Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in microbiology Ročník 7; číslo C; s. 214
Hlavní autori: Graham, Emily B., Knelman, Joseph E., Schindlbacher, Andreas, Siciliano, Steven, Breulmann, Marc, Yannarell, Anthony, Beman, J. M., Abell, Guy, Philippot, Laurent, Prosser, James, Foulquier, Arnaud, Yuste, Jorge C., Glanville, Helen C., Jones, Davey L., Angel, Roey, Salminen, Janne, Newton, Ryan J., Bürgmann, Helmut, Ingram, Lachlan J., Hamer, Ute, Siljanen, Henri M. P., Peltoniemi, Krista, Potthast, Karin, Bañeras, Lluís, Hartmann, Martin, Banerjee, Samiran, Yu, Ri-Qing, Nogaro, Geraldine, Richter, Andreas, Koranda, Marianne, Castle, Sarah C., Goberna, Marta, Song, Bongkeun, Chatterjee, Amitava, Nunes, Olga C., Lopes, Ana R., Cao, Yiping, Kaisermann, Aurore, Hallin, Sara, Strickland, Michael S., Garcia-Pausas, Jordi, Barba, Josep, Kang, Hojeong, Isobe, Kazuo, Papaspyrou, Sokratis, Pastorelli, Roberta, Lagomarsino, Alessandra, Lindström, Eva S., Basiliko, Nathan, Nemergut, Diana R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland Frontiers Media 24.02.2016
Frontiers Research Foundation
Frontiers Media S.A
Predmet:
ISSN:1664-302X, 1664-302X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
AbstractList Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology
Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.
Author Hartmann, Martin
Pastorelli, Roberta
Foulquier, Arnaud
Richter, Andreas
Hallin, Sara
Barba, Josep
Siciliano, Steven
Bürgmann, Helmut
Peltoniemi, Krista
Basiliko, Nathan
Yuste, Jorge C.
Newton, Ryan J.
Bañeras, Lluís
Schindlbacher, Andreas
Knelman, Joseph E.
Kaisermann, Aurore
Nogaro, Geraldine
Beman, J. M.
Isobe, Kazuo
Lopes, Ana R.
Prosser, James
Banerjee, Samiran
Potthast, Karin
Papaspyrou, Sokratis
Ingram, Lachlan J.
Nunes, Olga C.
Jones, Davey L.
Chatterjee, Amitava
Nemergut, Diana R.
Castle, Sarah C.
Lagomarsino, Alessandra
Hamer, Ute
Siljanen, Henri M. P.
Kang, Hojeong
Abell, Guy
Yannarell, Anthony
Koranda, Marianne
Breulmann, Marc
Strickland, Michael S.
Garcia-Pausas, Jordi
Graham, Emily B.
Goberna, Marta
Philippot, Laurent
Lindström, Eva S.
Glanville, Helen C.
Yu, Ri-Qing
Song, Bongkeun
Cao, Yiping
Angel, Roey
Salminen, Janne
AuthorAffiliation 24 Institute of Aquatic Ecology, Facultat de Ciències, University of Girona Girona, Spain
2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, USA
19 Centre for Carbon, Water and Food, The University of Sydney, Sydney NSW, Australia
21 Department of Environmental and Biological Sciences, University of Eastern Finland Kuopio, Finland
45 Research Centre for Agrobiology and Pedology Florence, Italy
15 Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria
18 Department of Surface Waters, Eawag: Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland
31 Department of Ecosystem and Conservation Sciences, University of Montana, Missoula MT, USA
28 EDF R&D, National Hydraulics and Environmental Laboratory Chatou, France
35 LEPABE - Laboratory for Process Engineering, Environmental, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto Porto, Portugal
47 Vale Living with Lakes Centre and Depa
AuthorAffiliation_xml – name: 43 Department of Applied Biological Chemistry, The University of Tokyo Tokyo, Japan
– name: 4 Department of Forest Ecology, Federal Research and Training Centre for Forests, Bundesforschungs- und Ausbildungszentrum für Wald Vienna, Austria
– name: 16 Häme University of Applied Sciences Hämeenlinna, Finland
– name: 13 Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain
– name: 3 US Department of Energy, Joint Genome Institute, Walnut Creek CA, USA
– name: 21 Department of Environmental and Biological Sciences, University of Eastern Finland Kuopio, Finland
– name: 26 CSIRO Agriculture Flagship, Crace ACT, Australia
– name: 12 Irstea, UR MALY, Centre de Lyon-Villeurbanne Villeurbanne, France
– name: 38 Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences Uppsala, Sweden
– name: 27 Department of Biology, University of Texas at Tyler, Tyler TX, USA
– name: 29 Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria
– name: 6 Helmholtz Centre for Environmental Research – Centre for Environmental Biotechnology Leipzig, Germany
– name: 42 School of Civil and Environmental Engineering, Yonsei University Seoul, South Korea
– name: 20 Institute of Landscape Ecology, University of Münster Münster, Germany
– name: 34 AES School of Natural Resources Sciences, North Dakota State University, Fargo ND, USA
– name: 8 Life and Environmental Sciences and Sierra Nevada Research Institute, University of California – Merced, Merced CA, USA
– name: 40 Centre Tecnològic Forestal de Catalunya Solsona, Spain
– name: 35 LEPABE - Laboratory for Process Engineering, Environmental, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto Porto, Portugal
– name: 41 Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès Barcelona, Spain
– name: 1 Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder CO, USA
– name: 2 Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, USA
– name: 47 Vale Living with Lakes Centre and Department of Biology, Laurentian University, Sudbury ON, Canada
– name: 7 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana IL, USA
– name: 44 Department of Biomedicine, Biotechnology and Public Health, University of Cadiz Puerto Real, Spain
– name: 19 Centre for Carbon, Water and Food, The University of Sydney, Sydney NSW, Australia
– name: 45 Research Centre for Agrobiology and Pedology Florence, Italy
– name: 48 Biology Department, Duke University, Durham NC, USA
– name: 17 School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee WI, USA
– name: 32 Centro de Investigación y Docencia Económicas – Consejo Superior de Investigaciones Científicas Valencia, Spain
– name: 18 Department of Surface Waters, Eawag: Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland
– name: 39 Department of Biological Sciences, Virginia Polytechnic Institute, State University, Blacksburg VA, USA
– name: 36 Southern California Coastal Water Research Project Authority, Costa Mesa CA, USA
– name: 10 Institut National de la Recherche Agronomique – Agroecology Dijon, France
– name: 28 EDF R&D, National Hydraulics and Environmental Laboratory Chatou, France
– name: 31 Department of Ecosystem and Conservation Sciences, University of Montana, Missoula MT, USA
– name: 14 Environment Centre Wales, Bangor University Gwynedd, UK
– name: 33 Department of Biological Science, Virginia Institute of Marine Science, Gloucester Point VA, USA
– name: 46 Department of Ecology and Genetics/Limnology, Uppsala University Uppsala, Sweden
– name: 25 Institute for Sustainability Sciences – Agroscope Zurich, Switzerland
– name: 5 Department of Soil Science, University of Saskatchewan, Saskatoon SK, Canada
– name: 23 Institute of Soil Science and Site Ecology, Technische University Dresden, Germany
– name: 30 Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria
– name: 15 Department of Microbiology and Ecosystem Science, University of Vienna Vienna, Austria
– name: 22 Natural Resources Institute Vantaa, Finland
– name: 9 School of Medicine, Flinders University, Adelaide SA, Australia
– name: 24 Institute of Aquatic Ecology, Facultat de Ciències, University of Girona Girona, Spain
– name: 37 UMR, Interactions Sol Plante Atmosphère, INRA Bordeaux Villenave d’Ornon, France
– name: 11 Institute of Biological and Environmental Sciences, University of Aberdeen Aberdeen, UK
Author_xml – sequence: 1
  givenname: Emily B.
  surname: Graham
  fullname: Graham, Emily B.
– sequence: 2
  givenname: Joseph E.
  surname: Knelman
  fullname: Knelman, Joseph E.
– sequence: 3
  givenname: Andreas
  surname: Schindlbacher
  fullname: Schindlbacher, Andreas
– sequence: 4
  givenname: Steven
  surname: Siciliano
  fullname: Siciliano, Steven
– sequence: 5
  givenname: Marc
  surname: Breulmann
  fullname: Breulmann, Marc
– sequence: 6
  givenname: Anthony
  surname: Yannarell
  fullname: Yannarell, Anthony
– sequence: 7
  givenname: J. M.
  surname: Beman
  fullname: Beman, J. M.
– sequence: 8
  givenname: Guy
  surname: Abell
  fullname: Abell, Guy
– sequence: 9
  givenname: Laurent
  surname: Philippot
  fullname: Philippot, Laurent
– sequence: 10
  givenname: James
  surname: Prosser
  fullname: Prosser, James
– sequence: 11
  givenname: Arnaud
  surname: Foulquier
  fullname: Foulquier, Arnaud
– sequence: 12
  givenname: Jorge C.
  surname: Yuste
  fullname: Yuste, Jorge C.
– sequence: 13
  givenname: Helen C.
  surname: Glanville
  fullname: Glanville, Helen C.
– sequence: 14
  givenname: Davey L.
  surname: Jones
  fullname: Jones, Davey L.
– sequence: 15
  givenname: Roey
  surname: Angel
  fullname: Angel, Roey
– sequence: 16
  givenname: Janne
  surname: Salminen
  fullname: Salminen, Janne
– sequence: 17
  givenname: Ryan J.
  surname: Newton
  fullname: Newton, Ryan J.
– sequence: 18
  givenname: Helmut
  surname: Bürgmann
  fullname: Bürgmann, Helmut
– sequence: 19
  givenname: Lachlan J.
  surname: Ingram
  fullname: Ingram, Lachlan J.
– sequence: 20
  givenname: Ute
  surname: Hamer
  fullname: Hamer, Ute
– sequence: 21
  givenname: Henri M. P.
  surname: Siljanen
  fullname: Siljanen, Henri M. P.
– sequence: 22
  givenname: Krista
  surname: Peltoniemi
  fullname: Peltoniemi, Krista
– sequence: 23
  givenname: Karin
  surname: Potthast
  fullname: Potthast, Karin
– sequence: 24
  givenname: Lluís
  surname: Bañeras
  fullname: Bañeras, Lluís
– sequence: 25
  givenname: Martin
  surname: Hartmann
  fullname: Hartmann, Martin
– sequence: 26
  givenname: Samiran
  surname: Banerjee
  fullname: Banerjee, Samiran
– sequence: 27
  givenname: Ri-Qing
  surname: Yu
  fullname: Yu, Ri-Qing
– sequence: 28
  givenname: Geraldine
  surname: Nogaro
  fullname: Nogaro, Geraldine
– sequence: 29
  givenname: Andreas
  surname: Richter
  fullname: Richter, Andreas
– sequence: 30
  givenname: Marianne
  surname: Koranda
  fullname: Koranda, Marianne
– sequence: 31
  givenname: Sarah C.
  surname: Castle
  fullname: Castle, Sarah C.
– sequence: 32
  givenname: Marta
  surname: Goberna
  fullname: Goberna, Marta
– sequence: 33
  givenname: Bongkeun
  surname: Song
  fullname: Song, Bongkeun
– sequence: 34
  givenname: Amitava
  surname: Chatterjee
  fullname: Chatterjee, Amitava
– sequence: 35
  givenname: Olga C.
  surname: Nunes
  fullname: Nunes, Olga C.
– sequence: 36
  givenname: Ana R.
  surname: Lopes
  fullname: Lopes, Ana R.
– sequence: 37
  givenname: Yiping
  surname: Cao
  fullname: Cao, Yiping
– sequence: 38
  givenname: Aurore
  surname: Kaisermann
  fullname: Kaisermann, Aurore
– sequence: 39
  givenname: Sara
  surname: Hallin
  fullname: Hallin, Sara
– sequence: 40
  givenname: Michael S.
  surname: Strickland
  fullname: Strickland, Michael S.
– sequence: 41
  givenname: Jordi
  surname: Garcia-Pausas
  fullname: Garcia-Pausas, Jordi
– sequence: 42
  givenname: Josep
  surname: Barba
  fullname: Barba, Josep
– sequence: 43
  givenname: Hojeong
  surname: Kang
  fullname: Kang, Hojeong
– sequence: 44
  givenname: Kazuo
  surname: Isobe
  fullname: Isobe, Kazuo
– sequence: 45
  givenname: Sokratis
  surname: Papaspyrou
  fullname: Papaspyrou, Sokratis
– sequence: 46
  givenname: Roberta
  surname: Pastorelli
  fullname: Pastorelli, Roberta
– sequence: 47
  givenname: Alessandra
  surname: Lagomarsino
  fullname: Lagomarsino, Alessandra
– sequence: 48
  givenname: Eva S.
  surname: Lindström
  fullname: Lindström, Eva S.
– sequence: 49
  givenname: Nathan
  surname: Basiliko
  fullname: Basiliko, Nathan
– sequence: 50
  givenname: Diana R.
  surname: Nemergut
  fullname: Nemergut, Diana R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26941732$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1249360$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282313$$DView record from Swedish Publication Index (Uppsala universitet)
https://res.slu.se/id/publ/78294$$DView record from Swedish Publication Index (Sveriges lantbruksuniversitet)
BookMark eNp1kt1P1TAYxheDEUTuvTKLV154sB9bu3qBIQdQEowkft413bt3nJKtxbbT8N_bs4MESFjStV1_z9P3XZ7nxZbzDoviJSX7nDfqXT9aaPcZoWKfEEarJ8UOFaJacMJ-bd1Zbxd7MV6S_FSE5fezYpsJVVHJ2U6RPlsIvsVYmlgeuwvr8tL35TH4eB0TjuXJ5CBZ796XP1foyiOfgaUfx8nZdF1-TWGCNAXM4pVxgOV5wM7OigdG58EDxojxw4viaW-GiHs3827x_eT42_LT4uzLx9Pl4dkChFJpwTpqaqVq0su-M4yIVrS1ZC3UDFHUHFpBZGcoSNG0CnoGEjpaExScc5Q93y1ON76dN5f6KtjRhGvtjdXzBx8utAnJwoC6AQCqSM0aWlc1UtVSpaoWSa1MW3U0ey02XvEvXk3tPbc4TK0J60lH1LJhqsr820f5I_vjcL59mjRrGKc84wcbPLMjdoAuBTPcU90_cXalL_wfXUlRSVVng9cbAx9TrghsQliBdw4hacoqxQXJEN1AECfQAQEDmDS7327WgxHJNGcVJ-vK3txUFvzvCWPSo42Aw2Ac-ilqKiVpGsrmJl7dbeK2-v9xywC5uT_4GAP2twgleh1qPYdar0Ot51BniXggya2Zdbzyb7DD48J_FYf-Pw
CitedBy_id crossref_primary_10_3389_fenvs_2024_1421850
crossref_primary_10_1128_MMBR_00002_17
crossref_primary_10_3390_jof7121066
crossref_primary_10_1128_AEM_00598_18
crossref_primary_10_1002_2017GB005622
crossref_primary_10_3389_fmicb_2017_01271
crossref_primary_10_3389_fmicb_2020_596589
crossref_primary_10_1016_j_foreco_2020_118473
crossref_primary_10_1128_spectrum_02483_22
crossref_primary_10_1016_j_jclepro_2021_127076
crossref_primary_10_1016_j_envpol_2021_117205
crossref_primary_10_3389_fevo_2019_00391
crossref_primary_10_1016_j_apsoil_2023_105095
crossref_primary_10_1073_pnas_1811269115
crossref_primary_10_3389_fmicb_2021_754698
crossref_primary_10_1016_j_jenvman_2019_109584
crossref_primary_10_1038_s41598_018_35397_1
crossref_primary_10_1111_gcb_14995
crossref_primary_10_3389_fmicb_2021_684386
crossref_primary_10_3390_jox15030065
crossref_primary_10_1128_msystems_01220_22_test
crossref_primary_10_1016_j_watres_2020_116579
crossref_primary_10_1007_s00248_020_01660_0
crossref_primary_10_1007_s10533_020_00672_9
crossref_primary_10_3389_fpls_2024_1367773
crossref_primary_10_1007_s00449_022_02777_x
crossref_primary_10_1007_s11104_016_3118_4
crossref_primary_10_3390_app11020688
crossref_primary_10_1016_j_scitotenv_2018_05_073
crossref_primary_10_1007_s11368_017_1710_8
crossref_primary_10_1038_s41396_021_00988_w
crossref_primary_10_1016_j_scitotenv_2020_139173
crossref_primary_10_1098_rstb_2020_0183
crossref_primary_10_1186_s40168_021_01213_8
crossref_primary_10_3389_fmicb_2021_790554
crossref_primary_10_1111_ejss_13425
crossref_primary_10_1111_ejss_13307
crossref_primary_10_1007_s00248_019_01367_x
crossref_primary_10_1093_femsle_fnae009
crossref_primary_10_1016_j_ecss_2020_107116
crossref_primary_10_1016_j_tim_2019_03_003
crossref_primary_10_1016_j_aquaculture_2022_738953
crossref_primary_10_1038_s41396_018_0230_x
crossref_primary_10_1128_spectrum_01889_24
crossref_primary_10_1038_s41396_022_01312_w
crossref_primary_10_1016_j_scitotenv_2020_143667
crossref_primary_10_1016_j_wroa_2025_100391
crossref_primary_10_1016_j_scitotenv_2023_167678
crossref_primary_10_1016_j_soilbio_2022_108586
crossref_primary_10_3389_fmicb_2024_1428815
crossref_primary_10_3389_fmicb_2020_01261
crossref_primary_10_1093_femsec_fiab118
crossref_primary_10_1111_gcb_14605
crossref_primary_10_1093_femsec_fiaa144
crossref_primary_10_1016_j_pmpp_2025_102596
crossref_primary_10_1016_j_scitotenv_2023_169203
crossref_primary_10_3390_w16131931
crossref_primary_10_1007_s11104_021_04976_z
crossref_primary_10_1111_ele_13392
crossref_primary_10_1111_nph_19560
crossref_primary_10_3390_agronomy14112712
crossref_primary_10_1093_femsec_fiy234
crossref_primary_10_3390_microorganisms10091763
crossref_primary_10_1146_annurev_environ_012320_082720
crossref_primary_10_1007_s00284_023_03207_1
crossref_primary_10_1016_j_jhazmat_2022_128293
crossref_primary_10_1111_1365_2745_14112
crossref_primary_10_1016_j_scitotenv_2020_139479
crossref_primary_10_1007_s00374_022_01688_z
crossref_primary_10_1016_j_soilbio_2020_107881
crossref_primary_10_1186_s42523_020_00066_0
crossref_primary_10_1016_j_geoderma_2025_117408
crossref_primary_10_1016_j_geoderma_2024_117018
crossref_primary_10_1111_1365_2435_13056
crossref_primary_10_1093_femsec_fiaa256
crossref_primary_10_3390_ijerph20065015
crossref_primary_10_1016_j_soilbio_2020_107875
crossref_primary_10_1371_journal_pone_0268461
crossref_primary_10_1038_s41396_019_0487_8
crossref_primary_10_3389_fmicb_2016_01949
crossref_primary_10_1007_s42729_024_02144_7
crossref_primary_10_3389_fmicb_2021_629852
crossref_primary_10_1016_j_envres_2021_111418
crossref_primary_10_1093_femsec_fiaa122
crossref_primary_10_1016_j_scitotenv_2023_169544
crossref_primary_10_3389_fmicb_2022_830668
crossref_primary_10_1029_2024JG008369
crossref_primary_10_1016_j_jenvman_2023_119274
crossref_primary_10_1016_j_tree_2019_07_003
crossref_primary_10_1007_s00248_021_01943_0
crossref_primary_10_1016_j_soilbio_2023_108952
crossref_primary_10_1016_j_ejsobi_2022_103441
crossref_primary_10_3389_fmicb_2022_730340
crossref_primary_10_7554_eLife_62983
crossref_primary_10_1016_j_micres_2022_127259
crossref_primary_10_1016_j_scitotenv_2017_06_203
crossref_primary_10_1016_j_apsoil_2025_106304
crossref_primary_10_1038_ismej_2017_115
crossref_primary_10_1002_ece3_4346
crossref_primary_10_1093_femsec_fix116
crossref_primary_10_1016_j_geoderma_2021_115633
crossref_primary_10_1016_j_scitotenv_2023_167358
crossref_primary_10_3390_microorganisms10112171
crossref_primary_10_1128_spectrum_02204_21
crossref_primary_10_3389_fmicb_2021_727468
crossref_primary_10_1111_1758_2229_12558
crossref_primary_10_1111_1755_0998_13126
crossref_primary_10_1111_1758_2229_12675
crossref_primary_10_1016_j_apsoil_2024_105649
crossref_primary_10_1111_1462_2920_70070
crossref_primary_10_1186_s13717_024_00516_6
crossref_primary_10_1002_ldr_4304
crossref_primary_10_3389_fmicb_2021_772149
crossref_primary_10_1016_j_soilbio_2018_07_020
crossref_primary_10_3389_fmicb_2018_01412
crossref_primary_10_1029_2018JG004682
crossref_primary_10_1128_mSystems_00803_19
crossref_primary_10_1016_j_scitotenv_2024_174448
crossref_primary_10_1002_lol2_10273
crossref_primary_10_1111_1462_2920_14371
crossref_primary_10_1016_j_ecss_2022_107973
crossref_primary_10_1080_03650340_2022_2070159
crossref_primary_10_1016_j_scitotenv_2019_134096
crossref_primary_10_1038_s41396_019_0383_2
crossref_primary_10_1038_s41522_025_00700_2
crossref_primary_10_1002_2688_8319_12031
crossref_primary_10_1038_s41598_017_08554_1
crossref_primary_10_1016_j_still_2023_105825
crossref_primary_10_1111_gcb_70404
crossref_primary_10_1111_1462_2920_14587
crossref_primary_10_1016_j_apsoil_2019_103427
crossref_primary_10_1111_1462_2920_14463
crossref_primary_10_3390_agronomy11071428
crossref_primary_10_1111_1462_2920_13491
crossref_primary_10_1007_s10533_017_0354_5
crossref_primary_10_1016_j_soilbio_2022_108637
crossref_primary_10_1038_s41396_020_00735_7
crossref_primary_10_1016_j_scitotenv_2023_166758
crossref_primary_10_1016_j_foreco_2018_10_032
crossref_primary_10_1111_1365_2664_14780
crossref_primary_10_3389_fmicb_2024_1494070
crossref_primary_10_3389_fmicb_2018_02721
crossref_primary_10_3389_fmicb_2017_00317
crossref_primary_10_1016_j_ejsobi_2019_103121
crossref_primary_10_1007_s10533_017_0320_2
crossref_primary_10_1093_femsec_fiaa035
crossref_primary_10_1016_j_jes_2020_03_040
crossref_primary_10_1016_j_soilbio_2022_108865
crossref_primary_10_3390_environments12050136
crossref_primary_10_1093_femsle_fnab010
crossref_primary_10_1002_ecy_4005
crossref_primary_10_1371_journal_pone_0229387
crossref_primary_10_1016_j_microc_2019_04_026
crossref_primary_10_3390_microorganisms9020211
crossref_primary_10_1016_j_watres_2020_116631
crossref_primary_10_1111_1462_2920_15326
crossref_primary_10_3390_f12060767
crossref_primary_10_1002_lno_11382
crossref_primary_10_1111_btp_12931
crossref_primary_10_3389_fmicb_2017_02321
crossref_primary_10_1093_femsec_fiz160
crossref_primary_10_1093_femsec_fiz161
crossref_primary_10_1146_annurev_bioeng_082120_022836
crossref_primary_10_1016_j_scitotenv_2024_173141
crossref_primary_10_1186_s40793_022_00428_y
crossref_primary_10_1002_etc_5679
crossref_primary_10_3389_fmicb_2016_01782
crossref_primary_10_1016_j_scitotenv_2021_147409
crossref_primary_10_3389_fmicb_2022_847964
crossref_primary_10_1002_ldr_4863
crossref_primary_10_1371_journal_pone_0164531
crossref_primary_10_3390_microbiolres15020052
crossref_primary_10_1007_s00248_025_02522_3
crossref_primary_10_1016_j_trac_2018_11_041
crossref_primary_10_1002_imt2_50
crossref_primary_10_1073_pnas_1904896116
crossref_primary_10_1002_mlf2_12025
crossref_primary_10_1093_ismejo_wrae158
crossref_primary_10_1093_femsec_fiad009
crossref_primary_10_3389_fmicb_2022_832477
crossref_primary_10_1007_s11104_023_06257_3
crossref_primary_10_1186_s40168_023_01480_7
crossref_primary_10_1016_j_scitotenv_2024_176546
crossref_primary_10_3389_fmicb_2023_1089630
crossref_primary_10_1016_j_ecoenv_2024_116726
crossref_primary_10_1111_1462_2920_15260
crossref_primary_10_3389_fimmu_2018_02868
crossref_primary_10_1016_j_ecolind_2022_108887
crossref_primary_10_1007_s10967_024_09389_7
crossref_primary_10_1016_j_apsoil_2020_103521
crossref_primary_10_1128_AEM_00324_19
crossref_primary_10_1002_ldr_3523
crossref_primary_10_1016_j_ecolind_2023_110702
crossref_primary_10_1007_s10533_020_00659_6
crossref_primary_10_1038_s41598_017_04485_z
crossref_primary_10_1016_j_scitotenv_2021_147433
crossref_primary_10_1016_j_ecoleng_2025_107733
crossref_primary_10_1007_s00792_016_0911_1
crossref_primary_10_1007_s11356_023_25195_2
crossref_primary_10_1007_s13205_019_1980_5
crossref_primary_10_1093_gigascience_giad088
crossref_primary_10_1073_pnas_1908117117
crossref_primary_10_1002_mlf2_12043
crossref_primary_10_1093_femsec_fiaa091
crossref_primary_10_1016_j_soilbio_2016_11_028
crossref_primary_10_3389_fmicb_2020_01342
crossref_primary_10_1016_j_apsoil_2024_105313
crossref_primary_10_1016_j_pedsph_2024_05_011
crossref_primary_10_1093_femsec_fiac134
crossref_primary_10_1093_femsec_fiad102
crossref_primary_10_1016_j_scitotenv_2024_171079
crossref_primary_10_1016_j_fmre_2023_10_025
crossref_primary_10_3390_plants13010006
crossref_primary_10_1002_ldr_3508
crossref_primary_10_1016_j_ecoinf_2018_12_008
crossref_primary_10_1016_j_apsoil_2020_103667
crossref_primary_10_3389_fenvs_2022_834829
crossref_primary_10_1007_s00248_025_02534_z
crossref_primary_10_1016_j_soilbio_2021_108401
crossref_primary_10_1016_j_still_2022_105507
crossref_primary_10_3389_fmicb_2022_774514
crossref_primary_10_1038_ismej_2017_99
crossref_primary_10_1128_mSystems_01106_21
crossref_primary_10_1007_s00374_025_01922_4
crossref_primary_10_1007_s00248_016_0782_0
crossref_primary_10_1016_j_scitotenv_2023_165719
crossref_primary_10_1111_1440_1703_12030
crossref_primary_10_3389_fmicb_2023_1161043
crossref_primary_10_3390_microorganisms10071398
crossref_primary_10_1128_spectrum_03562_23
crossref_primary_10_1098_rspb_2025_0729
crossref_primary_10_1016_j_soilbio_2020_108013
crossref_primary_10_1111_mec_15472
crossref_primary_10_1016_j_apsoil_2017_05_006
crossref_primary_10_3390_f16010148
crossref_primary_10_1016_j_soilbio_2019_03_023
crossref_primary_10_1080_08927014_2023_2255141
crossref_primary_10_1007_s11104_022_05850_2
crossref_primary_10_1371_journal_pone_0214089
crossref_primary_10_3389_frwa_2021_596260
crossref_primary_10_3389_fmicb_2022_858125
crossref_primary_10_5194_soil_11_247_2025
crossref_primary_10_1111_fwb_14253
crossref_primary_10_1007_s11104_022_05523_0
crossref_primary_10_1111_gcb_17465
crossref_primary_10_1111_1365_2435_13536
crossref_primary_10_3390_jof8070735
crossref_primary_10_1111_1365_2745_13807
crossref_primary_10_1016_j_apsoil_2019_02_006
crossref_primary_10_1002_lno_11641
crossref_primary_10_3389_fenvs_2018_00145
crossref_primary_10_1093_nargab_lqaf061
crossref_primary_10_3390_pr5040065
crossref_primary_10_1016_j_envres_2020_109933
crossref_primary_10_24072_pcjournal_534
crossref_primary_10_1016_j_watres_2024_122000
crossref_primary_10_1016_j_chnaes_2022_05_008
crossref_primary_10_1111_ele_13861
crossref_primary_10_3390_su15032745
crossref_primary_10_1128_msystems_01112_23
crossref_primary_10_1016_j_jhazmat_2020_122224
crossref_primary_10_1038_s41396_019_0500_2
crossref_primary_10_1111_1365_2435_13550
crossref_primary_10_1111_ele_13746
crossref_primary_10_1016_j_scitotenv_2021_147888
crossref_primary_10_1016_j_envres_2021_111076
crossref_primary_10_5194_bg_22_4221_2025
crossref_primary_10_1016_j_pedobi_2022_150859
crossref_primary_10_5194_bg_15_7141_2018
crossref_primary_10_1016_j_geoderma_2019_114004
crossref_primary_10_1016_j_soilbio_2024_109479
crossref_primary_10_1111_1751_7915_13623
crossref_primary_10_1093_femsec_fiab091
crossref_primary_10_1002_ecy_3553
crossref_primary_10_1016_j_scitotenv_2020_138636
crossref_primary_10_5194_bg_14_4243_2017
crossref_primary_10_3389_fmicb_2022_945927
crossref_primary_10_1007_s11104_023_06364_1
crossref_primary_10_3389_fmicb_2024_1476016
crossref_primary_10_3390_su15032338
crossref_primary_10_1016_j_algal_2019_101461
crossref_primary_10_1128_mSystems_00768_19
crossref_primary_10_1111_1462_2920_16504
crossref_primary_10_1371_journal_pone_0241371
crossref_primary_10_1038_s41396_020_0614_6
crossref_primary_10_1128_spectrum_01347_22
crossref_primary_10_3389_fmicb_2019_01931
crossref_primary_10_1002_ece3_11174
crossref_primary_10_3390_plants12162913
crossref_primary_10_1371_journal_pone_0228165
crossref_primary_10_1016_j_catena_2024_108306
crossref_primary_10_1007_s42773_023_00273_3
crossref_primary_10_3390_agriculture12101521
crossref_primary_10_1002_ecs2_3968
crossref_primary_10_1039_D3EN00479A
crossref_primary_10_1111_1462_2920_16513
crossref_primary_10_24072_pcjournal_306
crossref_primary_10_1007_s11104_021_04949_2
crossref_primary_10_1128_msystems_01238_22
crossref_primary_10_1016_j_soilbio_2025_109838
crossref_primary_10_5194_bg_16_3911_2019
crossref_primary_10_1016_j_soilbio_2024_109658
crossref_primary_10_1007_s10531_019_01760_5
crossref_primary_10_1038_s41396_020_0723_2
crossref_primary_10_1038_s43705_023_00272_2
crossref_primary_10_1016_j_soilbio_2020_108047
crossref_primary_10_3390_su16177848
crossref_primary_10_1016_j_sajb_2024_09_018
crossref_primary_10_1093_ismeco_ycaf073
crossref_primary_10_3389_fmicb_2017_01856
crossref_primary_10_1016_j_scitotenv_2020_140919
crossref_primary_10_1016_j_soilbio_2016_06_006
crossref_primary_10_1128_AEM_01000_18
crossref_primary_10_1002_lno_11326
crossref_primary_10_3389_fpls_2023_1278662
crossref_primary_10_1111_1365_2745_12871
crossref_primary_10_1016_j_scitotenv_2018_07_437
crossref_primary_10_1371_journal_pcbi_1006146
crossref_primary_10_1016_j_soilbio_2023_109120
crossref_primary_10_1016_j_soilbio_2024_109683
crossref_primary_10_7717_peerj_4575
crossref_primary_10_1016_j_envexpbot_2025_106115
crossref_primary_10_1016_j_scitotenv_2016_11_212
crossref_primary_10_3389_fmicb_2017_00750
crossref_primary_10_3390_f15020353
crossref_primary_10_1016_j_soilbio_2021_108248
crossref_primary_10_3389_fmicb_2020_610298
crossref_primary_10_1016_j_catena_2024_108679
crossref_primary_10_1016_j_envres_2025_121072
crossref_primary_10_1111_1462_2920_14555
crossref_primary_10_1128_msystems_00066_18
crossref_primary_10_5194_bg_17_4591_2020
crossref_primary_10_1002_ecs2_1879
crossref_primary_10_1111_1365_2435_13926
crossref_primary_10_5194_soil_8_163_2022
crossref_primary_10_1016_j_scitotenv_2018_05_256
crossref_primary_10_3390_d17070462
crossref_primary_10_3390_f12111444
crossref_primary_10_1007_s10531_019_01886_6
crossref_primary_10_1111_ejss_13290
crossref_primary_10_7554_eLife_46923
crossref_primary_10_1016_j_soilbio_2024_109622
crossref_primary_10_1186_s40168_019_0756_9
crossref_primary_10_1016_j_soilbio_2019_107547
crossref_primary_10_3390_genes10030220
crossref_primary_10_1016_j_soilbio_2018_11_007
crossref_primary_10_1525_elementa_2021_00076
crossref_primary_10_1007_s10452_022_09962_w
crossref_primary_10_1080_1040841X_2021_2011833
crossref_primary_10_3390_biology10070569
crossref_primary_10_1038_s44185_023_00036_0
crossref_primary_10_1016_j_agee_2025_109648
crossref_primary_10_1016_j_apsoil_2022_104686
crossref_primary_10_1002_agg2_20063
crossref_primary_10_1038_s43705_023_00281_1
crossref_primary_10_1016_j_scitotenv_2017_12_179
crossref_primary_10_1016_j_marpolbul_2018_09_002
crossref_primary_10_1016_j_scitotenv_2024_177394
crossref_primary_10_1016_j_rhisph_2018_06_004
crossref_primary_10_1111_ele_70032
crossref_primary_10_1002_imo2_70054
crossref_primary_10_7717_peerj_6844
crossref_primary_10_1111_1462_2920_13720
crossref_primary_10_1111_jbi_14381
crossref_primary_10_1007_s11270_024_07001_y
crossref_primary_10_3389_feart_2020_00012
crossref_primary_10_1016_j_apsoil_2025_106232
crossref_primary_10_1128_msystems_01220_22
crossref_primary_10_1016_j_envint_2020_106131
crossref_primary_10_3390_microorganisms10071339
crossref_primary_10_1007_s00374_020_01504_6
crossref_primary_10_1111_gcb_13853
crossref_primary_10_1128_msphere_00450_25
crossref_primary_10_1128_aem_00256_24
crossref_primary_10_1111_1751_7915_12483
crossref_primary_10_1016_j_catena_2022_106260
crossref_primary_10_1016_j_soilbio_2019_107521
crossref_primary_10_1016_j_catena_2022_106026
crossref_primary_10_1007_s10661_023_11964_6
crossref_primary_10_1016_j_apsoil_2016_10_014
crossref_primary_10_1016_j_envres_2022_113312
crossref_primary_10_1128_spectrum_00236_24
crossref_primary_10_1016_j_marpolbul_2018_03_020
crossref_primary_10_1128_MMBR_00063_16
crossref_primary_10_7554_eLife_84662
crossref_primary_10_1134_S0026261720020113
crossref_primary_10_1007_s11368_016_1563_6
crossref_primary_10_1016_j_jhydrol_2020_125762
crossref_primary_10_1007_s10533_023_01015_0
crossref_primary_10_1038_s41467_022_35677_5
crossref_primary_10_1016_j_watres_2024_122302
crossref_primary_10_3389_fmicb_2022_1037626
crossref_primary_10_1016_j_soilbio_2018_10_006
crossref_primary_10_3389_fmicb_2021_777084
crossref_primary_10_1016_j_ibiod_2023_105701
crossref_primary_10_1038_s40494_025_01962_x
crossref_primary_10_1016_j_ibiod_2021_105267
crossref_primary_10_1016_j_soilbio_2018_04_014
crossref_primary_10_1111_1751_7915_13558
crossref_primary_10_3390_microorganisms9050983
crossref_primary_10_1016_j_geoderma_2021_115105
crossref_primary_10_1016_j_geoderma_2022_115866
crossref_primary_10_3390_agronomy12112882
crossref_primary_10_1016_j_apsoil_2025_106128
crossref_primary_10_1016_j_envres_2025_120809
crossref_primary_10_3390_microorganisms10050944
crossref_primary_10_1038_s41522_025_00729_3
crossref_primary_10_1007_s00027_020_0700_x
crossref_primary_10_1016_j_catena_2024_107961
crossref_primary_10_1111_1462_2920_15705
crossref_primary_10_1016_j_ympev_2020_106787
crossref_primary_10_1139_cjm_2021_0360
crossref_primary_10_1016_j_soilbio_2020_107948
crossref_primary_10_1038_s42003_023_04597_5
crossref_primary_10_1016_j_scitotenv_2021_152342
crossref_primary_10_1016_j_marpolbul_2021_113227
crossref_primary_10_3389_ffgc_2022_873527
crossref_primary_10_1007_s12237_020_00728_x
crossref_primary_10_1016_j_apsoil_2022_104778
crossref_primary_10_1186_s12870_024_04873_4
crossref_primary_10_1111_1758_2229_13148
crossref_primary_10_1016_j_soilbio_2016_09_010
crossref_primary_10_3390_w13101340
crossref_primary_10_1002_ldr_70160
crossref_primary_10_1016_j_ecolind_2020_106341
crossref_primary_10_1016_j_scitotenv_2019_07_313
crossref_primary_10_3389_fenvs_2020_00002
crossref_primary_10_1016_j_plrev_2017_01_013
crossref_primary_10_1128_aem_00505_22
crossref_primary_10_1016_j_scitotenv_2023_168170
crossref_primary_10_1016_j_soilbio_2016_09_014
crossref_primary_10_1002_mbo3_681
crossref_primary_10_3389_fmicb_2022_1013408
crossref_primary_10_1007_s00374_022_01621_4
crossref_primary_10_1016_j_apsoil_2023_104968
crossref_primary_10_1111_gcb_13926
crossref_primary_10_1111_1365_2664_14074
crossref_primary_10_1007_s00248_021_01717_8
crossref_primary_10_1016_j_envpol_2018_02_045
crossref_primary_10_1093_femsle_fny035
Cites_doi 10.1098/rspb.2014.2620
10.1073/pnas.0611525104
10.1007/s10533-011-9635-6
10.1038/nature06810
10.1016/j.tree.2014.07.002
10.1007/s10533-011-9641-8
10.5194/bgd-6-3655-2009
10.1111/j.1365-2435.2008.01402.x
10.1016/S0038-0717(03)00015-4
10.1111/ele.12269
10.3389/fmicb.2014.00424
10.1016/S1369-5274(02)00324-7
10.1073/pnas.1320054111
10.1016/0167-8809(92)90081-L
10.1126/science.aac9323
10.1038/nrmicro1643
10.1046/j.1365-2486.1998.00195.x
10.1111/j.1365-2664.2011.02048.x
10.1007/s10533-014-0058-z
10.1016/0167-1987(96)01008-2
10.1038/nclimate2301
10.1073/pnas.0801925105
10.1038/ismej.2012.160
10.1111/j.1574-6941.2010.00988.x
10.1016/0038-0717(88)90082-X
10.1038/ismej.2009.109
10.1038/ismej.2011.119
10.1111/1574-6941.12346
10.1890/14-1127.1
10.1023/A:1006244819642
10.3389/fmicb.2012.00364
10.1016/S0169-5347(97)01274-3
10.1111/j.1462-2920.2010.02315.x
10.1111/j.1461-0248.2011.01685.x
10.1073/pnas.1313713111
10.1007/s10021-005-0047-0
10.3389/fmicb.2014.00497
10.1016/j.soilbio.2013.08.024
10.1038/ismej.2014.120
10.1016/j.apsoil.2003.07.001
10.1038/23932
10.1128/AEM.00335-09
10.1128/MMBR.00051-12
10.1016/j.csbj.2014.11.009
10.1890/04-0340
10.1038/ismej.2012.22
10.1038/nature13855
10.1016/j.soilbio.2014.02.008
10.1038/ismej.2014.252
10.1890/ES13-00155.1
10.1177/0049124104268644
10.1073/pnas.1215210110
10.1038/nclimate1951
10.1016/j.soilbio.2013.08.023
10.1016/j.tree.2011.03.024
10.1111/j.1461-0248.2010.01465.x
10.1073/pnas.0912765107
10.1038/nclimate2361
10.1111/j.1461-0248.2007.01139.x
10.1038/nrmicro2504
10.1093/femsec/fiv113
10.1111/j.1462-2920.2011.02679.x
ContentType Journal Article
Copyright Attribution 4.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/es
Copyright © 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut. 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut
Copyright_xml – notice: Attribution 4.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/4.0/es/">http://creativecommons.org/licenses/by/4.0/es/</a>
– notice: Copyright © 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut. 2016 Graham, Knelman, Schindlbacher, Siciliano, Breulmann, Yannarell, Beman, Abell, Philippot, Prosser, Foulquier, Yuste, Glanville, Jones, Angel, Salminen, Newton, Bürgmann, Ingram, Hamer, Siljanen, Peltoniemi, Potthast, Bañeras, Hartmann, Banerjee, Yu, Nogaro, Richter, Koranda, Castle, Goberna, Song, Chatterjee, Nunes, Lopes, Cao, Kaisermann, Hallin, Strickland, Garcia-Pausas, Barba, Kang, Isobe, Papaspyrou, Pastorelli, Lagomarsino, Lindström, Basiliko and Nemergut
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
NPM
7X8
XX2
OIOZB
OTOTI
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.3389/fmicb.2016.00214
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Recercat
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
Ecology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_8ccc1905281545e19b1994be059ab4d1
oai_slubar_slu_se_78294
oai_DiVA_org_uu_282313
PMC4764795
1249360
oai_recercat_cat_2072_324303
26941732
10_3389_fmicb_2016_00214
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DEB-1221215
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
ACXDI
NPM
7X8
XX2
IAO
IEA
IHR
OIOZB
OTOTI
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c699t-2d1a59950f7fda206b6b572bc52ee653cb607da1c768b9cf2c7cd150e6333e7f3
IEDL.DBID DOA
ISICitedReferencesCount 370
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370760300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:45:36 EDT 2025
Tue Nov 04 16:28:36 EST 2025
Tue Nov 04 16:57:25 EST 2025
Thu Aug 21 18:43:18 EDT 2025
Mon Nov 25 02:43:50 EST 2024
Fri Nov 07 13:44:00 EST 2025
Fri Sep 05 12:37:41 EDT 2025
Thu Apr 03 07:03:29 EDT 2025
Sat Nov 29 06:02:35 EST 2025
Tue Nov 18 22:31:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords functional gene
nitrification
ecosystem processes
statistical modeling
respiration
microbial diversity
microbial ecology
denitrification
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c699t-2d1a59950f7fda206b6b572bc52ee653cb607da1c768b9cf2c7cd150e6333e7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
DEB1221215; AC0576RL01830
Edited by: Gary M. King, Louisiana State University, USA
Reviewed by: Steffen Kolb, Landscape Biogeochemistry – Leibniz Centre for Agricultural Landscape Research, Germany; Hongchen Jiang, Miami University, USA; Kristen M. DeAngelis, University of Massachusetts Amherst, USA
This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology
OpenAccessLink https://doaj.org/article/8ccc1905281545e19b1994be059ab4d1
PMID 26941732
PQID 1770881213
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8ccc1905281545e19b1994be059ab4d1
swepub_primary_oai_slubar_slu_se_78294
swepub_primary_oai_DiVA_org_uu_282313
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4764795
osti_scitechconnect_1249360
csuc_recercat_oai_recercat_cat_2072_324303
proquest_miscellaneous_1770881213
pubmed_primary_26941732
crossref_primary_10_3389_fmicb_2016_00214
crossref_citationtrail_10_3389_fmicb_2016_00214
PublicationCentury 2000
PublicationDate 2016-02-24
PublicationDateYYYYMMDD 2016-02-24
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-24
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: United States
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2016
Publisher Frontiers Media
Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Allison (B3) 2008; 105
Jones (B30) 2014; 4
Todd-Brown (B59) 2012; 109
Bier (B8) 2015; 91
Wagg (B64) 2014; 111
Stegen (B57) 2012; 6
Barton (B7) 2011
Lauber (B34) 2009; 75
Nemergut (B42) 2011; 13
van der Heijden (B62) 1998; 396
Nemergut (B43) 2013; 77
Powell (B47) 2015; 96
DeWitt (B17) 1998; 13
Wieder (B68) 2013; 3
Auguet (B4) 2010; 4
Gupta (B26) 1988; 20
Knelman (B33) 2014; 5
Barberán (B5) 2012; 6
Gagic (B24) 2015; 282
Blagodatskaya (B9) 2013; 67
Martiny (B40) 2015; 350
Carney (B14) 2005; 8
Graham (B25) 2014; 68
Schimel (B54) 1998; 4
Oksanen (B45) 2013
Burnham (B12) 2004; 33
Sinsabaugh (B56) 2015; 122
R Core Team (B49) 2014
Torsvik (B60) 2002; 5
Fukami (B23) 2010; 13
Rocca (B51) 2014; 9
Walker (B65) 2014; 29
Bardgett (B6) 2014; 515
Schimel (B53) 1995
Burnham (B11) 2002
Hubbell (B29) 2001
Hagerty (B27) 2014; 4
Prosser (B48) 2007; 5
Lozupone (B37) 2007; 104
Wallenstein (B66) 2012; 109
Ferris (B20) 2004; 25
Petersen (B46) 2012; 14
Martiny (B39) 2013; 7
Chan (B15) 1996; 37
Fukami (B22) 2004; 85
Bouskill (B10) 2012; 3
Fierer (B21) 2012; 109
Lira-Noriega (B36) 2013; 4
Hanson (B28) 2000; 48
Manzoni (B38) 2014; 73
Verbaendert (B63) 2014; 89
Abram (B2) 2015; 13
Talbot (B58) 2008; 22
Rosindell (B52) 2011; 26
Nemergut (B44) 2014; 5
Schimel (B55) 2003; 35
Lennon (B35) 2011; 9
Cadotte (B13) 2011; 48
Dinsdale (B19) 2008; 452
Reed (B50) 2014; 111
Jones (B31) 2010; 107
van der Heijden (B61) 2008; 11
Abell (B1) 2011; 75
Kaiser (B32) 2014; 17
Wang (B67) 2015; 9
Clark (B16) 2011; 14
Middelburg (B41) 2009; 6
Dick (B18) 1992; 40
24784780 - FEMS Microbiol Ecol. 2014 Jul;89(1):162-80
18337718 - Nature. 2008 Apr 3;452(7187):629-32
24628731 - Ecol Lett. 2014 Jun;17(6):680-90
21238209 - Trends Ecol Evol. 1998 Feb 1;13(2):77-81
24449851 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1879-84
24639507 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5266-70
18695234 - Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9
25535936 - ISME J. 2015 Aug;9(8):1693-9
20231463 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6
21083579 - FEMS Microbiol Ecol. 2011 Jan;75(1):111-22
21978194 - Ecol Lett. 2011 Dec;14(12):1273-87
17592124 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40
21561679 - Trends Ecol Evol. 2011 Jul;26(7):340-8
24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56
25012899 - ISME J. 2015 Jan;9(1):226-37
22456445 - ISME J. 2012 Sep;6(9):1653-64
23087681 - Front Microbiol. 2012 Oct 18;3:364
20412280 - Ecol Lett. 2010 Jun;13(6):675-84
26371074 - FEMS Microbiol Ecol. 2015 Oct;91(10):null
18047587 - Ecol Lett. 2008 Mar;11(3):296-310
26542581 - Science. 2015 Nov 6;350(6261):aac9323
19847207 - ISME J. 2010 Feb;4(2):182-90
12057676 - Curr Opin Microbiol. 2002 Jun;5(3):240-5
26378320 - Ecology. 2015 Jul;96(7):1985-93
25165465 - Front Microbiol. 2014 Aug 13;5:424
19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
23235290 - ISME J. 2013 Apr;7(4):830-8
21900968 - ISME J. 2012 Feb;6(2):343-51
22225623 - Environ Microbiol. 2012 Apr;14(4):993-1008
17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92
21199253 - Environ Microbiol. 2011 Jan;13(1):135-44
23236140 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5
25567651 - Proc Biol Sci. 2015 Feb 22;282(1801):20142620
21233850 - Nat Rev Microbiol. 2011 Feb;9(2):119-30
25428498 - Nature. 2014 Nov 27;515(7528):505-11
25750697 - Comput Struct Biotechnol J. 2014 Dec 03;13:24-32
25309525 - Front Microbiol. 2014 Sep 26;5:497
25085040 - Trends Ecol Evol. 2014 Sep;29(9):504-10
References_xml – volume: 282
  issue: 20142620
  year: 2015
  ident: B24
  article-title: Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.
  publication-title: Proc. R. Soc. Biol. Sci. U.S.A.
  doi: 10.1098/rspb.2014.2620
– volume: 104
  start-page: 11436
  year: 2007
  ident: B37
  article-title: Global patterns in bacterial diversity.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0611525104
– volume: 109
  start-page: 19
  year: 2012
  ident: B59
  article-title: A framework for representing microbial decomposition in coupled climate models.
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9635-6
– volume: 452
  start-page: 629
  year: 2008
  ident: B19
  article-title: Functional metagenomic profiling of nine biomes.
  publication-title: Nature
  doi: 10.1038/nature06810
– volume: 29
  start-page: 504
  year: 2014
  ident: B65
  article-title: Plant succession as an integrator of contrasting ecological time scales.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2014.07.002
– volume: 109
  start-page: 35
  year: 2012
  ident: B66
  article-title: A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning.
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9641-8
– year: 2002
  ident: B11
  publication-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.
– volume: 6
  start-page: 3655
  year: 2009
  ident: B41
  article-title: Coastal hypoxia and sediment biogeochemistry.
  publication-title: Biogeosciences
  doi: 10.5194/bgd-6-3655-2009
– year: 2014
  ident: B49
  publication-title: R: A Language and Environment for Statistical Computing.
– volume: 22
  start-page: 955
  year: 2008
  ident: B58
  article-title: Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change.
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01402.x
– volume: 35
  start-page: 549
  year: 2003
  ident: B55
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00015-4
– volume: 17
  start-page: 680
  year: 2014
  ident: B32
  article-title: Microbial community dynamics alleviate stoichiometric constraints during litter decay.
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12269
– volume: 5
  issue: 424
  year: 2014
  ident: B33
  article-title: Changes in community assembly may shift the relationship between biodiversity and ecosystem function.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00424
– volume: 5
  start-page: 240
  year: 2002
  ident: B60
  article-title: Microbial diversity and function in soil: from genes to ecosystems.
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(02)00324-7
– volume: 111
  start-page: 5266
  year: 2014
  ident: B64
  article-title: Soil biodiversity and soil community composition determine ecosystem multifunctionality.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1320054111
– volume: 40
  start-page: 25
  year: 1992
  ident: B18
  article-title: A review: long-term effects of agricultural systems on soil biochemical and microbial parameters.
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/0167-8809(92)90081-L
– volume: 350
  issue: aac9323
  year: 2015
  ident: B40
  article-title: Microbiomes in light of traits: a phylogenetic perspective.
  publication-title: Science
  doi: 10.1126/science.aac9323
– volume: 5
  start-page: 384
  year: 2007
  ident: B48
  article-title: The role of ecological theory in microbial ecology.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1643
– volume: 4
  start-page: 745
  year: 1998
  ident: B54
  article-title: Microbial community structure and global trace gases.
  publication-title: Glob. Chang. Biol.
  doi: 10.1046/j.1365-2486.1998.00195.x
– volume: 48
  start-page: 1079
  year: 2011
  ident: B13
  article-title: Beyond species: functional diversity and the maintenance of ecological processes and services.
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2011.02048.x
– volume: 122
  start-page: 175
  year: 2015
  ident: B56
  article-title: Scaling microbial biomass, metabolism and resource supply.
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-014-0058-z
– volume: 37
  start-page: 113
  year: 1996
  ident: B15
  article-title: The influence of crop rotation on soil structure and soil physical properties under conventional tillage.
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(96)01008-2
– volume: 4
  start-page: 801
  year: 2014
  ident: B30
  article-title: Recently identified microbial guild mediates soil N2O sink capacity.
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2301
– volume: 105
  start-page: 11512
  year: 2008
  ident: B3
  article-title: Resistance, resilience, and redundancy in microbial communities.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0801925105
– volume: 7
  start-page: 830
  year: 2013
  ident: B39
  article-title: Phylogenetic conservatism of functional traits in microorganisms.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.160
– volume: 75
  start-page: 111
  year: 2011
  ident: B1
  article-title: Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2010.00988.x
– volume: 20
  start-page: 777
  year: 1988
  ident: B26
  article-title: Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(88)90082-X
– volume: 4
  start-page: 182
  year: 2010
  ident: B4
  article-title: Global ecological patterns in uncultured Archaea.
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.109
– volume: 6
  start-page: 343
  year: 2012
  ident: B5
  article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities.
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.119
– volume: 89
  start-page: 162
  year: 2014
  ident: B63
  article-title: Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12346
– volume: 96
  start-page: 1985
  year: 2015
  ident: B47
  article-title: Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties.
  publication-title: Ecology
  doi: 10.1890/14-1127.1
– volume: 48
  start-page: 115
  year: 2000
  ident: B28
  article-title: Separating root and soil microbial contributions to soil respiration: a review of methods and observations.
  publication-title: Biogeochemistry
  doi: 10.1023/A:1006244819642
– volume: 3
  issue: 364
  year: 2012
  ident: B10
  article-title: Trait-based representation of biological nitrification: model development, testing, and predicted community composition.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00364
– year: 2001
  ident: B29
  publication-title: The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32).
– volume: 13
  start-page: 77
  year: 1998
  ident: B17
  article-title: Costs and limits of phenotypic plasticity.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(97)01274-3
– year: 2013
  ident: B45
  article-title: Package ‘Vegan’.
  publication-title: Community0 Ecology Package, Version 2.
– volume: 13
  start-page: 135
  year: 2011
  ident: B42
  article-title: Global patterns in the biogeography of bacterial taxa.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02315.x
– volume: 14
  start-page: 1273
  year: 2011
  ident: B16
  article-title: Individual-scale variation, species-scale differences: inference needed to understand diversity.
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2011.01685.x
– volume: 111
  start-page: 1879
  year: 2014
  ident: B50
  article-title: Gene-centric approach to integrating environmental genomics and biogeochemical models.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1313713111
– volume: 8
  start-page: 928
  year: 2005
  ident: B14
  article-title: Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning?
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0047-0
– volume: 5
  issue: 497
  year: 2014
  ident: B44
  article-title: When, where and how does microbial community composition matter?
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00497
– volume: 67
  start-page: 192
  year: 2013
  ident: B9
  article-title: Active microorganisms in soil: critical review of estimation criteria and approaches.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.08.024
– start-page: 239
  year: 1995
  ident: B53
  article-title: “Ecosystem consequences of microbial diversity and community structure,” in
  publication-title: Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences
– volume: 9
  start-page: 226
  year: 2015
  ident: B67
  article-title: Microbial dormancy improves development and experimental validation of ecosystem model.
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.120
– volume: 25
  start-page: 19
  year: 2004
  ident: B20
  article-title: Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2003.07.001
– volume: 396
  start-page: 69
  year: 1998
  ident: B62
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.
  publication-title: Nature
  doi: 10.1038/23932
– volume: 75
  start-page: 5111
  year: 2009
  ident: B34
  article-title: Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00335-09
– volume: 77
  start-page: 342
  year: 2013
  ident: B43
  article-title: Patterns and processes of microbial community assembly.
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00051-12
– volume: 13
  start-page: 24
  year: 2015
  ident: B2
  article-title: Systems-based approaches to unravel multi-species microbial community functioning.
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.009
– volume: 85
  start-page: 3234
  year: 2004
  ident: B22
  article-title: Assembly history interacts with ecosystem size to influence species diversity.
  publication-title: Ecology
  doi: 10.1890/04-0340
– volume: 6
  start-page: 1653
  year: 2012
  ident: B57
  article-title: Stochastic and deterministic assembly processes in subsurface microbial communities.
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.22
– volume: 515
  start-page: 505
  year: 2014
  ident: B6
  article-title: Belowground biodiversity and ecosystem functioning.
  publication-title: Nature
  doi: 10.1038/nature13855
– year: 2011
  ident: B7
  publication-title: MuMIn: Multi-Model Inference. R Package Version 1.0. 0.
– volume: 73
  start-page: 69
  year: 2014
  ident: B38
  article-title: A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.02.008
– volume: 9
  start-page: 1693
  year: 2014
  ident: B51
  article-title: Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed.
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.252
– volume: 4
  issue: art99
  year: 2013
  ident: B36
  article-title: Process-based and correlative modeling of desert mistletoe distribution: a multiscalar approach.
  publication-title: Ecosphere
  doi: 10.1890/ES13-00155.1
– volume: 33
  start-page: 261
  year: 2004
  ident: B12
  article-title: Multimodel inference understanding AIC and BIC in model selection.
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124104268644
– volume: 109
  start-page: 21390
  year: 2012
  ident: B21
  article-title: Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1215210110
– volume: 3
  start-page: 909
  year: 2013
  ident: B68
  article-title: Global soil carbon projections are improved by modelling microbial processes.
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1951
– volume: 68
  start-page: 279
  year: 2014
  ident: B25
  article-title: Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.08.023
– volume: 26
  start-page: 340
  year: 2011
  ident: B52
  article-title: The unified neutral theory of biodiversity and biogeography at age ten.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2011.03.024
– volume: 13
  start-page: 675
  year: 2010
  ident: B23
  article-title: Assembly history dictates ecosystem functioning: evidence from wood decomposer communities.
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2010.01465.x
– volume: 107
  start-page: 5881
  year: 2010
  ident: B31
  article-title: Dormancy contributes to the maintenance of microbial diversity.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0912765107
– volume: 4
  start-page: 903
  year: 2014
  ident: B27
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil.
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2361
– volume: 11
  start-page: 296
  year: 2008
  ident: B61
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01139.x
– volume: 9
  start-page: 119
  year: 2011
  ident: B35
  article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2504
– volume: 91
  issue: fiv113
  year: 2015
  ident: B8
  article-title: Linking microbial community structure and microbial processes: an empirical and conceptual overview.
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiv113
– volume: 14
  start-page: 993
  year: 2012
  ident: B46
  article-title: Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska.
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02679.x
– reference: 26378320 - Ecology. 2015 Jul;96(7):1985-93
– reference: 20412280 - Ecol Lett. 2010 Jun;13(6):675-84
– reference: 26371074 - FEMS Microbiol Ecol. 2015 Oct;91(10):null
– reference: 25085040 - Trends Ecol Evol. 2014 Sep;29(9):504-10
– reference: 23235290 - ISME J. 2013 Apr;7(4):830-8
– reference: 18337718 - Nature. 2008 Apr 3;452(7187):629-32
– reference: 18695234 - Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9
– reference: 21561679 - Trends Ecol Evol. 2011 Jul;26(7):340-8
– reference: 19847207 - ISME J. 2010 Feb;4(2):182-90
– reference: 21900968 - ISME J. 2012 Feb;6(2):343-51
– reference: 24006468 - Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56
– reference: 18047587 - Ecol Lett. 2008 Mar;11(3):296-310
– reference: 26542581 - Science. 2015 Nov 6;350(6261):aac9323
– reference: 25535936 - ISME J. 2015 Aug;9(8):1693-9
– reference: 17592124 - Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11436-40
– reference: 24639507 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5266-70
– reference: 23236140 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21390-5
– reference: 25309525 - Front Microbiol. 2014 Sep 26;5:497
– reference: 24784780 - FEMS Microbiol Ecol. 2014 Jul;89(1):162-80
– reference: 24449851 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1879-84
– reference: 24628731 - Ecol Lett. 2014 Jun;17(6):680-90
– reference: 25428498 - Nature. 2014 Nov 27;515(7528):505-11
– reference: 25165465 - Front Microbiol. 2014 Aug 13;5:424
– reference: 25567651 - Proc Biol Sci. 2015 Feb 22;282(1801):20142620
– reference: 21233850 - Nat Rev Microbiol. 2011 Feb;9(2):119-30
– reference: 12057676 - Curr Opin Microbiol. 2002 Jun;5(3):240-5
– reference: 19502440 - Appl Environ Microbiol. 2009 Aug;75(15):5111-20
– reference: 21083579 - FEMS Microbiol Ecol. 2011 Jan;75(1):111-22
– reference: 22456445 - ISME J. 2012 Sep;6(9):1653-64
– reference: 25750697 - Comput Struct Biotechnol J. 2014 Dec 03;13:24-32
– reference: 23087681 - Front Microbiol. 2012 Oct 18;3:364
– reference: 21238209 - Trends Ecol Evol. 1998 Feb 1;13(2):77-81
– reference: 21199253 - Environ Microbiol. 2011 Jan;13(1):135-44
– reference: 22225623 - Environ Microbiol. 2012 Apr;14(4):993-1008
– reference: 25012899 - ISME J. 2015 Jan;9(1):226-37
– reference: 21978194 - Ecol Lett. 2011 Dec;14(12):1273-87
– reference: 20231463 - Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5881-6
– reference: 17435792 - Nat Rev Microbiol. 2007 May;5(5):384-92
SSID ssj0000402000
Score 2.6057642
Snippet Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial...
Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial...
In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex...
SourceID doaj
swepub
pubmedcentral
osti
csuc
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 214
SubjectTerms BASIC BIOLOGICAL SCIENCES
Carbon Cycle
Denitrification
Ecologia microbiana
Ecology
ecosystem processes
Ekologi
ENVIRONMENTAL SCIENCES
functional gene
microbial diversity
Microbial ecology
Microbiology
Mikrobiologi
Nitrification
Nitrogen Cycle
Respiration
statistical modeling
Title Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?
URI https://www.ncbi.nlm.nih.gov/pubmed/26941732
https://www.proquest.com/docview/1770881213
https://recercat.cat/handle/2072/324303
https://www.osti.gov/servlets/purl/1249360
https://pubmed.ncbi.nlm.nih.gov/PMC4764795
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282313
https://res.slu.se/id/publ/78294
https://doaj.org/article/8ccc1905281545e19b1994be059ab4d1
Volume 7
WOSCitedRecordID wos000370760300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA46KHgRf29dXSKooFC2Tduk9SKr7uJlFw8qcwvJa8oMLO3QH8pe_Nt9L5kdtrjoxcNMmZmk0-Z96fseL_keYy8FRjpFaWRs09TEeWWT2JSJigvp0EFIK2wBvtiEOjsrl8vqy5VSX7QmLMgDh4E7LAEAnVYhSnL2Lq0sqdlah7TA2Lz2gQ-ynivBlH8GU1iUJCEviVFYhWZag6WlXJR8EGk-80MLGCbYqvbjocPZdR3j_HPh5Exe1Lukk3vs7pZL8qNwD_fZDdc-YLdDdcmLh2w8pcV21g3cDNx53cGBdw3HgDPoN3NyamSYd_znyrW87rABhB0j4wUP0rJT77DzisDBNz2ldTxS5yfahO0Gbnj_iH07Of768XO8LbIQg6yqMRZ1akh0LGlUUxuRSCttoYSFQjgniwysTFRtUsC4xFbQCFBQI4t0Mssyp5rsMVu0Xev2GM8sshGMrzKT2DxtcqNqBVKSZCmyvLKI2OHlkGvYKpBTIYxzjZEIGUl7I2kykvZGitibXY9NUN_4S9u3ZEWNjsL1YEZNwtm7D_QSiRIaCSR67Yh9IFvvTkpt_RcIPb2Fnv4X9CK2T0jRyFVIcBdoZRKMmsp5ZzKJ2ItLAGmcspSHMa3rpkGnSuGznbT0IvYkAGp3IX5jscpExNQMarMrnf_SrldeFjxXMlcVjvKrAMpZl0_r70f-5qZJC0r94n-_vqbdcD5Z09NBD04jfazyp_9jrPbZHTKVFwPIn7EFItg9Z7fgx7ge-gN2Uy3LAz-F8f301_Fv5ndNjg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbes+as+engines+of+ecosystem+function%3A+When+does+community+structure+enhance+predictions+of+ecosystem+processes%3F&rft.jtitle=Frontiers+in+microbiology&rft.au=Graham%2C+Emily+B.&rft.au=Knelman%2C+Joseph+E.&rft.au=Schindlbacher%2C+Andreas&rft.au=Siciliano%2C+Steven&rft.date=2016-02-24&rft.pub=Frontiers+Research+Foundation&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=7&rft.issue=C&rft_id=info:doi/10.3389%2Ffmicb.2016.00214&rft.externalDocID=1249360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon