Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?

The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EBioMedicine Ročník 66; s. 103293
Hlavní autoři: Deleu, Sara, Machiels, Kathleen, Raes, Jeroen, Verbeke, Kristin, Vermeire, Séverine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.04.2021
Elsevier
Témata:
ISSN:2352-3964, 2352-3964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.
AbstractList The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.
The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.
AbstractThe gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.
ArticleNumber 103293
Author Verbeke, Kristin
Deleu, Sara
Machiels, Kathleen
Raes, Jeroen
Vermeire, Séverine
Author_xml – sequence: 1
  givenname: Sara
  orcidid: 0000-0001-8596-2783
  surname: Deleu
  fullname: Deleu, Sara
  organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Kathleen
  surname: Machiels
  fullname: Machiels, Kathleen
  organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: Jeroen
  surname: Raes
  fullname: Raes, Jeroen
  organization: Center for Microbiology, VIB, Leuven, Belgium
– sequence: 4
  givenname: Kristin
  surname: Verbeke
  fullname: Verbeke, Kristin
  organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: Séverine
  surname: Vermeire
  fullname: Vermeire, Séverine
  email: Severine.Vermeire@uzleuven.be
  organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33813134$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvGyEUhUdVqiZN8wsqVSy7sctjZoBWTZWmL0uRunC7RgzciXHG4AC25H9fJk6qJFKbFehyz3eAe15WBz54qKrXBE8JJu275RQ6F1ZTiikpFUYle1YdUdbQCZNtfXBvf1idpLTEGJOmLkXxojpkTBBGWH1UzeeLEDMyC-086nXOO6SNswlpb5HLCa1jsBvj_CUK8VJ7l1bpPTrzKGwhDiFcgUV5AVGvd6gPEc0-f_n0qnre6yHBye16XP3-9vXX-Y_Jxc_vs_Ozi4lppcgTY7uGtwRIoyW21HZQ44bUhmttCRda0LblveBWCF1jKglwTHAPorc9F9Kw42q259qgl2od3UrHnQraqZtCua_SMTszgOp5p6lo2prp4sBqSXDTEdxJ2_BGcl5Yp3vWetOtwBrwOerhAfThiXcLdRm2SuCaN5gVwNtbQAzXG0hZrVwyMAzaQ9gkRRsshGSc1aX1zX2vvyZ3UykNct9gYkgpQq-Myzq7MFq7QRGsxhCopboJgRpDoPYhKFr2SHuH_7_q414FZV5bB1El48AbsC6CyeVD3RP600d6MzjvjB6uYAdpGTbRlygoohJVWM3HcI7ZpKTkUrTjkz_8G_Ck_R9UK_Mn
CitedBy_id crossref_primary_10_1016_j_fbio_2023_103335
crossref_primary_10_1038_s41581_022_00647_z
crossref_primary_10_3390_biomedicines12040897
crossref_primary_10_3390_ijms23020594
crossref_primary_10_3389_fcimb_2023_1190910
crossref_primary_10_1016_j_mucimm_2025_05_009
crossref_primary_10_1007_s12032_023_02249_6
crossref_primary_10_1038_s41423_023_01085_y
crossref_primary_10_1002_cnr2_1752
crossref_primary_10_1016_j_cellin_2025_100227
crossref_primary_10_3390_life15081251
crossref_primary_10_1002_fsn3_4764
crossref_primary_10_3389_fgene_2023_1048312
crossref_primary_10_1016_j_phrs_2023_106676
crossref_primary_10_1002_ame2_12255
crossref_primary_10_1146_annurev_immunol_090222_102035
crossref_primary_10_3389_fmicb_2022_829378
crossref_primary_10_3389_fnins_2024_1341656
crossref_primary_10_3390_nu15132940
crossref_primary_10_1371_journal_ppat_1011665
crossref_primary_10_3390_nu16213689
crossref_primary_10_3390_antiox13020214
crossref_primary_10_3390_ijms25179463
crossref_primary_10_1016_j_disamonth_2023_101606
crossref_primary_10_1039_D2FO02712G
crossref_primary_10_1038_s41598_024_72887_x
crossref_primary_10_3390_pathogens12091173
crossref_primary_10_1007_s00018_024_05131_4
crossref_primary_10_1016_j_jnutbio_2025_110052
crossref_primary_10_3390_biomedicines13081864
crossref_primary_10_3390_app15137084
crossref_primary_10_1016_j_foodres_2024_115011
crossref_primary_10_1515_psr_2022_0166
crossref_primary_10_1016_j_jff_2024_106115
crossref_primary_10_1155_jnme_8870958
crossref_primary_10_1080_10408398_2025_2556479
crossref_primary_10_1111_nmo_70115
crossref_primary_10_1016_j_trsl_2022_10_006
crossref_primary_10_1038_s41522_025_00672_3
crossref_primary_10_5713_ab_22_0455
crossref_primary_10_3390_microorganisms12101977
crossref_primary_10_3390_metabo15080557
crossref_primary_10_1038_s41579_024_01058_6
crossref_primary_10_3390_ijms25074063
crossref_primary_10_3390_nu16234024
crossref_primary_10_1007_s15010_024_02293_y
crossref_primary_10_1080_10408398_2024_2323112
crossref_primary_10_3390_nu17010155
crossref_primary_10_1002_mlf2_70027
crossref_primary_10_1016_j_foodres_2022_112329
crossref_primary_10_3390_metabo12080765
crossref_primary_10_3389_fnut_2024_1395664
crossref_primary_10_3390_foods13172843
crossref_primary_10_3390_metabo13060760
crossref_primary_10_1002_advs_202203707
crossref_primary_10_1017_S0007114523000491
crossref_primary_10_1002_btm2_70067
crossref_primary_10_1016_j_intimp_2024_112325
crossref_primary_10_1016_j_cbpa_2023_102400
crossref_primary_10_1016_j_apsb_2024_02_020
crossref_primary_10_1007_s00394_025_03733_7
crossref_primary_10_1186_s12964_023_01219_9
crossref_primary_10_1016_j_ijbiomac_2024_136488
crossref_primary_10_1093_jambio_lxaf119
crossref_primary_10_1016_j_ijbiomac_2025_145598
crossref_primary_10_1016_j_micres_2024_127838
crossref_primary_10_4014_jmb_2301_01033
crossref_primary_10_1016_j_phrs_2023_106755
crossref_primary_10_5713_ab_25_0100
crossref_primary_10_3389_fimmu_2023_1286667
crossref_primary_10_1016_j_imlet_2024_106883
crossref_primary_10_1016_j_foodchem_2025_142937
crossref_primary_10_3389_fimmu_2024_1380476
crossref_primary_10_3390_ijms25094817
crossref_primary_10_14814_phy2_16114
crossref_primary_10_1016_j_biopha_2023_115821
crossref_primary_10_1016_j_carbpol_2024_122478
crossref_primary_10_3389_fimmu_2023_1139821
crossref_primary_10_26599_FSHW_2024_9250078
crossref_primary_10_3390_metabo12121271
crossref_primary_10_3390_nu14194113
crossref_primary_10_1016_j_bcab_2023_102889
crossref_primary_10_3389_fmed_2025_1435030
crossref_primary_10_1016_j_fbio_2024_105733
crossref_primary_10_1016_j_bpj_2024_06_016
crossref_primary_10_1016_j_fbio_2024_104643
crossref_primary_10_14309_ctg_0000000000000541
crossref_primary_10_3389_fmicb_2024_1502452
crossref_primary_10_3390_ijms25031722
crossref_primary_10_1016_j_heliyon_2024_e24339
crossref_primary_10_3390_ijms232415632
crossref_primary_10_1016_j_micres_2024_127856
crossref_primary_10_3389_fphar_2025_1585748
crossref_primary_10_1186_s40104_024_01011_w
crossref_primary_10_1016_j_micres_2024_127739
crossref_primary_10_48077_scihor7_2024_148
crossref_primary_10_31146_1682_8658_ecg_220_12_164_182
crossref_primary_10_1038_s41467_023_43167_5
crossref_primary_10_1038_s41574_024_01003_w
crossref_primary_10_1186_s12967_024_05092_z
crossref_primary_10_3389_fcimb_2023_1191936
crossref_primary_10_3389_fcimb_2025_1525581
crossref_primary_10_3390_app15189942
crossref_primary_10_1186_s12964_022_00869_5
crossref_primary_10_23736_S0026_4806_25_09706_X
crossref_primary_10_1016_j_fbio_2025_107093
crossref_primary_10_1111_ijcp_14819
crossref_primary_10_3389_fphar_2022_833972
crossref_primary_10_3390_antiox11050806
crossref_primary_10_1039_D2FO02722D
crossref_primary_10_1038_s41575_024_00931_2
crossref_primary_10_1002_fft2_400
crossref_primary_10_3389_fnut_2025_1592528
crossref_primary_10_1007_s43657_024_00193_7
crossref_primary_10_3389_fcimb_2023_1304858
crossref_primary_10_3390_nu15092211
crossref_primary_10_1093_jas_skaf056
crossref_primary_10_3390_cancers16051057
crossref_primary_10_3389_fmicb_2025_1664708
crossref_primary_10_3389_fimmu_2023_1235827
crossref_primary_10_1016_j_csbj_2022_03_038
crossref_primary_10_1038_s41531_022_00395_8
crossref_primary_10_3390_biomedicines13051232
crossref_primary_10_3390_ijerph19031368
crossref_primary_10_1128_aem_00325_24
crossref_primary_10_3390_biom11111658
crossref_primary_10_1053_j_gastro_2021_11_015
crossref_primary_10_1080_19490976_2024_2304901
crossref_primary_10_3390_nu16234201
crossref_primary_10_1007_s11427_024_2865_1
crossref_primary_10_1016_j_prmcm_2024_100374
crossref_primary_10_1038_s41522_025_00648_3
crossref_primary_10_1016_j_fm_2024_104525
crossref_primary_10_1016_j_phrs_2022_106321
crossref_primary_10_3390_medicina59111965
crossref_primary_10_1093_burnst_tkad056
crossref_primary_10_22207_JPAM_17_4_18
crossref_primary_10_3390_biotech11040050
crossref_primary_10_3390_ijms23094768
crossref_primary_10_3390_nu14122524
crossref_primary_10_3390_nu15245112
crossref_primary_10_3390_vetsci12060526
crossref_primary_10_3390_ijms252313100
crossref_primary_10_1111_bph_16225
crossref_primary_10_3389_fnut_2024_1364739
crossref_primary_10_3389_fnut_2024_1491821
crossref_primary_10_3389_fimmu_2021_794519
crossref_primary_10_1128_msphere_00781_23
crossref_primary_10_1146_annurev_virology_040323_082822
crossref_primary_10_1016_j_gtc_2024_12_008
crossref_primary_10_1089_ars_2022_0033
crossref_primary_10_1016_j_suc_2023_12_004
crossref_primary_10_1039_D4MA00896K
crossref_primary_10_1016_j_abb_2024_110172
crossref_primary_10_1016_j_foodres_2023_113163
crossref_primary_10_1016_j_rmed_2023_107118
crossref_primary_10_1186_s12866_025_04028_x
crossref_primary_10_3390_microorganisms10101995
crossref_primary_10_1007_s10068_025_01907_x
crossref_primary_10_3390_nu13113866
crossref_primary_10_1080_20002297_2024_2369350
crossref_primary_10_1038_s41467_024_46025_0
crossref_primary_10_2147_JIR_S479011
crossref_primary_10_1016_j_seminoncol_2025_152398
crossref_primary_10_3390_diagnostics12081969
crossref_primary_10_3390_metabo12090834
crossref_primary_10_3389_fnut_2023_1130841
crossref_primary_10_3390_nu14194058
crossref_primary_10_3390_ijms26062503
crossref_primary_10_3389_fcimb_2023_1128249
crossref_primary_10_1016_j_jff_2021_104862
crossref_primary_10_3390_metabo12020152
crossref_primary_10_1136_egastro_2023_100006
crossref_primary_10_1016_j_carbpol_2023_121396
crossref_primary_10_3389_fmicb_2024_1500453
crossref_primary_10_1007_s44187_025_00523_2
crossref_primary_10_1186_s13099_024_00651_7
crossref_primary_10_1016_j_phymed_2025_156540
crossref_primary_10_1016_j_phymed_2023_155056
crossref_primary_10_1161_HYPERTENSIONAHA_123_22437
crossref_primary_10_3390_nu16050661
crossref_primary_10_3389_fnut_2023_1126579
crossref_primary_10_1016_j_intimp_2022_108983
crossref_primary_10_1093_jas_skaf022
crossref_primary_10_1039_D2FO03396H
crossref_primary_10_1128_AEM_01449_21
crossref_primary_10_1016_j_micres_2024_127663
crossref_primary_10_1016_j_foodhyd_2025_111911
crossref_primary_10_1155_2023_1073984
crossref_primary_10_1093_procel_pwad023
crossref_primary_10_3390_metabo15090627
crossref_primary_10_1128_cmr_00163_22
crossref_primary_10_1016_j_foodhyd_2023_109204
crossref_primary_10_1186_s40168_024_01961_3
crossref_primary_10_1111_1751_2980_13256
crossref_primary_10_3390_nu17050884
crossref_primary_10_1038_s41577_024_01014_8
crossref_primary_10_1016_j_lfs_2023_122188
crossref_primary_10_3389_fmicb_2022_1016220
crossref_primary_10_1186_s40168_024_01788_y
crossref_primary_10_3390_metabo12111064
crossref_primary_10_1016_j_carbpol_2024_122421
crossref_primary_10_1016_j_foodres_2024_114852
crossref_primary_10_3390_nu16081108
crossref_primary_10_3389_fcimb_2025_1433131
crossref_primary_10_1007_s12602_025_10472_y
crossref_primary_10_1158_0008_5472_CAN_23_3987
crossref_primary_10_1007_s12602_023_10136_9
crossref_primary_10_1186_s13287_023_03471_9
crossref_primary_10_1080_19490976_2022_2083419
crossref_primary_10_1371_journal_pntd_0010878
crossref_primary_10_1186_s40168_022_01429_2
crossref_primary_10_3390_fermentation9121024
crossref_primary_10_1128_jb_00138_23
crossref_primary_10_1016_j_it_2021_11_005
crossref_primary_10_1002_ptr_7582
crossref_primary_10_34133_research_0904
crossref_primary_10_3389_fmicb_2023_1178131
crossref_primary_10_3389_fvets_2022_933905
crossref_primary_10_26508_lsa_202402609
crossref_primary_10_1016_j_aninu_2025_05_002
crossref_primary_10_1007_s12035_025_04865_x
crossref_primary_10_1128_IAI_00217_21
crossref_primary_10_1136_bmjnph_2024_001100
crossref_primary_10_1136_gutjnl_2024_332475
crossref_primary_10_1128_msystems_00143_25
crossref_primary_10_3389_fcimb_2024_1342354
crossref_primary_10_3390_medicina61091630
crossref_primary_10_3389_fmicb_2024_1429116
crossref_primary_10_3390_nu15030488
crossref_primary_10_1038_s41598_024_55660_y
crossref_primary_10_1360_TB_2024_0709
crossref_primary_10_1002_advs_202412558
crossref_primary_10_1016_j_ijpharm_2022_122282
crossref_primary_10_3390_medicina60121969
crossref_primary_10_1016_j_hnm_2024_200256
crossref_primary_10_3389_fnut_2022_877948
crossref_primary_10_1128_aem_00891_25
crossref_primary_10_3390_microorganisms10071389
crossref_primary_10_1002_ece3_70237
crossref_primary_10_1186_s44149_023_00089_5
crossref_primary_10_3389_fpubh_2024_1285186
crossref_primary_10_3390_metabo12010050
crossref_primary_10_7554_eLife_104121
crossref_primary_10_1016_j_ijbiomac_2023_123234
crossref_primary_10_1093_nutrit_nuaf047
crossref_primary_10_3748_wjg_v30_i34_3868
crossref_primary_10_1016_j_foodchem_2025_146411
crossref_primary_10_1053_j_gastro_2023_11_304
crossref_primary_10_1128_spectrum_04818_22
crossref_primary_10_3390_antibiotics11030331
crossref_primary_10_1002_jsfa_13837
crossref_primary_10_1021_acs_langmuir_5c02248
crossref_primary_10_1084_jem_20241993
crossref_primary_10_1002_fsn3_70804
crossref_primary_10_3389_fcimb_2022_924707
crossref_primary_10_3389_fnut_2022_915082
crossref_primary_10_3390_life14050559
crossref_primary_10_1002_advs_202503307
crossref_primary_10_3389_fnins_2025_1600148
crossref_primary_10_1007_s10620_023_07845_0
crossref_primary_10_1186_s40168_024_01898_7
crossref_primary_10_1080_19490976_2024_2393270
crossref_primary_10_3390_microorganisms11071714
crossref_primary_10_1080_17474124_2025_2495087
crossref_primary_10_3389_fimmu_2022_947313
crossref_primary_10_1016_j_jchromb_2023_123618
crossref_primary_10_1016_j_phrs_2025_107773
crossref_primary_10_3390_microorganisms12040822
crossref_primary_10_1016_j_fbio_2024_104297
crossref_primary_10_3389_fnut_2024_1342787
crossref_primary_10_3389_fnut_2022_920413
crossref_primary_10_3390_nu15245055
crossref_primary_10_1093_cvr_cvae128
crossref_primary_10_1155_2024_7955190
crossref_primary_10_1016_j_foodchem_2023_138261
crossref_primary_10_3390_jcm10184055
crossref_primary_10_1016_j_foodres_2025_117398
crossref_primary_10_1111_all_16065
crossref_primary_10_1134_S0006350923040188
crossref_primary_10_1186_s12940_024_01078_y
crossref_primary_10_3389_fimmu_2024_1332425
crossref_primary_10_3389_fmicb_2025_1504433
crossref_primary_10_1080_19490976_2024_2440125
crossref_primary_10_1007_s12602_025_10605_3
crossref_primary_10_3389_fcell_2025_1624415
crossref_primary_10_1016_j_nbd_2023_106081
crossref_primary_10_3389_fnut_2025_1494525
crossref_primary_10_1186_s43556_022_00103_1
crossref_primary_10_3390_foods12132480
crossref_primary_10_3390_microorganisms10071346
crossref_primary_10_1016_j_biopha_2023_114295
crossref_primary_10_1136_bmjonc_2023_000107
crossref_primary_10_1016_j_psj_2024_104654
crossref_primary_10_1016_j_foodchem_2025_145404
crossref_primary_10_1016_j_nut_2023_112109
crossref_primary_10_1038_s41429_023_00595_1
crossref_primary_10_1002_wsbm_1540
crossref_primary_10_3390_foods13010015
crossref_primary_10_1016_j_phrs_2024_107301
crossref_primary_10_3389_fimmu_2024_1442095
crossref_primary_10_3389_fmicb_2025_1548233
crossref_primary_10_1021_acs_nanolett_4c02699
crossref_primary_10_1039_D3FO03898J
crossref_primary_10_1016_j_dld_2023_11_015
crossref_primary_10_3389_fimmu_2024_1512683
crossref_primary_10_1186_s40104_025_01262_1
crossref_primary_10_1136_ard_2024_225829
crossref_primary_10_3324_haematol_2023_284693
crossref_primary_10_1186_s12937_025_01075_y
crossref_primary_10_2174_0113816128326270240816075025
crossref_primary_10_3390_biom15040469
crossref_primary_10_3390_app13084726
crossref_primary_10_1039_D3FO02324A
crossref_primary_10_3389_fnagi_2024_1451968
crossref_primary_10_1016_j_ijbiomac_2024_131202
crossref_primary_10_3390_nu15204466
crossref_primary_10_3389_fimmu_2024_1456030
crossref_primary_10_7554_eLife_104121_3
crossref_primary_10_1016_j_nbd_2023_106051
crossref_primary_10_3389_fvets_2022_1039774
crossref_primary_10_1016_j_micres_2025_128317
crossref_primary_10_1089_fpd_2023_0096
crossref_primary_10_1038_s41598_023_46283_w
crossref_primary_10_3390_microorganisms10101963
crossref_primary_10_1016_j_fbio_2025_107418
crossref_primary_10_3390_microorganisms13020336
crossref_primary_10_1021_acschemneuro_5c00063
crossref_primary_10_1111_1462_2920_15886
crossref_primary_10_1038_s41387_024_00305_2
crossref_primary_10_1016_j_fbio_2024_104785
crossref_primary_10_1080_19490976_2024_2316575
crossref_primary_10_1084_jem_20241135
crossref_primary_10_3390_ijms232214156
crossref_primary_10_3390_ijms241914667
crossref_primary_10_1186_s12876_023_02690_x
crossref_primary_10_3389_fmicb_2023_1133773
crossref_primary_10_1016_j_jaut_2023_103062
crossref_primary_10_3390_gastroent16030032
crossref_primary_10_3390_fishes8010013
crossref_primary_10_1016_j_advnut_2024_100200
crossref_primary_10_1016_j_bbrc_2024_149879
crossref_primary_10_1186_s12876_025_03819_w
crossref_primary_10_1186_s40168_024_01932_8
crossref_primary_10_1080_10826068_2022_2033992
crossref_primary_10_1016_j_fbio_2024_103584
crossref_primary_10_1016_j_phymed_2024_155523
crossref_primary_10_1177_1759720X231152648
crossref_primary_10_1016_j_phymed_2024_155888
crossref_primary_10_1080_0886022X_2025_2538117
crossref_primary_10_1093_ibd_izae064
crossref_primary_10_3390_biomedicines11102749
crossref_primary_10_1016_j_foodchem_2022_133203
crossref_primary_10_1016_j_biopha_2023_114414
crossref_primary_10_1016_j_molmed_2022_02_001
crossref_primary_10_1016_j_biopha_2023_114409
crossref_primary_10_3389_fnins_2022_885031
crossref_primary_10_1016_j_phymed_2023_154979
crossref_primary_10_4254_wjh_v17_i5_106124
crossref_primary_10_3389_fmicb_2025_1515364
crossref_primary_10_1016_j_ecoenv_2022_114341
crossref_primary_10_1053_j_gastro_2022_09_034
crossref_primary_10_1007_s11011_025_01554_5
crossref_primary_10_3390_nu15204393
crossref_primary_10_3390_ijms241311217
crossref_primary_10_3390_microorganisms10102048
crossref_primary_10_3390_ijms23158272
crossref_primary_10_1016_j_lfs_2022_121212
crossref_primary_10_3389_fendo_2023_1242991
crossref_primary_10_3390_microorganisms11020277
crossref_primary_10_1038_s41522_024_00610_9
crossref_primary_10_3390_biom14020210
crossref_primary_10_1007_s11481_021_10046_z
crossref_primary_10_1016_j_tim_2022_01_007
crossref_primary_10_1002_fft2_270
crossref_primary_10_1038_s41598_022_26759_x
crossref_primary_10_1093_lambio_ovaf091
crossref_primary_10_1016_j_yexcr_2023_113472
crossref_primary_10_3390_nu14102161
crossref_primary_10_3389_fendo_2024_1486793
crossref_primary_10_1002_advs_202509812
crossref_primary_10_1017_gmb_2022_2
crossref_primary_10_1016_j_lfs_2024_122979
crossref_primary_10_1016_j_foodres_2023_113830
crossref_primary_10_3390_microorganisms10112092
crossref_primary_10_3390_jcm14062040
crossref_primary_10_1039_D2FO02567A
crossref_primary_10_1128_spectrum_00514_23
crossref_primary_10_3390_nu15020367
crossref_primary_10_1080_19490976_2024_2363880
crossref_primary_10_3389_fimmu_2023_1147724
crossref_primary_10_1038_s41467_025_59566_9
crossref_primary_10_1097_CM9_0000000000003389
crossref_primary_10_1007_s00248_023_02313_8
crossref_primary_10_1007_s00394_025_03726_6
crossref_primary_10_3390_nu14234965
crossref_primary_10_1038_s41467_023_40336_4
crossref_primary_10_3389_fcimb_2023_1102501
crossref_primary_10_1038_s41467_023_44636_7
crossref_primary_10_3389_fimmu_2023_1096565
crossref_primary_10_1039_D1FO04428A
crossref_primary_10_1111_jgh_16205
crossref_primary_10_1007_s10048_024_00779_3
crossref_primary_10_1016_j_intimp_2024_111867
crossref_primary_10_3390_biom13091307
crossref_primary_10_1038_s41467_024_48802_3
crossref_primary_10_3389_fcimb_2022_733992
crossref_primary_10_1186_s40104_024_00991_z
crossref_primary_10_1042_BSR20220803
crossref_primary_10_1136_jitc_2024_011356
crossref_primary_10_3390_ijms25010539
crossref_primary_10_1093_ejendo_lvaf081
crossref_primary_10_3390_ijms25084387
crossref_primary_10_1002_advs_202306571
crossref_primary_10_1109_TCBB_2024_3349572
crossref_primary_10_1016_j_jep_2024_118928
crossref_primary_10_1021_acsfoodscitech_5c00285
crossref_primary_10_1080_0886022X_2024_2337288
crossref_primary_10_1093_ibd_izae294
crossref_primary_10_1002_mnfr_202200063
crossref_primary_10_1016_j_afres_2025_101178
crossref_primary_10_1002_fft2_474
crossref_primary_10_1007_s10286_025_01144_6
crossref_primary_10_1016_j_imlet_2023_06_002
crossref_primary_10_3390_nu15112499
crossref_primary_10_1093_femsml_uqad032
crossref_primary_10_1016_j_ijbiomac_2025_147377
crossref_primary_10_1002_hon_3301
crossref_primary_10_1016_j_micres_2025_128279
crossref_primary_10_1016_j_jff_2025_107010
crossref_primary_10_3390_ijms24010768
crossref_primary_10_3390_ani14152273
crossref_primary_10_1002_bmc_70198
crossref_primary_10_1016_j_xcrm_2025_102055
crossref_primary_10_1038_s41392_023_01553_x
crossref_primary_10_3389_fmicb_2023_1304232
crossref_primary_10_1039_D2FO01577C
crossref_primary_10_1080_19490976_2025_2519706
Cites_doi 10.5551/jat.RV17006
10.1038/s41586-019-1237-9
10.1093/femsle/fnv176
10.1007/s10753-019-01133-8
10.1038/nature09646
10.1128/msystems.00094-18
10.2174/1389450116666150408103557
10.1016/j.immuni.2016.03.016
10.1111/1462-2920.12599
10.1152/ajpcell.00454.2019
10.1097/CM9.0000000000000364
10.1038/s41579-019-0264-8
10.1152/ajpgi.00540.2011
10.1093/ecco-jcc/jjz064
10.1016/j.cell.2016.05.018
10.1038/s41598-017-15099-w
10.1111/1462-2920.13589
10.1017/S0029665114001657
10.1038/s41598-017-11734-8
10.1016/j.immuni.2013.12.007
10.1113/JP272613
10.21037/atm.2017.03.83
10.1080/08923973.2018.1480631
10.1016/j.cellimm.2012.05.011
10.1136/gut.28.10.1221
10.1016/j.mayocp.2018.09.013
10.1016/j.bcdf.2013.09.008
10.1152/ajpcell.00191.2015
10.1038/mi.2016.67
10.1371/journal.pone.0133926
10.1016/j.chom.2015.03.005
10.1053/j.gastro.2018.12.001
10.1038/nm.3444
10.2174/1874091X01004010053
10.1038/ismej.2012.5
10.4049/jimmunol.1700105
10.3390/ijms17101696
10.1074/jbc.M110.102947
10.1038/s41467-018-06125-0
10.3389/fmicb.2017.01889
10.1194/jlr.R036012
10.1136/gutjnl-2013-304833
10.1080/17474124.2019.1671822
10.1038/mi.2014.44
10.1155/2018/3067126
10.1016/j.imbio.2010.01.001
10.1128/AEM.71.7.3692-3700.2005
10.1038/cti.2016.17
10.1080/19490976.2016.1182288
10.1038/nri3608
10.1371/journal.pone.0179586
10.1016/j.jnutbio.2010.07.009
10.1038/s41598-019-48749-2
10.3748/wjg.v19.i22.3404
10.1016/j.trsl.2012.10.007
10.3748/wjg.15.5549
10.1038/mi.2016.114
10.1080/19490976.2015.1134082
10.1128/mBio.01453-15
10.3945/jn.111.148643
10.1111/apt.14689
10.1038/540S98a
10.3390/nu7042839
10.3389/fmicb.2016.01945
10.1038/ncomms8320
10.1159/000500721
10.1111/j.1600-0897.2011.01089.x
10.1038/nature12726
10.3389/fphar.2019.00671
10.1038/nrendo.2015.128
10.1038/s41598-018-32860-x
ContentType Journal Article
Copyright 2021 The Authors
The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.ebiom.2021.103293
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2352-3964
EndPage 103293
ExternalDocumentID oai_doaj_org_article_f7ba285643a14c349105b10b9d575977
PMC8047503
33813134
10_1016_j_ebiom_2021_103293
S2352396421000864
1_s2_0_S2352396421000864
Genre Journal Article
Review
GroupedDBID .1-
.FO
0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M48
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
0SF
6I.
AACTN
AAFTH
AFCTW
NCXOZ
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c698t-cdb5761e15a90d2dbe40514c7aad178a82667f87d88a40291e7010fe8fdf789c3
IEDL.DBID DOA
ISICitedReferencesCount 510
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647447600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-3964
IngestDate Fri Oct 03 12:37:35 EDT 2025
Tue Nov 04 02:02:48 EST 2025
Tue Sep 30 22:33:07 EDT 2025
Thu Apr 03 07:08:07 EDT 2025
Thu Nov 13 04:27:49 EST 2025
Tue Nov 18 21:07:12 EST 2025
Tue Jul 25 21:01:30 EDT 2023
Sun Feb 23 10:19:25 EST 2025
Tue Aug 26 16:33:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Inflammatory bowel disease
Acetate
Short chain fatty acids
propionate
Gut
Butyrate
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c698t-cdb5761e15a90d2dbe40514c7aad178a82667f87d88a40291e7010fe8fdf789c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8596-2783
OpenAccessLink https://doaj.org/article/f7ba285643a14c349105b10b9d575977
PMID 33813134
PQID 2508893734
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f7ba285643a14c349105b10b9d575977
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8047503
proquest_miscellaneous_2508893734
pubmed_primary_33813134
crossref_citationtrail_10_1016_j_ebiom_2021_103293
crossref_primary_10_1016_j_ebiom_2021_103293
elsevier_sciencedirect_doi_10_1016_j_ebiom_2021_103293
elsevier_clinicalkeyesjournals_1_s2_0_S2352396421000864
elsevier_clinicalkey_doi_10_1016_j_ebiom_2021_103293
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle EBioMedicine
PublicationTitleAlternate EBioMedicine
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dostal (bib0020) 2015; 6
Pagnini, Pizarro, Cominelli (bib0006) 2019; 10
Cao (bib0054) 2018; 40
Kettle, Louis, Holtrop, Duncan, Flint (bib0018) 2015; 17
Valenzano (bib0038) 2015; 10
Anand, Kaur, Mande (bib0016) 2016; 7
Zheng (bib0039) 2017; 199
Wu (bib0027) 2017; 10
Ohira, Tsutsui, Fujioka (bib0029) 2017; 24
Kelly (bib0036) 2015; 17
Balmer (bib0060) 2016; 44
Morrison, Preston (bib0004) 2016; 7
Hugenholtz, Mullaney, Kleerebezem, Smidt, Rosendale (bib0010) 2013; 2
Vancamelbeke (bib0042) 2019; 13
Geirnaert (bib0041) 2017; 7
van Hemert, Skonieczna-Żydecka, Loniewski, Szredzki, Marlicz (bib0033) 2018; 6
Facchin (bib0068) 2020
Kaiko (bib0043) 2016; 165
Eisenstein (bib0003) 2016; 540
Oliveira, Teixeira, Sato (bib0053) 2018
Peterson, Artis (bib0032) 2014; 14
Den Besten (bib0012) 2013; 54
Walker, Duncan, Carol McWilliam Leitch, Child, Flint (bib0017) 2005; 71
Kasubuchi, Hasegawa, Hiramatsu, Ichimura, Kimura (bib0024) 2015; 7
Venegas (bib0005) 2019; 10
Nastasi (bib0049) 2017; 7
Vinolo (bib0045) 2011; 22
Layden, Angueira, Brodsky, Durai, Lowe (bib0015) 2013; 161
Singh (bib0050) 2010; 285
Louis, Flint (bib0011) 2017; 19
Miao (bib0037) 2016; 17
Thorburn (bib0056) 2015; 6
Fukuda (bib0063) 2011; 469
Pigneur, Sokol (bib0008) 2016; 9
Chambers, Morrison, Frost (bib0025) 2015; 74
Ratajczak (bib0044) 2019; 66
Dong (bib0034) 2019; 132
Mirmonsef (bib0048) 2012; 67
Paramsothy (bib0062) 2019; 156
Magnusson, Isaksson, Öhman (bib0070) 2020; 43
Wolf, Biswas, Morales, Greening, Gaskins (bib0023) 2016; 7
Boesmans (bib0069) 2018; 3
Luu (bib0059) 2018; 8
Kotlo (bib0030) 2020; 318
Laffin (bib0075) 2019; 9
Zheng, Kelly, Colgan (bib0021) 2015; 309
Stange, Schroeder (bib0001) 2019; 13
Ramos, Papadakis (bib0035) 2019; 94
Yan, Ajuwon (bib0040) 2017; 12
Park (bib0057) 2015; 8
Tye (bib0073) 2018; 9
Gill, van Zelm, Muir, Gibson (bib0065) 2018; 48
Singh (bib0052) 2014; 40
Schreiner (bib0007) 2019; 4
Corrêa-Oliveira, Fachi, Vieira, Sato, Vinolo (bib0028) 2016; 5
Kumari, Ahuja, Paul (bib0067) 2013; 19
Bailón (bib0058) 2010; 215
Dostal (bib0019) 2012; 142
Cox (bib0046) 2009; 15
Cummings, Pomare, Branch, Naylor, MacFarlane (bib0013) 1987; 28
Ferrer-Picón (bib0071) 2019
Boets (bib0014) 2017; 595
Mohammad (bib0026) 2015; 16
Machiels (bib0061) 2014; 63
Canfora, Jocken, Blaak (bib0031) 2015; 11
Liu (bib0047) 2012; 277
Huda-Faujan (bib0066) 2010; 4
Rios-Covian, Gueimonde, Duncan, Flint, De Los Reyes-Gavilan (bib0064) 2015; 362
Khan (bib0022) 2012; 6
Lloyd-Price (bib0074) 2019; 569
Vrancken, Gregory, Huys, Faust, Raes (bib0002) 2019
Trompette (bib0055) 2014; 20
El Hage, Hernandez-Sanabria, Van de Wiele (bib0009) 2017; 8
Arpaia (bib0051) 2013; 504
Berndt (bib0072) 2012; 303
Facchin (10.1016/j.ebiom.2021.103293_bib0068) 2020
Dostal (10.1016/j.ebiom.2021.103293_bib0019) 2012; 142
Thorburn (10.1016/j.ebiom.2021.103293_bib0056) 2015; 6
Eisenstein (10.1016/j.ebiom.2021.103293_bib0003) 2016; 540
Lloyd-Price (10.1016/j.ebiom.2021.103293_bib0074) 2019; 569
Venegas (10.1016/j.ebiom.2021.103293_bib0005) 2019; 10
Hugenholtz (10.1016/j.ebiom.2021.103293_bib0010) 2013; 2
Singh (10.1016/j.ebiom.2021.103293_bib0050) 2010; 285
Wu (10.1016/j.ebiom.2021.103293_bib0027) 2017; 10
Ohira (10.1016/j.ebiom.2021.103293_bib0029) 2017; 24
Gill (10.1016/j.ebiom.2021.103293_bib0065) 2018; 48
Kotlo (10.1016/j.ebiom.2021.103293_bib0030) 2020; 318
Park (10.1016/j.ebiom.2021.103293_bib0057) 2015; 8
Nastasi (10.1016/j.ebiom.2021.103293_bib0049) 2017; 7
Tye (10.1016/j.ebiom.2021.103293_bib0073) 2018; 9
Louis (10.1016/j.ebiom.2021.103293_bib0011) 2017; 19
Bailón (10.1016/j.ebiom.2021.103293_bib0058) 2010; 215
Magnusson (10.1016/j.ebiom.2021.103293_bib0070) 2020; 43
Valenzano (10.1016/j.ebiom.2021.103293_bib0038) 2015; 10
van Hemert (10.1016/j.ebiom.2021.103293_bib0033) 2018; 6
Pigneur (10.1016/j.ebiom.2021.103293_bib0008) 2016; 9
Mirmonsef (10.1016/j.ebiom.2021.103293_bib0048) 2012; 67
Ratajczak (10.1016/j.ebiom.2021.103293_bib0044) 2019; 66
Stange (10.1016/j.ebiom.2021.103293_bib0001) 2019; 13
Peterson (10.1016/j.ebiom.2021.103293_bib0032) 2014; 14
Huda-Faujan (10.1016/j.ebiom.2021.103293_bib0066) 2010; 4
Cox (10.1016/j.ebiom.2021.103293_bib0046) 2009; 15
Ferrer-Picón (10.1016/j.ebiom.2021.103293_bib0071) 2019
Den Besten (10.1016/j.ebiom.2021.103293_bib0012) 2013; 54
Vancamelbeke (10.1016/j.ebiom.2021.103293_bib0042) 2019; 13
Liu (10.1016/j.ebiom.2021.103293_bib0047) 2012; 277
Kelly (10.1016/j.ebiom.2021.103293_bib0036) 2015; 17
El Hage (10.1016/j.ebiom.2021.103293_bib0009) 2017; 8
Layden (10.1016/j.ebiom.2021.103293_bib0015) 2013; 161
Arpaia (10.1016/j.ebiom.2021.103293_bib0051) 2013; 504
Berndt (10.1016/j.ebiom.2021.103293_bib0072) 2012; 303
Cummings (10.1016/j.ebiom.2021.103293_bib0013) 1987; 28
Mohammad (10.1016/j.ebiom.2021.103293_bib0026) 2015; 16
Balmer (10.1016/j.ebiom.2021.103293_bib0060) 2016; 44
Kasubuchi (10.1016/j.ebiom.2021.103293_bib0024) 2015; 7
Machiels (10.1016/j.ebiom.2021.103293_bib0061) 2014; 63
Kaiko (10.1016/j.ebiom.2021.103293_bib0043) 2016; 165
Anand (10.1016/j.ebiom.2021.103293_bib0016) 2016; 7
Cao (10.1016/j.ebiom.2021.103293_bib0054) 2018; 40
Schreiner (10.1016/j.ebiom.2021.103293_bib0007) 2019; 4
Paramsothy (10.1016/j.ebiom.2021.103293_bib0062) 2019; 156
Yan (10.1016/j.ebiom.2021.103293_bib0040) 2017; 12
Walker (10.1016/j.ebiom.2021.103293_bib0017) 2005; 71
Wolf (10.1016/j.ebiom.2021.103293_bib0023) 2016; 7
Zheng (10.1016/j.ebiom.2021.103293_bib0039) 2017; 199
Singh (10.1016/j.ebiom.2021.103293_bib0052) 2014; 40
Miao (10.1016/j.ebiom.2021.103293_bib0037) 2016; 17
Laffin (10.1016/j.ebiom.2021.103293_bib0075) 2019; 9
Boets (10.1016/j.ebiom.2021.103293_bib0014) 2017; 595
Pagnini (10.1016/j.ebiom.2021.103293_bib0006) 2019; 10
Kettle (10.1016/j.ebiom.2021.103293_bib0018) 2015; 17
Dong (10.1016/j.ebiom.2021.103293_bib0034) 2019; 132
Zheng (10.1016/j.ebiom.2021.103293_bib0021) 2015; 309
Morrison (10.1016/j.ebiom.2021.103293_bib0004) 2016; 7
Trompette (10.1016/j.ebiom.2021.103293_bib0055) 2014; 20
Fukuda (10.1016/j.ebiom.2021.103293_bib0063) 2011; 469
Ramos (10.1016/j.ebiom.2021.103293_bib0035) 2019; 94
Boesmans (10.1016/j.ebiom.2021.103293_bib0069) 2018; 3
Vrancken (10.1016/j.ebiom.2021.103293_bib0002) 2019
Dostal (10.1016/j.ebiom.2021.103293_bib0020) 2015; 6
Khan (10.1016/j.ebiom.2021.103293_bib0022) 2012; 6
Oliveira (10.1016/j.ebiom.2021.103293_bib0053) 2018
Rios-Covian (10.1016/j.ebiom.2021.103293_bib0064) 2015; 362
Canfora (10.1016/j.ebiom.2021.103293_bib0031) 2015; 11
Corrêa-Oliveira (10.1016/j.ebiom.2021.103293_bib0028) 2016; 5
Geirnaert (10.1016/j.ebiom.2021.103293_bib0041) 2017; 7
Luu (10.1016/j.ebiom.2021.103293_bib0059) 2018; 8
Kumari (10.1016/j.ebiom.2021.103293_bib0067) 2013; 19
Chambers (10.1016/j.ebiom.2021.103293_bib0025) 2015; 74
Vinolo (10.1016/j.ebiom.2021.103293_bib0045) 2011; 22
References_xml – volume: 74
  start-page: 328
  year: 2015
  end-page: 336
  ident: bib0025
  article-title: Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms?
  publication-title: Proc Nutr Soc
– volume: 199
  start-page: 2976
  year: 2017
  end-page: 2984
  ident: bib0039
  article-title: Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2
  publication-title: J Immunol
– volume: 13
  start-page: 963
  year: 2019
  end-page: 976
  ident: bib0001
  article-title: Microbiota and mucosal defense in IBD: an update
  publication-title: Expert Rev Gastroenterol Hepatol
– volume: 22
  start-page: 849
  year: 2011
  end-page: 855
  ident: bib0045
  article-title: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils
  publication-title: J Nutr Biochem
– start-page: 13
  year: 2020
  end-page: 25
  ident: bib0068
  article-title: Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease
  publication-title: Neurogastroenterol Motil
– volume: 7
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0016
  article-title: Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens
  publication-title: Front Microbiol
– volume: 12
  start-page: 1
  year: 2017
  end-page: 20
  ident: bib0040
  article-title: Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway
  publication-title: PLoS One
– volume: 17
  start-page: 662
  year: 2015
  end-page: 671
  ident: bib0036
  article-title: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
  publication-title: Cell Host Microbe
– volume: 48
  start-page: 15
  year: 2018
  end-page: 34
  ident: bib0065
  article-title: Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders
  publication-title: Aliment Pharmacol Ther
– volume: 13
  start-page: 1351
  year: 2019
  end-page: 1361
  ident: bib0042
  article-title: Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis
  publication-title: J Crohn’s Colitis
– volume: 66
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0044
  article-title: Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs)
  publication-title: Acta Biochim Pol
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0041
  article-title: Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity
  publication-title: Sci Rep
– volume: 11
  start-page: 577
  year: 2015
  end-page: 591
  ident: bib0031
  article-title: Short-chain fatty acids in control of body weight and insulin sensitivity
  publication-title: Nat Rev Endocrinol
– volume: 10
  year: 2015
  ident: bib0038
  article-title: Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients
  publication-title: PLoS One
– volume: 309
  year: 2015
  ident: bib0021
  article-title: Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia
  publication-title: Am J Physiol – Cell Physiol
– volume: 20
  start-page: 159
  year: 2014
  end-page: 166
  ident: bib0055
  article-title: Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
  publication-title: Nat Med
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0075
  article-title: A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice
  publication-title: Sci Rep
– volume: 303
  start-page: 1384
  year: 2012
  end-page: 1392
  ident: bib0072
  article-title: Butyrate increases IL-23 production by stimulated dendritic cells
  publication-title: Am J Physiol – Gastrointestinal Liver Physiol
– volume: 10
  year: 2019
  ident: bib0005
  article-title: Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases
  publication-title: Front Immunol
– volume: 24
  start-page: 660
  year: 2017
  end-page: 672
  ident: bib0029
  article-title: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?
  publication-title: J Atheroscler Thromb
– volume: 6
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0020
  article-title: Iron modulates butyrate production by a child gut microbiota in vitro
  publication-title: mBio
– volume: 44
  start-page: 1312
  year: 2016
  end-page: 1324
  ident: bib0060
  article-title: Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function
  publication-title: Immunity
– volume: 6
  year: 2018
  ident: bib0033
  article-title: Microscopic colitis—microbiome, barrier function and associated diseases
  publication-title: Ann Transl Med
– volume: 504
  start-page: 451
  year: 2013
  end-page: 455
  ident: bib0051
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
  publication-title: Nature
– volume: 540
  year: 2016
  ident: bib0003
  article-title: A slow-motion epidemic
  publication-title: Nature
– volume: 132
  start-page: 1951
  year: 2019
  end-page: 1958
  ident: bib0034
  article-title: Protective effect of Saccharomyces boulardii on intestinal mucosal barrier of dextran sodium sulfate-induced colitis in mice
  publication-title: Chin Med J
– volume: 285
  start-page: 27601
  year: 2010
  end-page: 27608
  ident: bib0050
  article-title: Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases
  publication-title: J Biol Chem
– volume: 8
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0009
  article-title: Emerging trends in ‘smart probiotics’: Functional consideration for the development of novel health and industrial applications
  publication-title: Front Microbiol
– volume: 6
  start-page: 1578
  year: 2012
  end-page: 1585
  ident: bib0022
  article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases
  publication-title: ISME J
– volume: 318
  start-page: C502
  year: 2020
  end-page: C513
  ident: bib0030
  article-title: The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis
  publication-title: Am J Physiol-Cell Physiol
– volume: 43
  start-page: 507
  year: 2020
  end-page: 517
  ident: bib0070
  article-title: The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis
  publication-title: Inflammation
– volume: 8
  start-page: 80
  year: 2015
  end-page: 93
  ident: bib0057
  article-title: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway
  publication-title: Mucosal Immunol
– volume: 19
  start-page: 29
  year: 2017
  end-page: 41
  ident: bib0011
  article-title: Formation of propionate and butyrate by the human colonic microbiota
  publication-title: Environ Microbiol
– volume: 4
  start-page: 79
  year: 2019
  end-page: 96
  ident: bib0007
  article-title: Mechanism-based treatment strategies for IBD: cytokines, cell adhesion molecules, JAK inhibitors, gut flora, and more
  publication-title: Inflamm Intestinal Dis
– volume: 16
  start-page: 771
  year: 2015
  end-page: 775
  ident: bib0026
  article-title: Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis
  publication-title: Curr Drug Targets
– volume: 67
  start-page: 391
  year: 2012
  end-page: 400
  ident: bib0048
  article-title: Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands
  publication-title: Am J Reprod Immunol
– volume: 40
  start-page: 128
  year: 2014
  end-page: 139
  ident: bib0052
  article-title: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
  publication-title: Immunity
– year: 2018
  ident: bib0053
  article-title: Impact of retinoic acid on immune cells and inflammatory diseases
  publication-title: Mediators Inflamm
– start-page: 1
  year: 2019
  end-page: 13
  ident: bib0071
  article-title: Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease
  publication-title: Inflamm Bowel Dis XX
– volume: 71
  start-page: 3692
  year: 2005
  end-page: 3700
  ident: bib0017
  article-title: pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon
  publication-title: Appl Environ Microbiol
– volume: 142
  start-page: 271
  year: 2012
  end-page: 277
  ident: bib0019
  article-title: Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats
  publication-title: J Nutr
– volume: 40
  start-page: 309
  year: 2018
  end-page: 318
  ident: bib0054
  article-title: The epigenetic modification during the induction of Foxp3 with sodium butyrate
  publication-title: Immunopharmacol Immunotoxicol
– volume: 17
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0037
  article-title: Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2
  publication-title: Int J Mol Sci
– volume: 362
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0064
  article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis
  publication-title: FEMS Microbiol Lett
– volume: 54
  start-page: 2325
  year: 2013
  end-page: 2340
  ident: bib0012
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J Lipid Res
– volume: 2
  start-page: 133
  year: 2013
  end-page: 142
  ident: bib0010
  article-title: Modulation of the microbial fermentation in the gut by fermentable carbohydrates
  publication-title: Bioactive Carbohydr Dietary Fibre
– volume: 63
  start-page: 1275
  year: 2014
  end-page: 1283
  ident: bib0061
  article-title: A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis
  publication-title: Gut
– volume: 7
  start-page: 235
  year: 2016
  end-page: 245
  ident: bib0023
  article-title: H2 metabolism is widespread and diverse among human colonic microbes
  publication-title: Gut Microbes
– volume: 161
  start-page: 131
  year: 2013
  end-page: 140
  ident: bib0015
  article-title: Short chain fatty acids and their receptors: new metabolic targets
  publication-title: Transl Res
– volume: 14
  start-page: 141
  year: 2014
  end-page: 153
  ident: bib0032
  article-title: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
  publication-title: Nat Rev Immunol
– volume: 165
  start-page: 1708
  year: 2016
  end-page: 1720
  ident: bib0043
  article-title: The colonic crypt protects stem cells from microbiota-derived metabolites
  publication-title: Cell
– volume: 7
  start-page: 2839
  year: 2015
  end-page: 2849
  ident: bib0024
  article-title: Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation
  publication-title: Nutrients
– volume: 28
  start-page: 1221
  year: 1987
  end-page: 1227
  ident: bib0013
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
– volume: 15
  start-page: 5549
  year: 2009
  end-page: 5557
  ident: bib0046
  article-title: Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines
  publication-title: World J Gastroenterol
– volume: 94
  start-page: 155
  year: 2019
  end-page: 165
  ident: bib0035
  article-title: Mechanisms of disease: inflammatory bowel diseases
  publication-title: Mayo Clin Proc
– volume: 469
  start-page: 543
  year: 2011
  end-page: 549
  ident: bib0063
  article-title: Bifidobacteria can protect from enteropathogenic infection through production of acetate
  publication-title: Nature
– volume: 3
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0069
  article-title: Butyrate producers as potential next-generation probiotics: safety assessment of the administration of butyricicoccus pullicaecorum to healthy volunteers
  publication-title: mSystems
– volume: 10
  start-page: 946
  year: 2017
  end-page: 956
  ident: bib0027
  article-title: Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43
  publication-title: Mucosal Immunol
– volume: 569
  start-page: 655
  year: 2019
  end-page: 662
  ident: bib0074
  article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  publication-title: Nature
– volume: 5
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib0028
  article-title: Regulation of immune cell function by short-chain fatty acids
  publication-title: Clin Transl Immunol
– volume: 595
  start-page: 541
  year: 2017
  end-page: 555
  ident: bib0014
  article-title: Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study
  publication-title: J Physiol
– volume: 7
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0049
  article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells
  publication-title: Sci Rep
– volume: 10
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib0006
  article-title: Novel pharmacological therapy in inflammatory bowel diseases: beyond anti-tumor necrosis factor
  publication-title: Front Pharmacol
– volume: 17
  start-page: 1615
  year: 2015
  end-page: 1630
  ident: bib0018
  article-title: Modelling the emergent dynamics and major metabolites of the human colonic microbiota
  publication-title: Environ Microbiol
– volume: 156
  year: 2019
  ident: bib0062
  article-title: Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis
  publication-title: Gastroenterology
– volume: 19
  start-page: 3404
  year: 2013
  end-page: 3414
  ident: bib0067
  article-title: Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India
  publication-title: World J Gastroenterol
– year: 2019
  ident: bib0002
  article-title: Synthetic ecology of the human gut microbiota
  publication-title: Nat Rev Microbiol
– volume: 6
  year: 2015
  ident: bib0056
  article-title: Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites
  publication-title: Nat Commun
– volume: 9
  start-page: 1360
  year: 2016
  end-page: 1365
  ident: bib0008
  article-title: Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail
  publication-title: Mucosal Immunol
– volume: 277
  start-page: 66
  year: 2012
  end-page: 73
  ident: bib0047
  article-title: Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells
  publication-title: Cell Immunol
– volume: 4
  start-page: 53
  year: 2010
  end-page: 58
  ident: bib0066
  article-title: The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects
  publication-title: Open Biochem J
– volume: 7
  start-page: 189
  year: 2016
  end-page: 200
  ident: bib0004
  article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism
  publication-title: Gut Microbes
– volume: 9
  year: 2018
  ident: bib0073
  article-title: NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease
  publication-title: Nat Commun
– volume: 215
  start-page: 863
  year: 2010
  end-page: 873
  ident: bib0058
  article-title: Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis
  publication-title: Immunobiology
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0059
  article-title: Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate
  publication-title: Sci Rep
– volume: 24
  start-page: 660
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0029
  article-title: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?
  publication-title: J Atheroscler Thromb
  doi: 10.5551/jat.RV17006
– volume: 569
  start-page: 655
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0074
  article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  publication-title: Nature
  doi: 10.1038/s41586-019-1237-9
– volume: 362
  start-page: 1
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0064
  article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis
  publication-title: FEMS Microbiol Lett
  doi: 10.1093/femsle/fnv176
– volume: 43
  start-page: 507
  year: 2020
  ident: 10.1016/j.ebiom.2021.103293_bib0070
  article-title: The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis
  publication-title: Inflammation
  doi: 10.1007/s10753-019-01133-8
– volume: 66
  start-page: 1
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0044
  article-title: Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs)
  publication-title: Acta Biochim Pol
– volume: 469
  start-page: 543
  year: 2011
  ident: 10.1016/j.ebiom.2021.103293_bib0063
  article-title: Bifidobacteria can protect from enteropathogenic infection through production of acetate
  publication-title: Nature
  doi: 10.1038/nature09646
– volume: 3
  start-page: 1
  year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0069
  article-title: Butyrate producers as potential next-generation probiotics: safety assessment of the administration of butyricicoccus pullicaecorum to healthy volunteers
  publication-title: mSystems
  doi: 10.1128/msystems.00094-18
– volume: 10
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0005
  article-title: Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases
  publication-title: Front Immunol
– volume: 16
  start-page: 771
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0026
  article-title: Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis
  publication-title: Curr Drug Targets
  doi: 10.2174/1389450116666150408103557
– volume: 44
  start-page: 1312
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0060
  article-title: Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.03.016
– volume: 17
  start-page: 1615
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0018
  article-title: Modelling the emergent dynamics and major metabolites of the human colonic microbiota
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12599
– volume: 318
  start-page: C502
  year: 2020
  ident: 10.1016/j.ebiom.2021.103293_bib0030
  article-title: The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis
  publication-title: Am J Physiol-Cell Physiol
  doi: 10.1152/ajpcell.00454.2019
– volume: 132
  start-page: 1951
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0034
  article-title: Protective effect of Saccharomyces boulardii on intestinal mucosal barrier of dextran sodium sulfate-induced colitis in mice
  publication-title: Chin Med J
  doi: 10.1097/CM9.0000000000000364
– year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0002
  article-title: Synthetic ecology of the human gut microbiota
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0264-8
– volume: 303
  start-page: 1384
  year: 2012
  ident: 10.1016/j.ebiom.2021.103293_bib0072
  article-title: Butyrate increases IL-23 production by stimulated dendritic cells
  publication-title: Am J Physiol – Gastrointestinal Liver Physiol
  doi: 10.1152/ajpgi.00540.2011
– volume: 13
  start-page: 1351
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0042
  article-title: Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis
  publication-title: J Crohn’s Colitis
  doi: 10.1093/ecco-jcc/jjz064
– volume: 165
  start-page: 1708
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0043
  article-title: The colonic crypt protects stem cells from microbiota-derived metabolites
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.018
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0049
  article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15099-w
– volume: 19
  start-page: 29
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0011
  article-title: Formation of propionate and butyrate by the human colonic microbiota
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13589
– volume: 74
  start-page: 328
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0025
  article-title: Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms?
  publication-title: Proc Nutr Soc
  doi: 10.1017/S0029665114001657
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0041
  article-title: Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11734-8
– volume: 40
  start-page: 128
  year: 2014
  ident: 10.1016/j.ebiom.2021.103293_bib0052
  article-title: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.12.007
– volume: 595
  start-page: 541
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0014
  article-title: Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study
  publication-title: J Physiol
  doi: 10.1113/JP272613
– volume: 6
  year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0033
  article-title: Microscopic colitis—microbiome, barrier function and associated diseases
  publication-title: Ann Transl Med
  doi: 10.21037/atm.2017.03.83
– volume: 40
  start-page: 309
  year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0054
  article-title: The epigenetic modification during the induction of Foxp3 with sodium butyrate
  publication-title: Immunopharmacol Immunotoxicol
  doi: 10.1080/08923973.2018.1480631
– volume: 277
  start-page: 66
  year: 2012
  ident: 10.1016/j.ebiom.2021.103293_bib0047
  article-title: Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells
  publication-title: Cell Immunol
  doi: 10.1016/j.cellimm.2012.05.011
– volume: 28
  start-page: 1221
  year: 1987
  ident: 10.1016/j.ebiom.2021.103293_bib0013
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
  doi: 10.1136/gut.28.10.1221
– volume: 94
  start-page: 155
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0035
  article-title: Mechanisms of disease: inflammatory bowel diseases
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2018.09.013
– volume: 2
  start-page: 133
  year: 2013
  ident: 10.1016/j.ebiom.2021.103293_bib0010
  article-title: Modulation of the microbial fermentation in the gut by fermentable carbohydrates
  publication-title: Bioactive Carbohydr Dietary Fibre
  doi: 10.1016/j.bcdf.2013.09.008
– volume: 309
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0021
  article-title: Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia
  publication-title: Am J Physiol – Cell Physiol
  doi: 10.1152/ajpcell.00191.2015
– volume: 9
  start-page: 1360
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0008
  article-title: Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2016.67
– volume: 10
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0038
  article-title: Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0133926
– volume: 17
  start-page: 662
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0036
  article-title: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.03.005
– volume: 156
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0062
  article-title: Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.12.001
– volume: 20
  start-page: 159
  year: 2014
  ident: 10.1016/j.ebiom.2021.103293_bib0055
  article-title: Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
  publication-title: Nat Med
  doi: 10.1038/nm.3444
– volume: 4
  start-page: 53
  year: 2010
  ident: 10.1016/j.ebiom.2021.103293_bib0066
  article-title: The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects
  publication-title: Open Biochem J
  doi: 10.2174/1874091X01004010053
– volume: 6
  start-page: 1578
  year: 2012
  ident: 10.1016/j.ebiom.2021.103293_bib0022
  article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases
  publication-title: ISME J
  doi: 10.1038/ismej.2012.5
– volume: 199
  start-page: 2976
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0039
  article-title: Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1700105
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0037
  article-title: Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17101696
– volume: 285
  start-page: 27601
  year: 2010
  ident: 10.1016/j.ebiom.2021.103293_bib0050
  article-title: Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.102947
– volume: 9
  year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0073
  article-title: NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-06125-0
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0009
  article-title: Emerging trends in ‘smart probiotics’: Functional consideration for the development of novel health and industrial applications
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01889
– volume: 54
  start-page: 2325
  year: 2013
  ident: 10.1016/j.ebiom.2021.103293_bib0012
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J Lipid Res
  doi: 10.1194/jlr.R036012
– volume: 63
  start-page: 1275
  year: 2014
  ident: 10.1016/j.ebiom.2021.103293_bib0061
  article-title: A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-304833
– volume: 13
  start-page: 963
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0001
  article-title: Microbiota and mucosal defense in IBD: an update
  publication-title: Expert Rev Gastroenterol Hepatol
  doi: 10.1080/17474124.2019.1671822
– volume: 8
  start-page: 80
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0057
  article-title: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2014.44
– year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0053
  article-title: Impact of retinoic acid on immune cells and inflammatory diseases
  publication-title: Mediators Inflamm
  doi: 10.1155/2018/3067126
– volume: 215
  start-page: 863
  year: 2010
  ident: 10.1016/j.ebiom.2021.103293_bib0058
  article-title: Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2010.01.001
– volume: 71
  start-page: 3692
  year: 2005
  ident: 10.1016/j.ebiom.2021.103293_bib0017
  article-title: pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.7.3692-3700.2005
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0028
  article-title: Regulation of immune cell function by short-chain fatty acids
  publication-title: Clin Transl Immunol
  doi: 10.1038/cti.2016.17
– volume: 7
  start-page: 235
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0023
  article-title: H2 metabolism is widespread and diverse among human colonic microbes
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2016.1182288
– volume: 14
  start-page: 141
  year: 2014
  ident: 10.1016/j.ebiom.2021.103293_bib0032
  article-title: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3608
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0040
  article-title: Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179586
– volume: 22
  start-page: 849
  year: 2011
  ident: 10.1016/j.ebiom.2021.103293_bib0045
  article-title: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils
  publication-title: J Nutr Biochem
  doi: 10.1016/j.jnutbio.2010.07.009
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0075
  article-title: A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-48749-2
– volume: 19
  start-page: 3404
  year: 2013
  ident: 10.1016/j.ebiom.2021.103293_bib0067
  article-title: Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v19.i22.3404
– volume: 161
  start-page: 131
  year: 2013
  ident: 10.1016/j.ebiom.2021.103293_bib0015
  article-title: Short chain fatty acids and their receptors: new metabolic targets
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2012.10.007
– volume: 15
  start-page: 5549
  year: 2009
  ident: 10.1016/j.ebiom.2021.103293_bib0046
  article-title: Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.15.5549
– volume: 10
  start-page: 946
  year: 2017
  ident: 10.1016/j.ebiom.2021.103293_bib0027
  article-title: Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2016.114
– start-page: 13
  year: 2020
  ident: 10.1016/j.ebiom.2021.103293_bib0068
  article-title: Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease
  publication-title: Neurogastroenterol Motil
– volume: 7
  start-page: 189
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0004
  article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2015.1134082
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0020
  article-title: Iron modulates butyrate production by a child gut microbiota in vitro
  publication-title: mBio
  doi: 10.1128/mBio.01453-15
– volume: 142
  start-page: 271
  year: 2012
  ident: 10.1016/j.ebiom.2021.103293_bib0019
  article-title: Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats
  publication-title: J Nutr
  doi: 10.3945/jn.111.148643
– volume: 48
  start-page: 15
  year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0065
  article-title: Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.14689
– volume: 540
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0003
  article-title: A slow-motion epidemic
  publication-title: Nature
  doi: 10.1038/540S98a
– volume: 7
  start-page: 2839
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0024
  article-title: Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation
  publication-title: Nutrients
  doi: 10.3390/nu7042839
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.ebiom.2021.103293_bib0016
  article-title: Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01945
– volume: 6
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0056
  article-title: Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites
  publication-title: Nat Commun
  doi: 10.1038/ncomms8320
– volume: 4
  start-page: 79
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0007
  article-title: Mechanism-based treatment strategies for IBD: cytokines, cell adhesion molecules, JAK inhibitors, gut flora, and more
  publication-title: Inflamm Intestinal Dis
  doi: 10.1159/000500721
– volume: 67
  start-page: 391
  year: 2012
  ident: 10.1016/j.ebiom.2021.103293_bib0048
  article-title: Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands
  publication-title: Am J Reprod Immunol
  doi: 10.1111/j.1600-0897.2011.01089.x
– volume: 504
  start-page: 451
  year: 2013
  ident: 10.1016/j.ebiom.2021.103293_bib0051
  article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0006
  article-title: Novel pharmacological therapy in inflammatory bowel diseases: beyond anti-tumor necrosis factor
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.00671
– volume: 11
  start-page: 577
  year: 2015
  ident: 10.1016/j.ebiom.2021.103293_bib0031
  article-title: Short-chain fatty acids in control of body weight and insulin sensitivity
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2015.128
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.ebiom.2021.103293_bib0059
  article-title: Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-32860-x
– start-page: 1
  year: 2019
  ident: 10.1016/j.ebiom.2021.103293_bib0071
  article-title: Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease
  publication-title: Inflamm Bowel Dis XX
SSID ssj0001542358
Score 2.6561124
SecondaryResourceType review_article
Snippet The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in...
AbstractThe gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103293
SubjectTerms Acetate
Advanced Basic Science
Butyrate
Gut
Inflammatory bowel disease
Internal Medicine
propionate
Review
Short chain fatty acids
Title Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2352396421000864
https://www.clinicalkey.es/playcontent/1-s2.0-S2352396421000864
https://dx.doi.org/10.1016/j.ebiom.2021.103293
https://www.ncbi.nlm.nih.gov/pubmed/33813134
https://www.proquest.com/docview/2508893734
https://pubmed.ncbi.nlm.nih.gov/PMC8047503
https://doaj.org/article/f7ba285643a14c349105b10b9d575977
Volume 66
WOSCitedRecordID wos000647447600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-3964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001542358
  issn: 2352-3964
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA56KPgi_nb9cUTw0WKTpk3ii9yph4IcwirsW0iTlO1x9o5rT9j_3pmkXbYqdy--Nk1Kv04y39CZbwh5zRvvgSeorFBKZEKUNZ6DmOzfFJXKi6Z0UV3_qzw-VquV_rbT6gtzwpI8cALubSNry1UJjtMy4QoB7q2sWV5rj60lZawjz6XeCaZSfbDAGtDYWa7kWaErMUkOxeSugMXtEB1yhlXnXBcztxTV-2fe6W_2-WcS5Y5XOrpH7o50kh6k17hPboTuAbmdGkxuHpLlcg30mro1xP-0scOwoda1vqe287QdenoeBV_BfdHU3qn_2b-jBx3FxM5TVOP0NFVobSiwW_rl8OP7R-TH0afvHz5nYxuFzFVaDZnzNQQVLLDS6txzXweBoudOWuuZVBYCjEo2SnqlLESTmgUJQVoTVOMbqbQrHpO97qwLTwkF8qI8c40PDiILXKoKJbeOo4xfpfSC8AlF40aNcWx1cWqmZLITE6E3CL1J0C_Im-2k8ySxcfXth_h5treiPna8ADiZ0WrMdVazIGL6uGYqQYVDExZqr362_Ne00I8bvzfM9NzkZolmh1bHWYwaxYJU25kjt0mc5fpHvppsz8DOx985tgtnl73hyK2BXRaw-JNki1tQCiBiBcMRObPSGWrzka5dR3VxlQv8t_3sf8D8nNzBV0mZTi_I3nBxGV6SW-7X0PYX--SmXKn9uHF_A2MNQR0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+chain+fatty+acids+and+its+producing+organisms%3A+An+overlooked+therapy+for+IBD%3F&rft.jtitle=EBioMedicine&rft.au=Sara+Deleu&rft.au=Kathleen+Machiels&rft.au=Jeroen+Raes&rft.au=Kristin+Verbeke&rft.date=2021-04-01&rft.pub=Elsevier&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=66&rft.spage=103293&rft_id=info:doi/10.1016%2Fj.ebiom.2021.103293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f7ba285643a14c349105b10b9d575977
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396421X00047%2Fcov150h.gif