174 crossref_primary_10_3390_plants12162913 crossref_primary_10_1371_journal_pone_0228165 crossref_primary_10_1016_j_catena_2024_108306 crossref_primary_10_1007_s42773_023_00273_3 crossref_primary_10_3390_agriculture12101521 crossref_primary_10_1002_ecs2_3968 crossref_primary_10_1039_D3EN00479A crossref_primary_10_1111_1462_2920_16513 crossref_primary_10_24072_pcjournal_306 crossref_primary_10_1007_s11104_021_04949_2 crossref_primary_10_1128_msystems_01238_22 crossref_primary_10_1016_j_soilbio_2025_109838 crossref_primary_10_5194_bg_16_3911_2019 crossref_primary_10_1016_j_soilbio_2024_109658 crossref_primary_10_1007_s10531_019_01760_5 crossref_primary_10_1038_s41396_020_0723_2 crossref_primary_10_1038_s43705_023_00272_2 crossref_primary_10_1016_j_soilbio_2020_108047 crossref_primary_10_3390_su16177848 crossref_primary_10_1016_j_sajb_2024_09_018 crossref_primary_10_1093_ismeco_ycaf073 crossref_primary_10_3389_fmicb_2017_01856 crossref_primary_10_1016_j_scitotenv_2020_140919 crossref_primary_10_1016_j_soilbio_2016_06_006 crossref_primary_10_1128_AEM_01000_18 crossref_primary_10_1002_lno_11326 crossref_primary_10_3389_fpls_2023_1278662 crossref_primary_10_1111_1365_2745_12871 crossref_primary_10_1016_j_scitotenv_2018_07_437 crossref_primary_10_1371_journal_pcbi_1006146 crossref_primary_10_1016_j_soilbio_2023_109120 crossref_primary_10_1016_j_soilbio_2024_109683 crossref_primary_10_7717_peerj_4575 crossref_primary_10_1016_j_envexpbot_2025_106115 crossref_primary_10_1016_j_scitotenv_2016_11_212 crossref_primary_10_3389_fmicb_2017_00750 crossref_primary_10_3390_f15020353 crossref_primary_10_1016_j_soilbio_2021_108248 crossref_primary_10_3389_fmicb_2020_610298 crossref_primary_10_1016_j_catena_2024_108679 crossref_primary_10_1016_j_envres_2025_121072 crossref_primary_10_1111_1462_2920_14555 crossref_primary_10_1128_msystems_00066_18 crossref_primary_10_5194_bg_17_4591_2020 crossref_primary_10_1002_ecs2_1879 crossref_primary_10_1111_1365_2435_13926 crossref_primary_10_5194_soil_8_163_2022 crossref_primary_10_1016_j_scitotenv_2018_05_256 crossref_primary_10_3390_d17070462 crossref_primary_10_3390_f12111444 crossref_primary_10_1007_s10531_019_01886_6 crossref_primary_10_1111_ejss_13290 crossref_primary_10_7554_eLife_46923 crossref_primary_10_1016_j_soilbio_2024_109622 crossref_primary_10_1186_s40168_019_0756_9 crossref_primary_10_1016_j_soilbio_2019_107547 crossref_primary_10_3390_genes10030220 crossref_primary_10_1016_j_soilbio_2018_11_007 crossref_primary_10_1525_elementa_2021_00076 crossref_primary_10_1007_s10452_022_09962_w crossref_primary_10_1080_1040841X_2021_2011833 crossref_primary_10_3390_biology10070569 crossref_primary_10_1038_s44185_023_00036_0 crossref_primary_10_1016_j_agee_2025_109648 crossref_primary_10_1016_j_apsoil_2022_104686 crossref_primary_10_1002_agg2_20063 crossref_primary_10_1038_s43705_023_00281_1 crossref_primary_10_1016_j_scitotenv_2017_12_179 crossref_primary_10_1016_j_marpolbul_2018_09_002 crossref_primary_10_1016_j_scitotenv_2024_177394 crossref_primary_10_1016_j_rhisph_2018_06_004 crossref_primary_10_1111_ele_70032 crossref_primary_10_1002_imo2_70054 crossref_primary_10_7717_peerj_6844 crossref_primary_10_1111_1462_2920_13720 crossref_primary_10_1111_jbi_14381 crossref_primary_10_1007_s11270_024_07001_y crossref_primary_10_3389_feart_2020_00012 crossref_primary_10_1016_j_apsoil_2025_106232 crossref_primary_10_1128_msystems_01220_22 crossref_primary_10_1016_j_envint_2020_106131 crossref_primary_10_3390_microorganisms10071339 crossref_primary_10_1007_s00374_020_01504_6 crossref_primary_10_1111_gcb_13853 crossref_primary_10_1128_msphere_00450_25 crossref_primary_10_1128_aem_00256_24 crossref_primary_10_1111_1751_7915_12483 crossref_primary_10_1016_j_catena_2022_106260 crossref_primary_10_1016_j_soilbio_2019_107521 crossref_primary_10_1016_j_catena_2022_106026 crossref_primary_10_1007_s10661_023_11964_6 crossref_primary_10_1016_j_apsoil_2016_10_014 crossref_primary_10_1016_j_envres_2022_113312 crossref_primary_10_1128_spectrum_00236_24 crossref_primary_10_1016_j_marpolbul_2018_03_020 crossref_primary_10_1128_MMBR_00063_16 crossref_primary_10_7554_eLife_84662 crossref_primary_10_1134_S0026261720020113 crossref_primary_10_1007_s11368_016_1563_6 crossref_primary_10_1016_j_jhydrol_2020_125762 crossref_primary_10_1007_s10533_023_01015_0 crossref_primary_10_1038_s41467_022_35677_5 crossref_primary_10_1016_j_watres_2024_122302 crossref_primary_10_3389_fmicb_2022_1037626 crossref_primary_10_1016_j_soilbio_2018_10_006 crossref_primary_10_3389_fmicb_2021_777084 crossref_primary_10_1016_j_ibiod_2023_105701 crossref_primary_10_1038_s40494_025_01962_x crossref_primary_10_1016_j_ibiod_2021_105267 crossref_primary_10_1016_j_soilbio_2018_04_014 crossref_primary_10_1111_1751_7915_13558 crossref_primary_10_3390_microorganisms9050983 crossref_primary_10_1016_j_geoderma_2021_115105 crossref_primary_10_1016_j_geoderma_2022_115866 crossref_primary_10_3390_agronomy12112882 crossref_primary_10_1016_j_apsoil_2025_106128 crossref_primary_10_1016_j_envres_2025_120809 crossref_primary_10_3390_microorganisms10050944 crossref_primary_10_1038_s41522_025_00729_3 crossref_primary_10_1007_s00027_020_0700_x crossref_primary_10_1016_j_catena_2024_107961 crossref_primary_10_1111_1462_2920_15705 crossref_primary_10_1016_j_ympev_2020_106787 crossref_primary_10_1139_cjm_2021_0360 crossref_primary_10_1016_j_soilbio_2020_107948 crossref_primary_10_1038_s42003_023_04597_5 crossref_primary_10_1016_j_scitotenv_2021_152342 crossref_primary_10_1016_j_marpolbul_2021_113227 crossref_primary_10_3389_ffgc_2022_873527 crossref_primary_10_1007_s12237_020_00728_x crossref_primary_10_1016_j_apsoil_2022_104778 crossref_primary_10_1186_s12870_024_04873_4 crossref_primary_10_1111_1758_2229_13148 crossref_primary_10_1016_j_soilbio_2016_09_010 crossref_primary_10_3390_w13101340 crossref_primary_10_1002_ldr_70160 crossref_primary_10_1016_j_ecolind_2020_106341 crossref_primary_10_1016_j_scitotenv_2019_07_313 crossref_primary_10_3389_fenvs_2020_00002 crossref_primary_10_1016_j_plrev_2017_01_013 crossref_primary_10_1128_aem_00505_22 crossref_primary_10_1016_j_scitotenv_2023_168170 crossref_primary_10_1016_j_soilbio_2016_09_014 crossref_primary_10_1002_mbo3_681 crossref_primary_10_3389_fmicb_2022_1013408 crossref_primary_10_1007_s00374_022_01621_4 crossref_primary_10_1016_j_apsoil_2023_104968 crossref_primary_10_1111_gcb_13926 crossref_primary_10_1111_1365_2664_14074 crossref_primary_10_1007_s00248_021_01717_8 crossref_primary_10_1016_j_envpol_2018_02_045 crossref_primary_10_1093_femsle_fny035 |
| Cites_doi | 10.1098/rspb.2014.2620 10.1073/pnas.0611525104 10.1007/s10533-011-9635-6 10.1038/nature06810 10.1016/j.tree.2014.07.002 10.1007/s10533-011-9641-8 10.5194/bgd-6-3655-2009 10.1111/j.1365-2435.2008.01402.x 10.1016/S0038-0717(03)00015-4 10.1111/ele.12269 10.3389/fmicb.2014.00424 10.1016/S1369-5274(02)00324-7 10.1073/pnas.1320054111 10.1016/0167-8809(92)90081-L 10.1126/science.aac9323 10.1038/nrmicro1643 10.1046/j.1365-2486.1998.00195.x 10.1111/j.1365-2664.2011.02048.x 10.1007/s10533-014-0058-z 10.1016/0167-1987(96)01008-2 10.1038/nclimate2301 10.1073/pnas.0801925105 10.1038/ismej.2012.160 10.1111/j.1574-6941.2010.00988.x 10.1016/0038-0717(88)90082-X 10.1038/ismej.2009.109 10.1038/ismej.2011.119 10.1111/1574-6941.12346 10.1890/14-1127.1 10.1023/A:1006244819642 10.3389/fmicb.2012.00364 10.1016/S0169-5347(97)01274-3 10.1111/j.1462-2920.2010.02315.x 10.1111/j.1461-0248.2011.01685.x 10.1073/pnas.1313713111 10.1007/s10021-005-0047-0 10.3389/fmicb.2014.00497 10.1016/j.soilbio.2013.08.024 10.1038/ismej.2014.120 10.1016/j.apsoil.2003.07.001 10.1038/23932 10.1128/AEM.00335-09 10.1128/MMBR.00051-12 10.1016/j.csbj.2014.11.009 10.1890/04-0340 10.1038/ismej.2012.22 10.1038/nature13855 10.1016/j.soilbio.2014.02.008 10.1038/ismej.2014.252 10.1890/ES13-00155.1 10.1177/0049124104268644 10.1073/pnas.1215210110 10.1038/nclimate1951 10.1016/j.soilbio.2013.08.023 10.1016/j.tree.2011.03.024 10.1111/j.1461-0248.2010.01465.x 10.1073/pnas.0912765107 10.1038/nclimate2361 10.1111/j.1461-0248.2007.01139.x 10.1038/nrmicro2504 10.1093/femsec/fiv113 10.1111/j.1462-2920.2011.02679.x |
| ContentType | Journal Article |
| Copyright | Attribution 4.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/es Copyright © 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut. 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut |
| Copyright_xml | – notice: Attribution 4.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/4.0/es/">http://creativecommons.org/licenses/by/4.0/es/</a> – notice: Copyright © 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut. 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut |
| CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) Sveriges lantbruksuniversitet |
| CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) – name: Sveriges lantbruksuniversitet |
| DBID | AAYXX CITATION NPM 7X8 XX2 OIOZB OTOTI 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC DOA |
| DOI | 10.3389/fmicb.2016.00214 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Recercat OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Environmental Sciences Ecology |
| EISSN | 1664-302X |
| ExternalDocumentID | oai_doaj_org_article_8ccc1905281545e19b1994be059ab4d1 oai_slubar_slu_se_78294 oai_DiVA_org_uu_282313 PMC4764795 1249360 oai_recercat_cat_2072_324303 26941732 10_3389_fmicb_2016_00214 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DEB-1221215 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 PGMZT RIG RNS RPM ACXDI NPM 7X8 XX2 IAO IEA IHR OIOZB OTOTI 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
| ID | FETCH-LOGICAL-c699t-2d1a59950f7fda206b6b572bc52ee653cb607da1c768b9cf2c7cd150e6333e7f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 370 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370760300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1664-302X |
| IngestDate | Fri Oct 03 12:45:36 EDT 2025 Tue Nov 04 16:28:36 EST 2025 Tue Nov 04 16:57:25 EST 2025 Thu Aug 21 18:43:18 EDT 2025 Mon Nov 25 02:43:50 EST 2024 Fri Nov 07 13:44:00 EST 2025 Fri Sep 05 12:37:41 EDT 2025 Thu Apr 03 07:03:29 EDT 2025 Sat Nov 29 06:02:35 EST 2025 Tue Nov 18 22:31:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | functional gene nitrification ecosystem processes statistical modeling respiration microbial diversity microbial ecology denitrification |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c699t-2d1a59950f7fda206b6b572bc52ee653cb607da1c768b9cf2c7cd150e6333e7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE DEB1221215; AC0576RL01830 Edited by: Gary M. King, Louisiana State University, USA Reviewed by: Steffen Kolb, Landscape Biogeochemistry – Leibniz Centre for Agricultural Landscape Research, Germany; Hongchen Jiang, Miami University, USA; Kristen M. DeAngelis, University of Massachusetts Amherst, USA This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology |
| OpenAccessLink | https://doaj.org/article/8ccc1905281545e19b1994be059ab4d1 |
| PMID | 26941732 |
| PQID | 1770881213 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8ccc1905281545e19b1994be059ab4d1 swepub_primary_oai_slubar_slu_se_78294 swepub_primary_oai_DiVA_org_uu_282313 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4764795 osti_scitechconnect_1249360 csuc_recercat_oai_recercat_cat_2072_324303 proquest_miscellaneous_1770881213 pubmed_primary_26941732 crossref_primary_10_3389_fmicb_2016_00214 crossref_citationtrail_10_3389_fmicb_2016_00214 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-02-24 |
| PublicationDateYYYYMMDD | 2016-02-24 |
| PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: United States |
| PublicationTitle | Frontiers in microbiology |
| PublicationTitleAlternate | Front Microbiol |
| PublicationYear | 2016 |
| Publisher | Frontiers Media Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Allison (B3) 2008; 105 Jones (B30) 2014; 4 Todd-Brown (B59) 2012; 109 Bier (B8) 2015; 91 Wagg (B64) 2014; 111 Stegen (B57) 2012; 6 Barton (B7) 2011 Lauber (B34) 2009; 75 Nemergut (B42) 2011; 13 van der Heijden (B62) 1998; 396 Nemergut (B43) 2013; 77 Powell (B47) 2015; 96 DeWitt (B17) 1998; 13 Wieder (B68) 2013; 3 Auguet (B4) 2010; 4 Gupta (B26) 1988; 20 Knelman (B33) 2014; 5 Barberán (B5) 2012; 6 Gagic (B24) 2015; 282 Blagodatskaya (B9) 2013; 67 Martiny (B40) 2015; 350 Carney (B14) 2005; 8 Graham (B25) 2014; 68 Schimel (B54) 1998; 4 Oksanen (B45) 2013 Burnham (B12) 2004; 33 Sinsabaugh (B56) 2015; 122 R Core Team (B49) 2014 Torsvik (B60) 2002; 5 Fukami (B23) 2010; 13 Rocca (B51) 2014; 9 Walker (B65) 2014; 29 Bardgett (B6) 2014; 515 Schimel (B53) 1995 Burnham (B11) 2002 Hubbell (B29) 2001 Hagerty (B27) 2014; 4 Prosser (B48) 2007; 5 Lozupone (B37) 2007; 104 Wallenstein (B66) 2012; 109 Ferris (B20) 2004; 25 Petersen (B46) 2012; 14 Martiny (B39) 2013; 7 Chan (B15) 1996; 37 Fukami (B22) 2004; 85 Bouskill (B10) 2012; 3 Fierer (B21) 2012; 109 Lira-Noriega (B36) 2013; 4 Hanson (B28) 2000; 48 Manzoni (B38) 2014; 73 Verbaendert (B63) 2014; 89 Abram (B2) 2015; 13 Talbot (B58) 2008; 22 Rosindell (B52) 2011; 26 Nemergut (B44) 2014; 5 Schimel (B55) 2003; 35 Lennon (B35) 2011; 9 Cadotte (B13) 2011; 48 Dinsdale (B19) 2008; 452 Reed (B50) 2014; 111 Jones (B31) 2010; 107 van der Heijden (B61) 2008; 11 Abell (B1) 2011; 75 Kaiser (B32) 2014; 17 Wang (B67) 2015; 9 Clark (B16) 2011; 14 Middelburg (B41) 2009; 6 Dick (B18) 1992; 40 24784780 - FEMS Microbiol Ecol. 2014 Jul;89(1):162-80 18337718 - Nature. 2008 Apr 3;452(7187):629-32 24628731 - Ecol Lett. 2014 Jun;17(6):680-90 21238209 - Trends Ecol Evol. 1998 Feb 1;13(2):77-81 24449851 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1879-84 24639507 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5266-70 18695234 - Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 25535936 - ISME J. 2015 Aug;9(8):1693-9 20231463 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6 21083579 - FEMS Microbiol Ecol. 2011 Jan;75(1):111-22 21978194 - Ecol Lett. 2011 Dec;14(12):1273-87 17592124 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40 21561679 - Trends Ecol Evol. 2011 Jul;26(7):340-8 24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56 25012899 - ISME J. 2015 Jan;9(1):226-37 22456445 - ISME J. 2012 Sep;6(9):1653-64 23087681 - Front Microbiol. 2012 Oct 18;3:364 20412280 - Ecol Lett. 2010 Jun;13(6):675-84 26371074 - FEMS Microbiol Ecol. 2015 Oct;91(10):null 18047587 - Ecol Lett. 2008 Mar;11(3):296-310 26542581 - Science. 2015 Nov 6;350(6261):aac9323 19847207 - ISME J. 2010 Feb;4(2):182-90 12057676 - Curr Opin Microbiol. 2002 Jun;5(3):240-5 26378320 - Ecology. 2015 Jul;96(7):1985-93 25165465 - Front Microbiol. 2014 Aug 13;5:424 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 23235290 - ISME J. 2013 Apr;7(4):830-8 21900968 - ISME J. 2012 Feb;6(2):343-51 22225623 - Environ Microbiol. 2012 Apr;14(4):993-1008 17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92 21199253 - Environ Microbiol. 2011 Jan;13(1):135-44 23236140 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5 25567651 - Proc Biol Sci. 2015 Feb 22;282(1801):20142620 21233850 - Nat Rev Microbiol. 2011 Feb;9(2):119-30 25428498 - Nature. 2014 Nov 27;515(7528):505-11 25750697 - Comput Struct Biotechnol J. 2014 Dec 03;13:24-32 25309525 - Front Microbiol. 2014 Sep 26;5:497 25085040 - Trends Ecol Evol. 2014 Sep;29(9):504-10 |
| References_xml | – volume: 282 issue: 20142620 year: 2015 ident: B24 article-title: Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. publication-title: Proc. R. Soc. Biol. Sci. U.S.A. doi: 10.1098/rspb.2014.2620 – volume: 104 start-page: 11436 year: 2007 ident: B37 article-title: Global patterns in bacterial diversity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0611525104 – volume: 109 start-page: 19 year: 2012 ident: B59 article-title: A framework for representing microbial decomposition in coupled climate models. publication-title: Biogeochemistry doi: 10.1007/s10533-011-9635-6 – volume: 452 start-page: 629 year: 2008 ident: B19 article-title: Functional metagenomic profiling of nine biomes. publication-title: Nature doi: 10.1038/nature06810 – volume: 29 start-page: 504 year: 2014 ident: B65 article-title: Plant succession as an integrator of contrasting ecological time scales. publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2014.07.002 – volume: 109 start-page: 35 year: 2012 ident: B66 article-title: A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. publication-title: Biogeochemistry doi: 10.1007/s10533-011-9641-8 – year: 2002 ident: B11 publication-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. – volume: 6 start-page: 3655 year: 2009 ident: B41 article-title: Coastal hypoxia and sediment biogeochemistry. publication-title: Biogeosciences doi: 10.5194/bgd-6-3655-2009 – year: 2014 ident: B49 publication-title: R: A Language and Environment for Statistical Computing. – volume: 22 start-page: 955 year: 2008 ident: B58 article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01402.x – volume: 35 start-page: 549 year: 2003 ident: B55 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00015-4 – volume: 17 start-page: 680 year: 2014 ident: B32 article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay. publication-title: Ecol. Lett. doi: 10.1111/ele.12269 – volume: 5 issue: 424 year: 2014 ident: B33 article-title: Changes in community assembly may shift the relationship between biodiversity and ecosystem function. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00424 – volume: 5 start-page: 240 year: 2002 ident: B60 article-title: Microbial diversity and function in soil: from genes to ecosystems. publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(02)00324-7 – volume: 111 start-page: 5266 year: 2014 ident: B64 article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1320054111 – volume: 40 start-page: 25 year: 1992 ident: B18 article-title: A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(92)90081-L – volume: 350 issue: aac9323 year: 2015 ident: B40 article-title: Microbiomes in light of traits: a phylogenetic perspective. publication-title: Science doi: 10.1126/science.aac9323 – volume: 5 start-page: 384 year: 2007 ident: B48 article-title: The role of ecological theory in microbial ecology. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1643 – volume: 4 start-page: 745 year: 1998 ident: B54 article-title: Microbial community structure and global trace gases. publication-title: Glob. Chang. Biol. doi: 10.1046/j.1365-2486.1998.00195.x – volume: 48 start-page: 1079 year: 2011 ident: B13 article-title: Beyond species: functional diversity and the maintenance of ecological processes and services. publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2011.02048.x – volume: 122 start-page: 175 year: 2015 ident: B56 article-title: Scaling microbial biomass, metabolism and resource supply. publication-title: Biogeochemistry doi: 10.1007/s10533-014-0058-z – volume: 37 start-page: 113 year: 1996 ident: B15 article-title: The influence of crop rotation on soil structure and soil physical properties under conventional tillage. publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(96)01008-2 – volume: 4 start-page: 801 year: 2014 ident: B30 article-title: Recently identified microbial guild mediates soil N2O sink capacity. publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2301 – volume: 105 start-page: 11512 year: 2008 ident: B3 article-title: Resistance, resilience, and redundancy in microbial communities. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0801925105 – volume: 7 start-page: 830 year: 2013 ident: B39 article-title: Phylogenetic conservatism of functional traits in microorganisms. publication-title: ISME J. doi: 10.1038/ismej.2012.160 – volume: 75 start-page: 111 year: 2011 ident: B1 article-title: Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2010.00988.x – volume: 20 start-page: 777 year: 1988 ident: B26 article-title: Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(88)90082-X – volume: 4 start-page: 182 year: 2010 ident: B4 article-title: Global ecological patterns in uncultured Archaea. publication-title: ISME J. doi: 10.1038/ismej.2009.109 – volume: 6 start-page: 343 year: 2012 ident: B5 article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities. publication-title: ISME J. doi: 10.1038/ismej.2011.119 – volume: 89 start-page: 162 year: 2014 ident: B63 article-title: Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12346 – volume: 96 start-page: 1985 year: 2015 ident: B47 article-title: Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties. publication-title: Ecology doi: 10.1890/14-1127.1 – volume: 48 start-page: 115 year: 2000 ident: B28 article-title: Separating root and soil microbial contributions to soil respiration: a review of methods and observations. publication-title: Biogeochemistry doi: 10.1023/A:1006244819642 – volume: 3 issue: 364 year: 2012 ident: B10 article-title: Trait-based representation of biological nitrification: model development, testing, and predicted community composition. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2012.00364 – year: 2001 ident: B29 publication-title: The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). – volume: 13 start-page: 77 year: 1998 ident: B17 article-title: Costs and limits of phenotypic plasticity. publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(97)01274-3 – year: 2013 ident: B45 article-title: Package ‘Vegan’. publication-title: Community0 Ecology Package, Version 2. – volume: 13 start-page: 135 year: 2011 ident: B42 article-title: Global patterns in the biogeography of bacterial taxa. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02315.x – volume: 14 start-page: 1273 year: 2011 ident: B16 article-title: Individual-scale variation, species-scale differences: inference needed to understand diversity. publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2011.01685.x – volume: 111 start-page: 1879 year: 2014 ident: B50 article-title: Gene-centric approach to integrating environmental genomics and biogeochemical models. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1313713111 – volume: 8 start-page: 928 year: 2005 ident: B14 article-title: Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? publication-title: Ecosystems doi: 10.1007/s10021-005-0047-0 – volume: 5 issue: 497 year: 2014 ident: B44 article-title: When, where and how does microbial community composition matter? publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00497 – volume: 67 start-page: 192 year: 2013 ident: B9 article-title: Active microorganisms in soil: critical review of estimation criteria and approaches. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.08.024 – start-page: 239 year: 1995 ident: B53 article-title: “Ecosystem consequences of microbial diversity and community structure,” in publication-title: Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences – volume: 9 start-page: 226 year: 2015 ident: B67 article-title: Microbial dormancy improves development and experimental validation of ecosystem model. publication-title: ISME J. doi: 10.1038/ismej.2014.120 – volume: 25 start-page: 19 year: 2004 ident: B20 article-title: Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2003.07.001 – volume: 396 start-page: 69 year: 1998 ident: B62 article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. publication-title: Nature doi: 10.1038/23932 – volume: 75 start-page: 5111 year: 2009 ident: B34 article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00335-09 – volume: 77 start-page: 342 year: 2013 ident: B43 article-title: Patterns and processes of microbial community assembly. publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00051-12 – volume: 13 start-page: 24 year: 2015 ident: B2 article-title: Systems-based approaches to unravel multi-species microbial community functioning. publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.009 – volume: 85 start-page: 3234 year: 2004 ident: B22 article-title: Assembly history interacts with ecosystem size to influence species diversity. publication-title: Ecology doi: 10.1890/04-0340 – volume: 6 start-page: 1653 year: 2012 ident: B57 article-title: Stochastic and deterministic assembly processes in subsurface microbial communities. publication-title: ISME J. doi: 10.1038/ismej.2012.22 – volume: 515 start-page: 505 year: 2014 ident: B6 article-title: Belowground biodiversity and ecosystem functioning. publication-title: Nature doi: 10.1038/nature13855 – year: 2011 ident: B7 publication-title: MuMIn: Multi-Model Inference. R Package Version 1.0. 0. – volume: 73 start-page: 69 year: 2014 ident: B38 article-title: A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.02.008 – volume: 9 start-page: 1693 year: 2014 ident: B51 article-title: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. publication-title: ISME J. doi: 10.1038/ismej.2014.252 – volume: 4 issue: art99 year: 2013 ident: B36 article-title: Process-based and correlative modeling of desert mistletoe distribution: a multiscalar approach. publication-title: Ecosphere doi: 10.1890/ES13-00155.1 – volume: 33 start-page: 261 year: 2004 ident: B12 article-title: Multimodel inference understanding AIC and BIC in model selection. publication-title: Sociol. Methods Res. doi: 10.1177/0049124104268644 – volume: 109 start-page: 21390 year: 2012 ident: B21 article-title: Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1215210110 – volume: 3 start-page: 909 year: 2013 ident: B68 article-title: Global soil carbon projections are improved by modelling microbial processes. publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1951 – volume: 68 start-page: 279 year: 2014 ident: B25 article-title: Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.08.023 – volume: 26 start-page: 340 year: 2011 ident: B52 article-title: The unified neutral theory of biodiversity and biogeography at age ten. publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2011.03.024 – volume: 13 start-page: 675 year: 2010 ident: B23 article-title: Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2010.01465.x – volume: 107 start-page: 5881 year: 2010 ident: B31 article-title: Dormancy contributes to the maintenance of microbial diversity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0912765107 – volume: 4 start-page: 903 year: 2014 ident: B27 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil. publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2361 – volume: 11 start-page: 296 year: 2008 ident: B61 article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01139.x – volume: 9 start-page: 119 year: 2011 ident: B35 article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy. publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2504 – volume: 91 issue: fiv113 year: 2015 ident: B8 article-title: Linking microbial community structure and microbial processes: an empirical and conceptual overview. publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiv113 – volume: 14 start-page: 993 year: 2012 ident: B46 article-title: Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02679.x – reference: 26378320 - Ecology. 2015 Jul;96(7):1985-93 – reference: 20412280 - Ecol Lett. 2010 Jun;13(6):675-84 – reference: 26371074 - FEMS Microbiol Ecol. 2015 Oct;91(10):null – reference: 25085040 - Trends Ecol Evol. 2014 Sep;29(9):504-10 – reference: 23235290 - ISME J. 2013 Apr;7(4):830-8 – reference: 18337718 - Nature. 2008 Apr 3;452(7187):629-32 – reference: 18695234 - Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 – reference: 21561679 - Trends Ecol Evol. 2011 Jul;26(7):340-8 – reference: 19847207 - ISME J. 2010 Feb;4(2):182-90 – reference: 21900968 - ISME J. 2012 Feb;6(2):343-51 – reference: 24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56 – reference: 18047587 - Ecol Lett. 2008 Mar;11(3):296-310 – reference: 26542581 - Science. 2015 Nov 6;350(6261):aac9323 – reference: 25535936 - ISME J. 2015 Aug;9(8):1693-9 – reference: 17592124 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40 – reference: 24639507 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5266-70 – reference: 23236140 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5 – reference: 25309525 - Front Microbiol. 2014 Sep 26;5:497 – reference: 24784780 - FEMS Microbiol Ecol. 2014 Jul;89(1):162-80 – reference: 24449851 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1879-84 – reference: 24628731 - Ecol Lett. 2014 Jun;17(6):680-90 – reference: 25428498 - Nature. 2014 Nov 27;515(7528):505-11 – reference: 25165465 - Front Microbiol. 2014 Aug 13;5:424 – reference: 25567651 - Proc Biol Sci. 2015 Feb 22;282(1801):20142620 – reference: 21233850 - Nat Rev Microbiol. 2011 Feb;9(2):119-30 – reference: 12057676 - Curr Opin Microbiol. 2002 Jun;5(3):240-5 – reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20 – reference: 21083579 - FEMS Microbiol Ecol. 2011 Jan;75(1):111-22 – reference: 22456445 - ISME J. 2012 Sep;6(9):1653-64 – reference: 25750697 - Comput Struct Biotechnol J. 2014 Dec 03;13:24-32 – reference: 23087681 - Front Microbiol. 2012 Oct 18;3:364 – reference: 21238209 - Trends Ecol Evol. 1998 Feb 1;13(2):77-81 – reference: 21199253 - Environ Microbiol. 2011 Jan;13(1):135-44 – reference: 22225623 - Environ Microbiol. 2012 Apr;14(4):993-1008 – reference: 25012899 - ISME J. 2015 Jan;9(1):226-37 – reference: 21978194 - Ecol Lett. 2011 Dec;14(12):1273-87 – reference: 20231463 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6 – reference: 17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92 |
| SSID | ssj0000402000 |
| Score | 2.6057642 |
| Snippet | Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial... Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial... In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex... |
| SourceID | doaj swepub pubmedcentral osti csuc proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 214 |
| SubjectTerms | BASIC BIOLOGICAL SCIENCES Carbon Cycle Denitrification Ecologia microbiana Ecology ecosystem processes Ekologi ENVIRONMENTAL SCIENCES functional gene microbial diversity Microbial ecology Microbiology Mikrobiologi Nitrification Nitrogen Cycle Respiration statistical modeling |
| Title | Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes? |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26941732 https://www.proquest.com/docview/1770881213 https://recercat.cat/handle/2072/324303 https://www.osti.gov/servlets/purl/1249360 https://pubmed.ncbi.nlm.nih.gov/PMC4764795 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282313 https://res.slu.se/id/publ/78294 https://doaj.org/article/8ccc1905281545e19b1994be059ab4d1 |
| Volume | 7 |
| WOSCitedRecordID | wos000370760300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-302X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000402000 issn: 1664-302X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-6KPgifl89PSKooFAuTdqm9UVOvcOXO3xQ2beQT3bh6C7bVrkX_3Znkr3lioe--NAt3SbdNvNLZ2Zn8htCXlZBM-eNzk3ZFvjXjcuN820uQtBCM9FYH2KxCXl21szn7Zcrpb4wJyzRA6eBO2ystaC0Kt6gsvdFa5DN1ngwC7QpXXR8mGyvOFPxHYxuEWMpLgleWAtiWlqDqVwYfOBFOdFDM9uPdsvaD7sVzK7rLM4_Eycn9KJRJZ3cI3e3tiQ9Ss9wn9zw3QNyO1WXvHhIhlNMtjO-p7qnPvIO9nQVKDicib-ZolJDwbyjPxe-o24FDWxaMTJc0EQtO248dF4gOOh6g2GdiNTphdZpuYHv3z8i306Ov378nG-LLOS2btsh567QSDrGggxOc1ab2lSSG1tx7-tKWFMz6XRhwS8xrQ3cSuvAivS1EMLLIB6TWbfq_B6hEm0pX5gmNKGsnMNVsaLQtmaOB8t4Rg4vh1zZLQM5FsI4V-CJoJBUFJJCIakopIy82fVYJ_aNv7R9i1JUoCj8xupBIXH27gA3wAlXYECC1s7IB5T17qLYNn4B0FNb6Kl_QS8j-4gUBbYKEu5azEyyg8Jy3qJmGXlxCSAFUxbjMLrzq7FXhZTwbkcuvYw8SYDa3UhcWCwFjJWcQG1yp9Mz3XIRacFLWcNcqzLyKoFy0uXT8vtRfLhxVBxDv_Dbr69p15-PRm9wp3qvwHxsy6f_Y6z2yR0UVSQDKJ-RGSDYPye37I9h2W8OyE05bw7iFIbP01_HvwEBQlAZ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbes+as+Engines+of+Ecosystem+Function%3A+When+Does+Community+Structure+Enhance+Predictions+of+Ecosystem+Processes%3F&rft.jtitle=Frontiers+in+microbiology&rft.au=Hallin%2C+Sara&rft.date=2016-02-24&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=7&rft_id=info:doi/10.3389%2Ffmicb.2016.00214&rft.externalDocID=oai_slubar_slu_se_78294 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |