Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?
The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert...
Uloženo v:
| Vydáno v: | EBioMedicine Ročník 66; s. 103293 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.04.2021
Elsevier |
| Témata: | |
| ISSN: | 2352-3964, 2352-3964 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration. |
|---|---|
| AbstractList | The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration. The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration.The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration. AbstractThe gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in common: short-chain fatty acids (SCFAs). SCFAs (acetate, propionate and butyrate) are produced by bacterial fermentation in the gut and exert several effects on host metabolism and immune system. This review provides an overview of the current knowledge of these effects, with specific focus on energy metabolism, intestinal barrier, immune system, and disease activity in IBD. To conclude, more research is needed on the cross-feeding mechanisms in the gut microbiome, as well as on the therapeutic potential of SCFAs on different disease models. Also randomized controlled trials and prospective cohort studies should investigate the clinical impact of SCFA administration. |
| ArticleNumber | 103293 |
| Author | Verbeke, Kristin Deleu, Sara Machiels, Kathleen Raes, Jeroen Vermeire, Séverine |
| Author_xml | – sequence: 1 givenname: Sara orcidid: 0000-0001-8596-2783 surname: Deleu fullname: Deleu, Sara organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium – sequence: 2 givenname: Kathleen surname: Machiels fullname: Machiels, Kathleen organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium – sequence: 3 givenname: Jeroen surname: Raes fullname: Raes, Jeroen organization: Center for Microbiology, VIB, Leuven, Belgium – sequence: 4 givenname: Kristin surname: Verbeke fullname: Verbeke, Kristin organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium – sequence: 5 givenname: Séverine surname: Vermeire fullname: Vermeire, Séverine email: Severine.Vermeire@uzleuven.be organization: Department of Chronic Diseases, Metabolism & Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33813134$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktvGyEUhUdVqiZN8wsqVSy7sctjZoBWTZWmL0uRunC7RgzciXHG4AC25H9fJk6qJFKbFehyz3eAe15WBz54qKrXBE8JJu275RQ6F1ZTiikpFUYle1YdUdbQCZNtfXBvf1idpLTEGJOmLkXxojpkTBBGWH1UzeeLEDMyC-086nXOO6SNswlpb5HLCa1jsBvj_CUK8VJ7l1bpPTrzKGwhDiFcgUV5AVGvd6gPEc0-f_n0qnre6yHBye16XP3-9vXX-Y_Jxc_vs_Ozi4lppcgTY7uGtwRIoyW21HZQ44bUhmttCRda0LblveBWCF1jKglwTHAPorc9F9Kw42q259qgl2od3UrHnQraqZtCua_SMTszgOp5p6lo2prp4sBqSXDTEdxJ2_BGcl5Yp3vWetOtwBrwOerhAfThiXcLdRm2SuCaN5gVwNtbQAzXG0hZrVwyMAzaQ9gkRRsshGSc1aX1zX2vvyZ3UykNct9gYkgpQq-Myzq7MFq7QRGsxhCopboJgRpDoPYhKFr2SHuH_7_q414FZV5bB1El48AbsC6CyeVD3RP600d6MzjvjB6uYAdpGTbRlygoohJVWM3HcI7ZpKTkUrTjkz_8G_Ck_R9UK_Mn |
| CitedBy_id | crossref_primary_10_1016_j_fbio_2023_103335 crossref_primary_10_1038_s41581_022_00647_z crossref_primary_10_3390_biomedicines12040897 crossref_primary_10_3390_ijms23020594 crossref_primary_10_3389_fcimb_2023_1190910 crossref_primary_10_1016_j_mucimm_2025_05_009 crossref_primary_10_1007_s12032_023_02249_6 crossref_primary_10_1038_s41423_023_01085_y crossref_primary_10_1002_cnr2_1752 crossref_primary_10_1016_j_cellin_2025_100227 crossref_primary_10_3390_life15081251 crossref_primary_10_1002_fsn3_4764 crossref_primary_10_3389_fgene_2023_1048312 crossref_primary_10_1016_j_phrs_2023_106676 crossref_primary_10_1002_ame2_12255 crossref_primary_10_1146_annurev_immunol_090222_102035 crossref_primary_10_3389_fmicb_2022_829378 crossref_primary_10_3389_fnins_2024_1341656 crossref_primary_10_3390_nu15132940 crossref_primary_10_1371_journal_ppat_1011665 crossref_primary_10_3390_nu16213689 crossref_primary_10_3390_antiox13020214 crossref_primary_10_3390_ijms25179463 crossref_primary_10_1016_j_disamonth_2023_101606 crossref_primary_10_1039_D2FO02712G crossref_primary_10_1038_s41598_024_72887_x crossref_primary_10_3390_pathogens12091173 crossref_primary_10_1007_s00018_024_05131_4 crossref_primary_10_1016_j_jnutbio_2025_110052 crossref_primary_10_3390_biomedicines13081864 crossref_primary_10_3390_app15137084 crossref_primary_10_1016_j_foodres_2024_115011 crossref_primary_10_1515_psr_2022_0166 crossref_primary_10_1016_j_jff_2024_106115 crossref_primary_10_1155_jnme_8870958 crossref_primary_10_1080_10408398_2025_2556479 crossref_primary_10_1111_nmo_70115 crossref_primary_10_1016_j_trsl_2022_10_006 crossref_primary_10_1038_s41522_025_00672_3 crossref_primary_10_5713_ab_22_0455 crossref_primary_10_3390_microorganisms12101977 crossref_primary_10_3390_metabo15080557 crossref_primary_10_1038_s41579_024_01058_6 crossref_primary_10_3390_ijms25074063 crossref_primary_10_3390_nu16234024 crossref_primary_10_1007_s15010_024_02293_y crossref_primary_10_1080_10408398_2024_2323112 crossref_primary_10_3390_nu17010155 crossref_primary_10_1002_mlf2_70027 crossref_primary_10_1016_j_foodres_2022_112329 crossref_primary_10_3390_metabo12080765 crossref_primary_10_3389_fnut_2024_1395664 crossref_primary_10_3390_foods13172843 crossref_primary_10_3390_metabo13060760 crossref_primary_10_1002_advs_202203707 crossref_primary_10_1017_S0007114523000491 crossref_primary_10_1002_btm2_70067 crossref_primary_10_1016_j_intimp_2024_112325 crossref_primary_10_1016_j_cbpa_2023_102400 crossref_primary_10_1016_j_apsb_2024_02_020 crossref_primary_10_1007_s00394_025_03733_7 crossref_primary_10_1186_s12964_023_01219_9 crossref_primary_10_1016_j_ijbiomac_2024_136488 crossref_primary_10_1093_jambio_lxaf119 crossref_primary_10_1016_j_ijbiomac_2025_145598 crossref_primary_10_1016_j_micres_2024_127838 crossref_primary_10_4014_jmb_2301_01033 crossref_primary_10_1016_j_phrs_2023_106755 crossref_primary_10_5713_ab_25_0100 crossref_primary_10_3389_fimmu_2023_1286667 crossref_primary_10_1016_j_imlet_2024_106883 crossref_primary_10_1016_j_foodchem_2025_142937 crossref_primary_10_3389_fimmu_2024_1380476 crossref_primary_10_3390_ijms25094817 crossref_primary_10_14814_phy2_16114 crossref_primary_10_1016_j_biopha_2023_115821 crossref_primary_10_1016_j_carbpol_2024_122478 crossref_primary_10_3389_fimmu_2023_1139821 crossref_primary_10_26599_FSHW_2024_9250078 crossref_primary_10_3390_metabo12121271 crossref_primary_10_3390_nu14194113 crossref_primary_10_1016_j_bcab_2023_102889 crossref_primary_10_3389_fmed_2025_1435030 crossref_primary_10_1016_j_fbio_2024_105733 crossref_primary_10_1016_j_bpj_2024_06_016 crossref_primary_10_1016_j_fbio_2024_104643 crossref_primary_10_14309_ctg_0000000000000541 crossref_primary_10_3389_fmicb_2024_1502452 crossref_primary_10_3390_ijms25031722 crossref_primary_10_1016_j_heliyon_2024_e24339 crossref_primary_10_3390_ijms232415632 crossref_primary_10_1016_j_micres_2024_127856 crossref_primary_10_3389_fphar_2025_1585748 crossref_primary_10_1186_s40104_024_01011_w crossref_primary_10_1016_j_micres_2024_127739 crossref_primary_10_48077_scihor7_2024_148 crossref_primary_10_31146_1682_8658_ecg_220_12_164_182 crossref_primary_10_1038_s41467_023_43167_5 crossref_primary_10_1038_s41574_024_01003_w crossref_primary_10_1186_s12967_024_05092_z crossref_primary_10_3389_fcimb_2023_1191936 crossref_primary_10_3389_fcimb_2025_1525581 crossref_primary_10_3390_app15189942 crossref_primary_10_1186_s12964_022_00869_5 crossref_primary_10_23736_S0026_4806_25_09706_X crossref_primary_10_1016_j_fbio_2025_107093 crossref_primary_10_1111_ijcp_14819 crossref_primary_10_3389_fphar_2022_833972 crossref_primary_10_3390_antiox11050806 crossref_primary_10_1039_D2FO02722D crossref_primary_10_1038_s41575_024_00931_2 crossref_primary_10_1002_fft2_400 crossref_primary_10_3389_fnut_2025_1592528 crossref_primary_10_1007_s43657_024_00193_7 crossref_primary_10_3389_fcimb_2023_1304858 crossref_primary_10_3390_nu15092211 crossref_primary_10_1093_jas_skaf056 crossref_primary_10_3390_cancers16051057 crossref_primary_10_3389_fmicb_2025_1664708 crossref_primary_10_3389_fimmu_2023_1235827 crossref_primary_10_1016_j_csbj_2022_03_038 crossref_primary_10_1038_s41531_022_00395_8 crossref_primary_10_3390_biomedicines13051232 crossref_primary_10_3390_ijerph19031368 crossref_primary_10_1128_aem_00325_24 crossref_primary_10_3390_biom11111658 crossref_primary_10_1053_j_gastro_2021_11_015 crossref_primary_10_1080_19490976_2024_2304901 crossref_primary_10_3390_nu16234201 crossref_primary_10_1007_s11427_024_2865_1 crossref_primary_10_1016_j_prmcm_2024_100374 crossref_primary_10_1038_s41522_025_00648_3 crossref_primary_10_1016_j_fm_2024_104525 crossref_primary_10_1016_j_phrs_2022_106321 crossref_primary_10_3390_medicina59111965 crossref_primary_10_1093_burnst_tkad056 crossref_primary_10_22207_JPAM_17_4_18 crossref_primary_10_3390_biotech11040050 crossref_primary_10_3390_ijms23094768 crossref_primary_10_3390_nu14122524 crossref_primary_10_3390_nu15245112 crossref_primary_10_3390_vetsci12060526 crossref_primary_10_3390_ijms252313100 crossref_primary_10_1111_bph_16225 crossref_primary_10_3389_fnut_2024_1364739 crossref_primary_10_3389_fnut_2024_1491821 crossref_primary_10_3389_fimmu_2021_794519 crossref_primary_10_1128_msphere_00781_23 crossref_primary_10_1146_annurev_virology_040323_082822 crossref_primary_10_1016_j_gtc_2024_12_008 crossref_primary_10_1089_ars_2022_0033 crossref_primary_10_1016_j_suc_2023_12_004 crossref_primary_10_1039_D4MA00896K crossref_primary_10_1016_j_abb_2024_110172 crossref_primary_10_1016_j_foodres_2023_113163 crossref_primary_10_1016_j_rmed_2023_107118 crossref_primary_10_1186_s12866_025_04028_x crossref_primary_10_3390_microorganisms10101995 crossref_primary_10_1007_s10068_025_01907_x crossref_primary_10_3390_nu13113866 crossref_primary_10_1080_20002297_2024_2369350 crossref_primary_10_1038_s41467_024_46025_0 crossref_primary_10_2147_JIR_S479011 crossref_primary_10_1016_j_seminoncol_2025_152398 crossref_primary_10_3390_diagnostics12081969 crossref_primary_10_3390_metabo12090834 crossref_primary_10_3389_fnut_2023_1130841 crossref_primary_10_3390_nu14194058 crossref_primary_10_3390_ijms26062503 crossref_primary_10_3389_fcimb_2023_1128249 crossref_primary_10_1016_j_jff_2021_104862 crossref_primary_10_3390_metabo12020152 crossref_primary_10_1136_egastro_2023_100006 crossref_primary_10_1016_j_carbpol_2023_121396 crossref_primary_10_3389_fmicb_2024_1500453 crossref_primary_10_1007_s44187_025_00523_2 crossref_primary_10_1186_s13099_024_00651_7 crossref_primary_10_1016_j_phymed_2025_156540 crossref_primary_10_1016_j_phymed_2023_155056 crossref_primary_10_1161_HYPERTENSIONAHA_123_22437 crossref_primary_10_3390_nu16050661 crossref_primary_10_3389_fnut_2023_1126579 crossref_primary_10_1016_j_intimp_2022_108983 crossref_primary_10_1093_jas_skaf022 crossref_primary_10_1039_D2FO03396H crossref_primary_10_1128_AEM_01449_21 crossref_primary_10_1016_j_micres_2024_127663 crossref_primary_10_1016_j_foodhyd_2025_111911 crossref_primary_10_1155_2023_1073984 crossref_primary_10_1093_procel_pwad023 crossref_primary_10_3390_metabo15090627 crossref_primary_10_1128_cmr_00163_22 crossref_primary_10_1016_j_foodhyd_2023_109204 crossref_primary_10_1186_s40168_024_01961_3 crossref_primary_10_1111_1751_2980_13256 crossref_primary_10_3390_nu17050884 crossref_primary_10_1038_s41577_024_01014_8 crossref_primary_10_1016_j_lfs_2023_122188 crossref_primary_10_3389_fmicb_2022_1016220 crossref_primary_10_1186_s40168_024_01788_y crossref_primary_10_3390_metabo12111064 crossref_primary_10_1016_j_carbpol_2024_122421 crossref_primary_10_1016_j_foodres_2024_114852 crossref_primary_10_3390_nu16081108 crossref_primary_10_3389_fcimb_2025_1433131 crossref_primary_10_1007_s12602_025_10472_y crossref_primary_10_1158_0008_5472_CAN_23_3987 crossref_primary_10_1007_s12602_023_10136_9 crossref_primary_10_1186_s13287_023_03471_9 crossref_primary_10_1080_19490976_2022_2083419 crossref_primary_10_1371_journal_pntd_0010878 crossref_primary_10_1186_s40168_022_01429_2 crossref_primary_10_3390_fermentation9121024 crossref_primary_10_1128_jb_00138_23 crossref_primary_10_1016_j_it_2021_11_005 crossref_primary_10_1002_ptr_7582 crossref_primary_10_34133_research_0904 crossref_primary_10_3389_fmicb_2023_1178131 crossref_primary_10_3389_fvets_2022_933905 crossref_primary_10_26508_lsa_202402609 crossref_primary_10_1016_j_aninu_2025_05_002 crossref_primary_10_1007_s12035_025_04865_x crossref_primary_10_1128_IAI_00217_21 crossref_primary_10_1136_bmjnph_2024_001100 crossref_primary_10_1136_gutjnl_2024_332475 crossref_primary_10_1128_msystems_00143_25 crossref_primary_10_3389_fcimb_2024_1342354 crossref_primary_10_3390_medicina61091630 crossref_primary_10_3389_fmicb_2024_1429116 crossref_primary_10_3390_nu15030488 crossref_primary_10_1038_s41598_024_55660_y crossref_primary_10_1360_TB_2024_0709 crossref_primary_10_1002_advs_202412558 crossref_primary_10_1016_j_ijpharm_2022_122282 crossref_primary_10_3390_medicina60121969 crossref_primary_10_1016_j_hnm_2024_200256 crossref_primary_10_3389_fnut_2022_877948 crossref_primary_10_1128_aem_00891_25 crossref_primary_10_3390_microorganisms10071389 crossref_primary_10_1002_ece3_70237 crossref_primary_10_1186_s44149_023_00089_5 crossref_primary_10_3389_fpubh_2024_1285186 crossref_primary_10_3390_metabo12010050 crossref_primary_10_7554_eLife_104121 crossref_primary_10_1016_j_ijbiomac_2023_123234 crossref_primary_10_1093_nutrit_nuaf047 crossref_primary_10_3748_wjg_v30_i34_3868 crossref_primary_10_1016_j_foodchem_2025_146411 crossref_primary_10_1053_j_gastro_2023_11_304 crossref_primary_10_1128_spectrum_04818_22 crossref_primary_10_3390_antibiotics11030331 crossref_primary_10_1002_jsfa_13837 crossref_primary_10_1021_acs_langmuir_5c02248 crossref_primary_10_1084_jem_20241993 crossref_primary_10_1002_fsn3_70804 crossref_primary_10_3389_fcimb_2022_924707 crossref_primary_10_3389_fnut_2022_915082 crossref_primary_10_3390_life14050559 crossref_primary_10_1002_advs_202503307 crossref_primary_10_3389_fnins_2025_1600148 crossref_primary_10_1007_s10620_023_07845_0 crossref_primary_10_1186_s40168_024_01898_7 crossref_primary_10_1080_19490976_2024_2393270 crossref_primary_10_3390_microorganisms11071714 crossref_primary_10_1080_17474124_2025_2495087 crossref_primary_10_3389_fimmu_2022_947313 crossref_primary_10_1016_j_jchromb_2023_123618 crossref_primary_10_1016_j_phrs_2025_107773 crossref_primary_10_3390_microorganisms12040822 crossref_primary_10_1016_j_fbio_2024_104297 crossref_primary_10_3389_fnut_2024_1342787 crossref_primary_10_3389_fnut_2022_920413 crossref_primary_10_3390_nu15245055 crossref_primary_10_1093_cvr_cvae128 crossref_primary_10_1155_2024_7955190 crossref_primary_10_1016_j_foodchem_2023_138261 crossref_primary_10_3390_jcm10184055 crossref_primary_10_1016_j_foodres_2025_117398 crossref_primary_10_1111_all_16065 crossref_primary_10_1134_S0006350923040188 crossref_primary_10_1186_s12940_024_01078_y crossref_primary_10_3389_fimmu_2024_1332425 crossref_primary_10_3389_fmicb_2025_1504433 crossref_primary_10_1080_19490976_2024_2440125 crossref_primary_10_1007_s12602_025_10605_3 crossref_primary_10_3389_fcell_2025_1624415 crossref_primary_10_1016_j_nbd_2023_106081 crossref_primary_10_3389_fnut_2025_1494525 crossref_primary_10_1186_s43556_022_00103_1 crossref_primary_10_3390_foods12132480 crossref_primary_10_3390_microorganisms10071346 crossref_primary_10_1016_j_biopha_2023_114295 crossref_primary_10_1136_bmjonc_2023_000107 crossref_primary_10_1016_j_psj_2024_104654 crossref_primary_10_1016_j_foodchem_2025_145404 crossref_primary_10_1016_j_nut_2023_112109 crossref_primary_10_1038_s41429_023_00595_1 crossref_primary_10_1002_wsbm_1540 crossref_primary_10_3390_foods13010015 crossref_primary_10_1016_j_phrs_2024_107301 crossref_primary_10_3389_fimmu_2024_1442095 crossref_primary_10_3389_fmicb_2025_1548233 crossref_primary_10_1021_acs_nanolett_4c02699 crossref_primary_10_1039_D3FO03898J crossref_primary_10_1016_j_dld_2023_11_015 crossref_primary_10_3389_fimmu_2024_1512683 crossref_primary_10_1186_s40104_025_01262_1 crossref_primary_10_1136_ard_2024_225829 crossref_primary_10_3324_haematol_2023_284693 crossref_primary_10_1186_s12937_025_01075_y crossref_primary_10_2174_0113816128326270240816075025 crossref_primary_10_3390_biom15040469 crossref_primary_10_3390_app13084726 crossref_primary_10_1039_D3FO02324A crossref_primary_10_3389_fnagi_2024_1451968 crossref_primary_10_1016_j_ijbiomac_2024_131202 crossref_primary_10_3390_nu15204466 crossref_primary_10_3389_fimmu_2024_1456030 crossref_primary_10_7554_eLife_104121_3 crossref_primary_10_1016_j_nbd_2023_106051 crossref_primary_10_3389_fvets_2022_1039774 crossref_primary_10_1016_j_micres_2025_128317 crossref_primary_10_1089_fpd_2023_0096 crossref_primary_10_1038_s41598_023_46283_w crossref_primary_10_3390_microorganisms10101963 crossref_primary_10_1016_j_fbio_2025_107418 crossref_primary_10_3390_microorganisms13020336 crossref_primary_10_1021_acschemneuro_5c00063 crossref_primary_10_1111_1462_2920_15886 crossref_primary_10_1038_s41387_024_00305_2 crossref_primary_10_1016_j_fbio_2024_104785 crossref_primary_10_1080_19490976_2024_2316575 crossref_primary_10_1084_jem_20241135 crossref_primary_10_3390_ijms232214156 crossref_primary_10_3390_ijms241914667 crossref_primary_10_1186_s12876_023_02690_x crossref_primary_10_3389_fmicb_2023_1133773 crossref_primary_10_1016_j_jaut_2023_103062 crossref_primary_10_3390_gastroent16030032 crossref_primary_10_3390_fishes8010013 crossref_primary_10_1016_j_advnut_2024_100200 crossref_primary_10_1016_j_bbrc_2024_149879 crossref_primary_10_1186_s12876_025_03819_w crossref_primary_10_1186_s40168_024_01932_8 crossref_primary_10_1080_10826068_2022_2033992 crossref_primary_10_1016_j_fbio_2024_103584 crossref_primary_10_1016_j_phymed_2024_155523 crossref_primary_10_1177_1759720X231152648 crossref_primary_10_1016_j_phymed_2024_155888 crossref_primary_10_1080_0886022X_2025_2538117 crossref_primary_10_1093_ibd_izae064 crossref_primary_10_3390_biomedicines11102749 crossref_primary_10_1016_j_foodchem_2022_133203 crossref_primary_10_1016_j_biopha_2023_114414 crossref_primary_10_1016_j_molmed_2022_02_001 crossref_primary_10_1016_j_biopha_2023_114409 crossref_primary_10_3389_fnins_2022_885031 crossref_primary_10_1016_j_phymed_2023_154979 crossref_primary_10_4254_wjh_v17_i5_106124 crossref_primary_10_3389_fmicb_2025_1515364 crossref_primary_10_1016_j_ecoenv_2022_114341 crossref_primary_10_1053_j_gastro_2022_09_034 crossref_primary_10_1007_s11011_025_01554_5 crossref_primary_10_3390_nu15204393 crossref_primary_10_3390_ijms241311217 crossref_primary_10_3390_microorganisms10102048 crossref_primary_10_3390_ijms23158272 crossref_primary_10_1016_j_lfs_2022_121212 crossref_primary_10_3389_fendo_2023_1242991 crossref_primary_10_3390_microorganisms11020277 crossref_primary_10_1038_s41522_024_00610_9 crossref_primary_10_3390_biom14020210 crossref_primary_10_1007_s11481_021_10046_z crossref_primary_10_1016_j_tim_2022_01_007 crossref_primary_10_1002_fft2_270 crossref_primary_10_1038_s41598_022_26759_x crossref_primary_10_1093_lambio_ovaf091 crossref_primary_10_1016_j_yexcr_2023_113472 crossref_primary_10_3390_nu14102161 crossref_primary_10_3389_fendo_2024_1486793 crossref_primary_10_1002_advs_202509812 crossref_primary_10_1017_gmb_2022_2 crossref_primary_10_1016_j_lfs_2024_122979 crossref_primary_10_1016_j_foodres_2023_113830 crossref_primary_10_3390_microorganisms10112092 crossref_primary_10_3390_jcm14062040 crossref_primary_10_1039_D2FO02567A crossref_primary_10_1128_spectrum_00514_23 crossref_primary_10_3390_nu15020367 crossref_primary_10_1080_19490976_2024_2363880 crossref_primary_10_3389_fimmu_2023_1147724 crossref_primary_10_1038_s41467_025_59566_9 crossref_primary_10_1097_CM9_0000000000003389 crossref_primary_10_1007_s00248_023_02313_8 crossref_primary_10_1007_s00394_025_03726_6 crossref_primary_10_3390_nu14234965 crossref_primary_10_1038_s41467_023_40336_4 crossref_primary_10_3389_fcimb_2023_1102501 crossref_primary_10_1038_s41467_023_44636_7 crossref_primary_10_3389_fimmu_2023_1096565 crossref_primary_10_1039_D1FO04428A crossref_primary_10_1111_jgh_16205 crossref_primary_10_1007_s10048_024_00779_3 crossref_primary_10_1016_j_intimp_2024_111867 crossref_primary_10_3390_biom13091307 crossref_primary_10_1038_s41467_024_48802_3 crossref_primary_10_3389_fcimb_2022_733992 crossref_primary_10_1186_s40104_024_00991_z crossref_primary_10_1042_BSR20220803 crossref_primary_10_1136_jitc_2024_011356 crossref_primary_10_3390_ijms25010539 crossref_primary_10_1093_ejendo_lvaf081 crossref_primary_10_3390_ijms25084387 crossref_primary_10_1002_advs_202306571 crossref_primary_10_1109_TCBB_2024_3349572 crossref_primary_10_1016_j_jep_2024_118928 crossref_primary_10_1021_acsfoodscitech_5c00285 crossref_primary_10_1080_0886022X_2024_2337288 crossref_primary_10_1093_ibd_izae294 crossref_primary_10_1002_mnfr_202200063 crossref_primary_10_1016_j_afres_2025_101178 crossref_primary_10_1002_fft2_474 crossref_primary_10_1007_s10286_025_01144_6 crossref_primary_10_1016_j_imlet_2023_06_002 crossref_primary_10_3390_nu15112499 crossref_primary_10_1093_femsml_uqad032 crossref_primary_10_1016_j_ijbiomac_2025_147377 crossref_primary_10_1002_hon_3301 crossref_primary_10_1016_j_micres_2025_128279 crossref_primary_10_1016_j_jff_2025_107010 crossref_primary_10_3390_ijms24010768 crossref_primary_10_3390_ani14152273 crossref_primary_10_1002_bmc_70198 crossref_primary_10_1016_j_xcrm_2025_102055 crossref_primary_10_1038_s41392_023_01553_x crossref_primary_10_3389_fmicb_2023_1304232 crossref_primary_10_1039_D2FO01577C crossref_primary_10_1080_19490976_2025_2519706 |
| Cites_doi | 10.5551/jat.RV17006 10.1038/s41586-019-1237-9 10.1093/femsle/fnv176 10.1007/s10753-019-01133-8 10.1038/nature09646 10.1128/msystems.00094-18 10.2174/1389450116666150408103557 10.1016/j.immuni.2016.03.016 10.1111/1462-2920.12599 10.1152/ajpcell.00454.2019 10.1097/CM9.0000000000000364 10.1038/s41579-019-0264-8 10.1152/ajpgi.00540.2011 10.1093/ecco-jcc/jjz064 10.1016/j.cell.2016.05.018 10.1038/s41598-017-15099-w 10.1111/1462-2920.13589 10.1017/S0029665114001657 10.1038/s41598-017-11734-8 10.1016/j.immuni.2013.12.007 10.1113/JP272613 10.21037/atm.2017.03.83 10.1080/08923973.2018.1480631 10.1016/j.cellimm.2012.05.011 10.1136/gut.28.10.1221 10.1016/j.mayocp.2018.09.013 10.1016/j.bcdf.2013.09.008 10.1152/ajpcell.00191.2015 10.1038/mi.2016.67 10.1371/journal.pone.0133926 10.1016/j.chom.2015.03.005 10.1053/j.gastro.2018.12.001 10.1038/nm.3444 10.2174/1874091X01004010053 10.1038/ismej.2012.5 10.4049/jimmunol.1700105 10.3390/ijms17101696 10.1074/jbc.M110.102947 10.1038/s41467-018-06125-0 10.3389/fmicb.2017.01889 10.1194/jlr.R036012 10.1136/gutjnl-2013-304833 10.1080/17474124.2019.1671822 10.1038/mi.2014.44 10.1155/2018/3067126 10.1016/j.imbio.2010.01.001 10.1128/AEM.71.7.3692-3700.2005 10.1038/cti.2016.17 10.1080/19490976.2016.1182288 10.1038/nri3608 10.1371/journal.pone.0179586 10.1016/j.jnutbio.2010.07.009 10.1038/s41598-019-48749-2 10.3748/wjg.v19.i22.3404 10.1016/j.trsl.2012.10.007 10.3748/wjg.15.5549 10.1038/mi.2016.114 10.1080/19490976.2015.1134082 10.1128/mBio.01453-15 10.3945/jn.111.148643 10.1111/apt.14689 10.1038/540S98a 10.3390/nu7042839 10.3389/fmicb.2016.01945 10.1038/ncomms8320 10.1159/000500721 10.1111/j.1600-0897.2011.01089.x 10.1038/nature12726 10.3389/fphar.2019.00671 10.1038/nrendo.2015.128 10.1038/s41598-018-32860-x |
| ContentType | Journal Article |
| Copyright | 2021 The Authors The Authors Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.ebiom.2021.103293 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2352-3964 |
| EndPage | 103293 |
| ExternalDocumentID | oai_doaj_org_article_f7ba285643a14c349105b10b9d575977 PMC8047503 33813134 10_1016_j_ebiom_2021_103293 S2352396421000864 1_s2_0_S2352396421000864 |
| Genre | Journal Article Review |
| GroupedDBID | .1- .FO 0R~ 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAMRU AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADVLN AEUPX AEXQZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M48 O9- OK1 RIG ROL RPM SSZ Z5R 0SF 6I. AACTN AAFTH AFCTW NCXOZ AAYXX CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c698t-cdb5761e15a90d2dbe40514c7aad178a82667f87d88a40291e7010fe8fdf789c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 510 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647447600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-3964 |
| IngestDate | Fri Oct 03 12:37:35 EDT 2025 Tue Nov 04 02:02:48 EST 2025 Tue Sep 30 22:33:07 EDT 2025 Thu Apr 03 07:08:07 EDT 2025 Thu Nov 13 04:27:49 EST 2025 Tue Nov 18 21:07:12 EST 2025 Tue Jul 25 21:01:30 EDT 2023 Sun Feb 23 10:19:25 EST 2025 Tue Aug 26 16:33:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Inflammatory bowel disease Acetate Short chain fatty acids propionate Gut Butyrate |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c698t-cdb5761e15a90d2dbe40514c7aad178a82667f87d88a40291e7010fe8fdf789c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8596-2783 |
| OpenAccessLink | https://doaj.org/article/f7ba285643a14c349105b10b9d575977 |
| PMID | 33813134 |
| PQID | 2508893734 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f7ba285643a14c349105b10b9d575977 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8047503 proquest_miscellaneous_2508893734 pubmed_primary_33813134 crossref_citationtrail_10_1016_j_ebiom_2021_103293 crossref_primary_10_1016_j_ebiom_2021_103293 elsevier_sciencedirect_doi_10_1016_j_ebiom_2021_103293 elsevier_clinicalkeyesjournals_1_s2_0_S2352396421000864 elsevier_clinicalkey_doi_10_1016_j_ebiom_2021_103293 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | EBioMedicine |
| PublicationTitleAlternate | EBioMedicine |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Dostal (bib0020) 2015; 6 Pagnini, Pizarro, Cominelli (bib0006) 2019; 10 Cao (bib0054) 2018; 40 Kettle, Louis, Holtrop, Duncan, Flint (bib0018) 2015; 17 Valenzano (bib0038) 2015; 10 Anand, Kaur, Mande (bib0016) 2016; 7 Zheng (bib0039) 2017; 199 Wu (bib0027) 2017; 10 Ohira, Tsutsui, Fujioka (bib0029) 2017; 24 Kelly (bib0036) 2015; 17 Balmer (bib0060) 2016; 44 Morrison, Preston (bib0004) 2016; 7 Hugenholtz, Mullaney, Kleerebezem, Smidt, Rosendale (bib0010) 2013; 2 Vancamelbeke (bib0042) 2019; 13 Geirnaert (bib0041) 2017; 7 van Hemert, Skonieczna-Żydecka, Loniewski, Szredzki, Marlicz (bib0033) 2018; 6 Facchin (bib0068) 2020 Kaiko (bib0043) 2016; 165 Eisenstein (bib0003) 2016; 540 Oliveira, Teixeira, Sato (bib0053) 2018 Peterson, Artis (bib0032) 2014; 14 Den Besten (bib0012) 2013; 54 Walker, Duncan, Carol McWilliam Leitch, Child, Flint (bib0017) 2005; 71 Kasubuchi, Hasegawa, Hiramatsu, Ichimura, Kimura (bib0024) 2015; 7 Venegas (bib0005) 2019; 10 Nastasi (bib0049) 2017; 7 Vinolo (bib0045) 2011; 22 Layden, Angueira, Brodsky, Durai, Lowe (bib0015) 2013; 161 Singh (bib0050) 2010; 285 Louis, Flint (bib0011) 2017; 19 Miao (bib0037) 2016; 17 Thorburn (bib0056) 2015; 6 Fukuda (bib0063) 2011; 469 Pigneur, Sokol (bib0008) 2016; 9 Chambers, Morrison, Frost (bib0025) 2015; 74 Ratajczak (bib0044) 2019; 66 Dong (bib0034) 2019; 132 Mirmonsef (bib0048) 2012; 67 Paramsothy (bib0062) 2019; 156 Magnusson, Isaksson, Öhman (bib0070) 2020; 43 Wolf, Biswas, Morales, Greening, Gaskins (bib0023) 2016; 7 Boesmans (bib0069) 2018; 3 Luu (bib0059) 2018; 8 Kotlo (bib0030) 2020; 318 Laffin (bib0075) 2019; 9 Zheng, Kelly, Colgan (bib0021) 2015; 309 Stange, Schroeder (bib0001) 2019; 13 Ramos, Papadakis (bib0035) 2019; 94 Yan, Ajuwon (bib0040) 2017; 12 Park (bib0057) 2015; 8 Tye (bib0073) 2018; 9 Gill, van Zelm, Muir, Gibson (bib0065) 2018; 48 Singh (bib0052) 2014; 40 Schreiner (bib0007) 2019; 4 Corrêa-Oliveira, Fachi, Vieira, Sato, Vinolo (bib0028) 2016; 5 Kumari, Ahuja, Paul (bib0067) 2013; 19 Bailón (bib0058) 2010; 215 Dostal (bib0019) 2012; 142 Cox (bib0046) 2009; 15 Cummings, Pomare, Branch, Naylor, MacFarlane (bib0013) 1987; 28 Ferrer-Picón (bib0071) 2019 Boets (bib0014) 2017; 595 Mohammad (bib0026) 2015; 16 Machiels (bib0061) 2014; 63 Canfora, Jocken, Blaak (bib0031) 2015; 11 Liu (bib0047) 2012; 277 Huda-Faujan (bib0066) 2010; 4 Rios-Covian, Gueimonde, Duncan, Flint, De Los Reyes-Gavilan (bib0064) 2015; 362 Khan (bib0022) 2012; 6 Lloyd-Price (bib0074) 2019; 569 Vrancken, Gregory, Huys, Faust, Raes (bib0002) 2019 Trompette (bib0055) 2014; 20 El Hage, Hernandez-Sanabria, Van de Wiele (bib0009) 2017; 8 Arpaia (bib0051) 2013; 504 Berndt (bib0072) 2012; 303 Facchin (10.1016/j.ebiom.2021.103293_bib0068) 2020 Dostal (10.1016/j.ebiom.2021.103293_bib0019) 2012; 142 Thorburn (10.1016/j.ebiom.2021.103293_bib0056) 2015; 6 Eisenstein (10.1016/j.ebiom.2021.103293_bib0003) 2016; 540 Lloyd-Price (10.1016/j.ebiom.2021.103293_bib0074) 2019; 569 Venegas (10.1016/j.ebiom.2021.103293_bib0005) 2019; 10 Hugenholtz (10.1016/j.ebiom.2021.103293_bib0010) 2013; 2 Singh (10.1016/j.ebiom.2021.103293_bib0050) 2010; 285 Wu (10.1016/j.ebiom.2021.103293_bib0027) 2017; 10 Ohira (10.1016/j.ebiom.2021.103293_bib0029) 2017; 24 Gill (10.1016/j.ebiom.2021.103293_bib0065) 2018; 48 Kotlo (10.1016/j.ebiom.2021.103293_bib0030) 2020; 318 Park (10.1016/j.ebiom.2021.103293_bib0057) 2015; 8 Nastasi (10.1016/j.ebiom.2021.103293_bib0049) 2017; 7 Tye (10.1016/j.ebiom.2021.103293_bib0073) 2018; 9 Louis (10.1016/j.ebiom.2021.103293_bib0011) 2017; 19 Bailón (10.1016/j.ebiom.2021.103293_bib0058) 2010; 215 Magnusson (10.1016/j.ebiom.2021.103293_bib0070) 2020; 43 Valenzano (10.1016/j.ebiom.2021.103293_bib0038) 2015; 10 van Hemert (10.1016/j.ebiom.2021.103293_bib0033) 2018; 6 Pigneur (10.1016/j.ebiom.2021.103293_bib0008) 2016; 9 Mirmonsef (10.1016/j.ebiom.2021.103293_bib0048) 2012; 67 Ratajczak (10.1016/j.ebiom.2021.103293_bib0044) 2019; 66 Stange (10.1016/j.ebiom.2021.103293_bib0001) 2019; 13 Peterson (10.1016/j.ebiom.2021.103293_bib0032) 2014; 14 Huda-Faujan (10.1016/j.ebiom.2021.103293_bib0066) 2010; 4 Cox (10.1016/j.ebiom.2021.103293_bib0046) 2009; 15 Ferrer-Picón (10.1016/j.ebiom.2021.103293_bib0071) 2019 Den Besten (10.1016/j.ebiom.2021.103293_bib0012) 2013; 54 Vancamelbeke (10.1016/j.ebiom.2021.103293_bib0042) 2019; 13 Liu (10.1016/j.ebiom.2021.103293_bib0047) 2012; 277 Kelly (10.1016/j.ebiom.2021.103293_bib0036) 2015; 17 El Hage (10.1016/j.ebiom.2021.103293_bib0009) 2017; 8 Layden (10.1016/j.ebiom.2021.103293_bib0015) 2013; 161 Arpaia (10.1016/j.ebiom.2021.103293_bib0051) 2013; 504 Berndt (10.1016/j.ebiom.2021.103293_bib0072) 2012; 303 Cummings (10.1016/j.ebiom.2021.103293_bib0013) 1987; 28 Mohammad (10.1016/j.ebiom.2021.103293_bib0026) 2015; 16 Balmer (10.1016/j.ebiom.2021.103293_bib0060) 2016; 44 Kasubuchi (10.1016/j.ebiom.2021.103293_bib0024) 2015; 7 Machiels (10.1016/j.ebiom.2021.103293_bib0061) 2014; 63 Kaiko (10.1016/j.ebiom.2021.103293_bib0043) 2016; 165 Anand (10.1016/j.ebiom.2021.103293_bib0016) 2016; 7 Cao (10.1016/j.ebiom.2021.103293_bib0054) 2018; 40 Schreiner (10.1016/j.ebiom.2021.103293_bib0007) 2019; 4 Paramsothy (10.1016/j.ebiom.2021.103293_bib0062) 2019; 156 Yan (10.1016/j.ebiom.2021.103293_bib0040) 2017; 12 Walker (10.1016/j.ebiom.2021.103293_bib0017) 2005; 71 Wolf (10.1016/j.ebiom.2021.103293_bib0023) 2016; 7 Zheng (10.1016/j.ebiom.2021.103293_bib0039) 2017; 199 Singh (10.1016/j.ebiom.2021.103293_bib0052) 2014; 40 Miao (10.1016/j.ebiom.2021.103293_bib0037) 2016; 17 Laffin (10.1016/j.ebiom.2021.103293_bib0075) 2019; 9 Boets (10.1016/j.ebiom.2021.103293_bib0014) 2017; 595 Pagnini (10.1016/j.ebiom.2021.103293_bib0006) 2019; 10 Kettle (10.1016/j.ebiom.2021.103293_bib0018) 2015; 17 Dong (10.1016/j.ebiom.2021.103293_bib0034) 2019; 132 Zheng (10.1016/j.ebiom.2021.103293_bib0021) 2015; 309 Morrison (10.1016/j.ebiom.2021.103293_bib0004) 2016; 7 Trompette (10.1016/j.ebiom.2021.103293_bib0055) 2014; 20 Fukuda (10.1016/j.ebiom.2021.103293_bib0063) 2011; 469 Ramos (10.1016/j.ebiom.2021.103293_bib0035) 2019; 94 Boesmans (10.1016/j.ebiom.2021.103293_bib0069) 2018; 3 Vrancken (10.1016/j.ebiom.2021.103293_bib0002) 2019 Dostal (10.1016/j.ebiom.2021.103293_bib0020) 2015; 6 Khan (10.1016/j.ebiom.2021.103293_bib0022) 2012; 6 Oliveira (10.1016/j.ebiom.2021.103293_bib0053) 2018 Rios-Covian (10.1016/j.ebiom.2021.103293_bib0064) 2015; 362 Canfora (10.1016/j.ebiom.2021.103293_bib0031) 2015; 11 Corrêa-Oliveira (10.1016/j.ebiom.2021.103293_bib0028) 2016; 5 Geirnaert (10.1016/j.ebiom.2021.103293_bib0041) 2017; 7 Luu (10.1016/j.ebiom.2021.103293_bib0059) 2018; 8 Kumari (10.1016/j.ebiom.2021.103293_bib0067) 2013; 19 Chambers (10.1016/j.ebiom.2021.103293_bib0025) 2015; 74 Vinolo (10.1016/j.ebiom.2021.103293_bib0045) 2011; 22 |
| References_xml | – volume: 74 start-page: 328 year: 2015 end-page: 336 ident: bib0025 article-title: Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? publication-title: Proc Nutr Soc – volume: 199 start-page: 2976 year: 2017 end-page: 2984 ident: bib0039 article-title: Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2 publication-title: J Immunol – volume: 13 start-page: 963 year: 2019 end-page: 976 ident: bib0001 article-title: Microbiota and mucosal defense in IBD: an update publication-title: Expert Rev Gastroenterol Hepatol – volume: 22 start-page: 849 year: 2011 end-page: 855 ident: bib0045 article-title: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils publication-title: J Nutr Biochem – start-page: 13 year: 2020 end-page: 25 ident: bib0068 article-title: Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease publication-title: Neurogastroenterol Motil – volume: 7 start-page: 1 year: 2016 end-page: 12 ident: bib0016 article-title: Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens publication-title: Front Microbiol – volume: 12 start-page: 1 year: 2017 end-page: 20 ident: bib0040 article-title: Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway publication-title: PLoS One – volume: 17 start-page: 662 year: 2015 end-page: 671 ident: bib0036 article-title: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function publication-title: Cell Host Microbe – volume: 48 start-page: 15 year: 2018 end-page: 34 ident: bib0065 article-title: Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders publication-title: Aliment Pharmacol Ther – volume: 13 start-page: 1351 year: 2019 end-page: 1361 ident: bib0042 article-title: Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis publication-title: J Crohn’s Colitis – volume: 66 start-page: 1 year: 2019 end-page: 12 ident: bib0044 article-title: Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs) publication-title: Acta Biochim Pol – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: bib0041 article-title: Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity publication-title: Sci Rep – volume: 11 start-page: 577 year: 2015 end-page: 591 ident: bib0031 article-title: Short-chain fatty acids in control of body weight and insulin sensitivity publication-title: Nat Rev Endocrinol – volume: 10 year: 2015 ident: bib0038 article-title: Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients publication-title: PLoS One – volume: 309 year: 2015 ident: bib0021 article-title: Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia publication-title: Am J Physiol – Cell Physiol – volume: 20 start-page: 159 year: 2014 end-page: 166 ident: bib0055 article-title: Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis publication-title: Nat Med – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: bib0075 article-title: A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice publication-title: Sci Rep – volume: 303 start-page: 1384 year: 2012 end-page: 1392 ident: bib0072 article-title: Butyrate increases IL-23 production by stimulated dendritic cells publication-title: Am J Physiol – Gastrointestinal Liver Physiol – volume: 10 year: 2019 ident: bib0005 article-title: Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases publication-title: Front Immunol – volume: 24 start-page: 660 year: 2017 end-page: 672 ident: bib0029 article-title: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? publication-title: J Atheroscler Thromb – volume: 6 start-page: 1 year: 2015 end-page: 12 ident: bib0020 article-title: Iron modulates butyrate production by a child gut microbiota in vitro publication-title: mBio – volume: 44 start-page: 1312 year: 2016 end-page: 1324 ident: bib0060 article-title: Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function publication-title: Immunity – volume: 6 year: 2018 ident: bib0033 article-title: Microscopic colitis—microbiome, barrier function and associated diseases publication-title: Ann Transl Med – volume: 504 start-page: 451 year: 2013 end-page: 455 ident: bib0051 article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation publication-title: Nature – volume: 540 year: 2016 ident: bib0003 article-title: A slow-motion epidemic publication-title: Nature – volume: 132 start-page: 1951 year: 2019 end-page: 1958 ident: bib0034 article-title: Protective effect of Saccharomyces boulardii on intestinal mucosal barrier of dextran sodium sulfate-induced colitis in mice publication-title: Chin Med J – volume: 285 start-page: 27601 year: 2010 end-page: 27608 ident: bib0050 article-title: Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases publication-title: J Biol Chem – volume: 8 start-page: 1 year: 2017 end-page: 11 ident: bib0009 article-title: Emerging trends in ‘smart probiotics’: Functional consideration for the development of novel health and industrial applications publication-title: Front Microbiol – volume: 6 start-page: 1578 year: 2012 end-page: 1585 ident: bib0022 article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases publication-title: ISME J – volume: 318 start-page: C502 year: 2020 end-page: C513 ident: bib0030 article-title: The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis publication-title: Am J Physiol-Cell Physiol – volume: 43 start-page: 507 year: 2020 end-page: 517 ident: bib0070 article-title: The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis publication-title: Inflammation – volume: 8 start-page: 80 year: 2015 end-page: 93 ident: bib0057 article-title: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway publication-title: Mucosal Immunol – volume: 19 start-page: 29 year: 2017 end-page: 41 ident: bib0011 article-title: Formation of propionate and butyrate by the human colonic microbiota publication-title: Environ Microbiol – volume: 4 start-page: 79 year: 2019 end-page: 96 ident: bib0007 article-title: Mechanism-based treatment strategies for IBD: cytokines, cell adhesion molecules, JAK inhibitors, gut flora, and more publication-title: Inflamm Intestinal Dis – volume: 16 start-page: 771 year: 2015 end-page: 775 ident: bib0026 article-title: Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis publication-title: Curr Drug Targets – volume: 67 start-page: 391 year: 2012 end-page: 400 ident: bib0048 article-title: Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands publication-title: Am J Reprod Immunol – volume: 40 start-page: 128 year: 2014 end-page: 139 ident: bib0052 article-title: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis publication-title: Immunity – year: 2018 ident: bib0053 article-title: Impact of retinoic acid on immune cells and inflammatory diseases publication-title: Mediators Inflamm – start-page: 1 year: 2019 end-page: 13 ident: bib0071 article-title: Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease publication-title: Inflamm Bowel Dis XX – volume: 71 start-page: 3692 year: 2005 end-page: 3700 ident: bib0017 article-title: pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon publication-title: Appl Environ Microbiol – volume: 142 start-page: 271 year: 2012 end-page: 277 ident: bib0019 article-title: Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats publication-title: J Nutr – volume: 40 start-page: 309 year: 2018 end-page: 318 ident: bib0054 article-title: The epigenetic modification during the induction of Foxp3 with sodium butyrate publication-title: Immunopharmacol Immunotoxicol – volume: 17 start-page: 1 year: 2016 end-page: 12 ident: bib0037 article-title: Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2 publication-title: Int J Mol Sci – volume: 362 start-page: 1 year: 2015 end-page: 7 ident: bib0064 article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis publication-title: FEMS Microbiol Lett – volume: 54 start-page: 2325 year: 2013 end-page: 2340 ident: bib0012 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: J Lipid Res – volume: 2 start-page: 133 year: 2013 end-page: 142 ident: bib0010 article-title: Modulation of the microbial fermentation in the gut by fermentable carbohydrates publication-title: Bioactive Carbohydr Dietary Fibre – volume: 63 start-page: 1275 year: 2014 end-page: 1283 ident: bib0061 article-title: A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis publication-title: Gut – volume: 7 start-page: 235 year: 2016 end-page: 245 ident: bib0023 article-title: H2 metabolism is widespread and diverse among human colonic microbes publication-title: Gut Microbes – volume: 161 start-page: 131 year: 2013 end-page: 140 ident: bib0015 article-title: Short chain fatty acids and their receptors: new metabolic targets publication-title: Transl Res – volume: 14 start-page: 141 year: 2014 end-page: 153 ident: bib0032 article-title: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis publication-title: Nat Rev Immunol – volume: 165 start-page: 1708 year: 2016 end-page: 1720 ident: bib0043 article-title: The colonic crypt protects stem cells from microbiota-derived metabolites publication-title: Cell – volume: 7 start-page: 2839 year: 2015 end-page: 2849 ident: bib0024 article-title: Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation publication-title: Nutrients – volume: 28 start-page: 1221 year: 1987 end-page: 1227 ident: bib0013 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut – volume: 15 start-page: 5549 year: 2009 end-page: 5557 ident: bib0046 article-title: Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines publication-title: World J Gastroenterol – volume: 94 start-page: 155 year: 2019 end-page: 165 ident: bib0035 article-title: Mechanisms of disease: inflammatory bowel diseases publication-title: Mayo Clin Proc – volume: 469 start-page: 543 year: 2011 end-page: 549 ident: bib0063 article-title: Bifidobacteria can protect from enteropathogenic infection through production of acetate publication-title: Nature – volume: 3 start-page: 1 year: 2018 end-page: 11 ident: bib0069 article-title: Butyrate producers as potential next-generation probiotics: safety assessment of the administration of butyricicoccus pullicaecorum to healthy volunteers publication-title: mSystems – volume: 10 start-page: 946 year: 2017 end-page: 956 ident: bib0027 article-title: Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43 publication-title: Mucosal Immunol – volume: 569 start-page: 655 year: 2019 end-page: 662 ident: bib0074 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature – volume: 5 start-page: 1 year: 2016 end-page: 8 ident: bib0028 article-title: Regulation of immune cell function by short-chain fatty acids publication-title: Clin Transl Immunol – volume: 595 start-page: 541 year: 2017 end-page: 555 ident: bib0014 article-title: Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study publication-title: J Physiol – volume: 7 start-page: 1 year: 2017 end-page: 10 ident: bib0049 article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells publication-title: Sci Rep – volume: 10 start-page: 1 year: 2019 end-page: 11 ident: bib0006 article-title: Novel pharmacological therapy in inflammatory bowel diseases: beyond anti-tumor necrosis factor publication-title: Front Pharmacol – volume: 17 start-page: 1615 year: 2015 end-page: 1630 ident: bib0018 article-title: Modelling the emergent dynamics and major metabolites of the human colonic microbiota publication-title: Environ Microbiol – volume: 156 year: 2019 ident: bib0062 article-title: Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis publication-title: Gastroenterology – volume: 19 start-page: 3404 year: 2013 end-page: 3414 ident: bib0067 article-title: Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India publication-title: World J Gastroenterol – year: 2019 ident: bib0002 article-title: Synthetic ecology of the human gut microbiota publication-title: Nat Rev Microbiol – volume: 6 year: 2015 ident: bib0056 article-title: Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites publication-title: Nat Commun – volume: 9 start-page: 1360 year: 2016 end-page: 1365 ident: bib0008 article-title: Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail publication-title: Mucosal Immunol – volume: 277 start-page: 66 year: 2012 end-page: 73 ident: bib0047 article-title: Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells publication-title: Cell Immunol – volume: 4 start-page: 53 year: 2010 end-page: 58 ident: bib0066 article-title: The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects publication-title: Open Biochem J – volume: 7 start-page: 189 year: 2016 end-page: 200 ident: bib0004 article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism publication-title: Gut Microbes – volume: 9 year: 2018 ident: bib0073 article-title: NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease publication-title: Nat Commun – volume: 215 start-page: 863 year: 2010 end-page: 873 ident: bib0058 article-title: Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis publication-title: Immunobiology – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: bib0059 article-title: Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate publication-title: Sci Rep – volume: 24 start-page: 660 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0029 article-title: Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? publication-title: J Atheroscler Thromb doi: 10.5551/jat.RV17006 – volume: 569 start-page: 655 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0074 article-title: Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases publication-title: Nature doi: 10.1038/s41586-019-1237-9 – volume: 362 start-page: 1 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0064 article-title: Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis publication-title: FEMS Microbiol Lett doi: 10.1093/femsle/fnv176 – volume: 43 start-page: 507 year: 2020 ident: 10.1016/j.ebiom.2021.103293_bib0070 article-title: The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis publication-title: Inflammation doi: 10.1007/s10753-019-01133-8 – volume: 66 start-page: 1 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0044 article-title: Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs) publication-title: Acta Biochim Pol – volume: 469 start-page: 543 year: 2011 ident: 10.1016/j.ebiom.2021.103293_bib0063 article-title: Bifidobacteria can protect from enteropathogenic infection through production of acetate publication-title: Nature doi: 10.1038/nature09646 – volume: 3 start-page: 1 year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0069 article-title: Butyrate producers as potential next-generation probiotics: safety assessment of the administration of butyricicoccus pullicaecorum to healthy volunteers publication-title: mSystems doi: 10.1128/msystems.00094-18 – volume: 10 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0005 article-title: Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases publication-title: Front Immunol – volume: 16 start-page: 771 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0026 article-title: Role of free fatty acid receptor 2 (FFAR2) in the regulation of metabolic homeostasis publication-title: Curr Drug Targets doi: 10.2174/1389450116666150408103557 – volume: 44 start-page: 1312 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0060 article-title: Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function publication-title: Immunity doi: 10.1016/j.immuni.2016.03.016 – volume: 17 start-page: 1615 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0018 article-title: Modelling the emergent dynamics and major metabolites of the human colonic microbiota publication-title: Environ Microbiol doi: 10.1111/1462-2920.12599 – volume: 318 start-page: C502 year: 2020 ident: 10.1016/j.ebiom.2021.103293_bib0030 article-title: The olfactory G protein-coupled receptor (Olfr-78/OR51E2) modulates the intestinal response to colitis publication-title: Am J Physiol-Cell Physiol doi: 10.1152/ajpcell.00454.2019 – volume: 132 start-page: 1951 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0034 article-title: Protective effect of Saccharomyces boulardii on intestinal mucosal barrier of dextran sodium sulfate-induced colitis in mice publication-title: Chin Med J doi: 10.1097/CM9.0000000000000364 – year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0002 article-title: Synthetic ecology of the human gut microbiota publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0264-8 – volume: 303 start-page: 1384 year: 2012 ident: 10.1016/j.ebiom.2021.103293_bib0072 article-title: Butyrate increases IL-23 production by stimulated dendritic cells publication-title: Am J Physiol – Gastrointestinal Liver Physiol doi: 10.1152/ajpgi.00540.2011 – volume: 13 start-page: 1351 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0042 article-title: Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis publication-title: J Crohn’s Colitis doi: 10.1093/ecco-jcc/jjz064 – volume: 165 start-page: 1708 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0043 article-title: The colonic crypt protects stem cells from microbiota-derived metabolites publication-title: Cell doi: 10.1016/j.cell.2016.05.018 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0049 article-title: Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells publication-title: Sci Rep doi: 10.1038/s41598-017-15099-w – volume: 19 start-page: 29 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0011 article-title: Formation of propionate and butyrate by the human colonic microbiota publication-title: Environ Microbiol doi: 10.1111/1462-2920.13589 – volume: 74 start-page: 328 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0025 article-title: Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? publication-title: Proc Nutr Soc doi: 10.1017/S0029665114001657 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0041 article-title: Butyrate-producing bacteria supplemented in vitro to Crohn's disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity publication-title: Sci Rep doi: 10.1038/s41598-017-11734-8 – volume: 40 start-page: 128 year: 2014 ident: 10.1016/j.ebiom.2021.103293_bib0052 article-title: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis publication-title: Immunity doi: 10.1016/j.immuni.2013.12.007 – volume: 595 start-page: 541 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0014 article-title: Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study publication-title: J Physiol doi: 10.1113/JP272613 – volume: 6 year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0033 article-title: Microscopic colitis—microbiome, barrier function and associated diseases publication-title: Ann Transl Med doi: 10.21037/atm.2017.03.83 – volume: 40 start-page: 309 year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0054 article-title: The epigenetic modification during the induction of Foxp3 with sodium butyrate publication-title: Immunopharmacol Immunotoxicol doi: 10.1080/08923973.2018.1480631 – volume: 277 start-page: 66 year: 2012 ident: 10.1016/j.ebiom.2021.103293_bib0047 article-title: Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells publication-title: Cell Immunol doi: 10.1016/j.cellimm.2012.05.011 – volume: 28 start-page: 1221 year: 1987 ident: 10.1016/j.ebiom.2021.103293_bib0013 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut doi: 10.1136/gut.28.10.1221 – volume: 94 start-page: 155 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0035 article-title: Mechanisms of disease: inflammatory bowel diseases publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2018.09.013 – volume: 2 start-page: 133 year: 2013 ident: 10.1016/j.ebiom.2021.103293_bib0010 article-title: Modulation of the microbial fermentation in the gut by fermentable carbohydrates publication-title: Bioactive Carbohydr Dietary Fibre doi: 10.1016/j.bcdf.2013.09.008 – volume: 309 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0021 article-title: Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia publication-title: Am J Physiol – Cell Physiol doi: 10.1152/ajpcell.00191.2015 – volume: 9 start-page: 1360 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0008 article-title: Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail publication-title: Mucosal Immunol doi: 10.1038/mi.2016.67 – volume: 10 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0038 article-title: Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients publication-title: PLoS One doi: 10.1371/journal.pone.0133926 – volume: 17 start-page: 662 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0036 article-title: Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.03.005 – volume: 156 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0062 article-title: Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.12.001 – volume: 20 start-page: 159 year: 2014 ident: 10.1016/j.ebiom.2021.103293_bib0055 article-title: Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis publication-title: Nat Med doi: 10.1038/nm.3444 – volume: 4 start-page: 53 year: 2010 ident: 10.1016/j.ebiom.2021.103293_bib0066 article-title: The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects publication-title: Open Biochem J doi: 10.2174/1874091X01004010053 – volume: 6 start-page: 1578 year: 2012 ident: 10.1016/j.ebiom.2021.103293_bib0022 article-title: The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases publication-title: ISME J doi: 10.1038/ismej.2012.5 – volume: 199 start-page: 2976 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0039 article-title: Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2 publication-title: J Immunol doi: 10.4049/jimmunol.1700105 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0037 article-title: Sodium butyrate promotes reassembly of tight junctions in Caco-2 monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2 publication-title: Int J Mol Sci doi: 10.3390/ijms17101696 – volume: 285 start-page: 27601 year: 2010 ident: 10.1016/j.ebiom.2021.103293_bib0050 article-title: Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases publication-title: J Biol Chem doi: 10.1074/jbc.M110.102947 – volume: 9 year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0073 article-title: NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease publication-title: Nat Commun doi: 10.1038/s41467-018-06125-0 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0009 article-title: Emerging trends in ‘smart probiotics’: Functional consideration for the development of novel health and industrial applications publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01889 – volume: 54 start-page: 2325 year: 2013 ident: 10.1016/j.ebiom.2021.103293_bib0012 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: J Lipid Res doi: 10.1194/jlr.R036012 – volume: 63 start-page: 1275 year: 2014 ident: 10.1016/j.ebiom.2021.103293_bib0061 article-title: A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis publication-title: Gut doi: 10.1136/gutjnl-2013-304833 – volume: 13 start-page: 963 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0001 article-title: Microbiota and mucosal defense in IBD: an update publication-title: Expert Rev Gastroenterol Hepatol doi: 10.1080/17474124.2019.1671822 – volume: 8 start-page: 80 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0057 article-title: Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway publication-title: Mucosal Immunol doi: 10.1038/mi.2014.44 – year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0053 article-title: Impact of retinoic acid on immune cells and inflammatory diseases publication-title: Mediators Inflamm doi: 10.1155/2018/3067126 – volume: 215 start-page: 863 year: 2010 ident: 10.1016/j.ebiom.2021.103293_bib0058 article-title: Butyrate in vitro immune-modulatory effects might be mediated through a proliferation-related induction of apoptosis publication-title: Immunobiology doi: 10.1016/j.imbio.2010.01.001 – volume: 71 start-page: 3692 year: 2005 ident: 10.1016/j.ebiom.2021.103293_bib0017 article-title: pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.7.3692-3700.2005 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0028 article-title: Regulation of immune cell function by short-chain fatty acids publication-title: Clin Transl Immunol doi: 10.1038/cti.2016.17 – volume: 7 start-page: 235 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0023 article-title: H2 metabolism is widespread and diverse among human colonic microbes publication-title: Gut Microbes doi: 10.1080/19490976.2016.1182288 – volume: 14 start-page: 141 year: 2014 ident: 10.1016/j.ebiom.2021.103293_bib0032 article-title: Intestinal epithelial cells: Regulators of barrier function and immune homeostasis publication-title: Nat Rev Immunol doi: 10.1038/nri3608 – volume: 12 start-page: 1 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0040 article-title: Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway publication-title: PLoS One doi: 10.1371/journal.pone.0179586 – volume: 22 start-page: 849 year: 2011 ident: 10.1016/j.ebiom.2021.103293_bib0045 article-title: Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils publication-title: J Nutr Biochem doi: 10.1016/j.jnutbio.2010.07.009 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0075 article-title: A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice publication-title: Sci Rep doi: 10.1038/s41598-019-48749-2 – volume: 19 start-page: 3404 year: 2013 ident: 10.1016/j.ebiom.2021.103293_bib0067 article-title: Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India publication-title: World J Gastroenterol doi: 10.3748/wjg.v19.i22.3404 – volume: 161 start-page: 131 year: 2013 ident: 10.1016/j.ebiom.2021.103293_bib0015 article-title: Short chain fatty acids and their receptors: new metabolic targets publication-title: Transl Res doi: 10.1016/j.trsl.2012.10.007 – volume: 15 start-page: 5549 year: 2009 ident: 10.1016/j.ebiom.2021.103293_bib0046 article-title: Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines publication-title: World J Gastroenterol doi: 10.3748/wjg.15.5549 – volume: 10 start-page: 946 year: 2017 ident: 10.1016/j.ebiom.2021.103293_bib0027 article-title: Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43 publication-title: Mucosal Immunol doi: 10.1038/mi.2016.114 – start-page: 13 year: 2020 ident: 10.1016/j.ebiom.2021.103293_bib0068 article-title: Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease publication-title: Neurogastroenterol Motil – volume: 7 start-page: 189 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0004 article-title: Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism publication-title: Gut Microbes doi: 10.1080/19490976.2015.1134082 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0020 article-title: Iron modulates butyrate production by a child gut microbiota in vitro publication-title: mBio doi: 10.1128/mBio.01453-15 – volume: 142 start-page: 271 year: 2012 ident: 10.1016/j.ebiom.2021.103293_bib0019 article-title: Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats publication-title: J Nutr doi: 10.3945/jn.111.148643 – volume: 48 start-page: 15 year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0065 article-title: Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.14689 – volume: 540 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0003 article-title: A slow-motion epidemic publication-title: Nature doi: 10.1038/540S98a – volume: 7 start-page: 2839 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0024 article-title: Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation publication-title: Nutrients doi: 10.3390/nu7042839 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.ebiom.2021.103293_bib0016 article-title: Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01945 – volume: 6 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0056 article-title: Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites publication-title: Nat Commun doi: 10.1038/ncomms8320 – volume: 4 start-page: 79 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0007 article-title: Mechanism-based treatment strategies for IBD: cytokines, cell adhesion molecules, JAK inhibitors, gut flora, and more publication-title: Inflamm Intestinal Dis doi: 10.1159/000500721 – volume: 67 start-page: 391 year: 2012 ident: 10.1016/j.ebiom.2021.103293_bib0048 article-title: Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands publication-title: Am J Reprod Immunol doi: 10.1111/j.1600-0897.2011.01089.x – volume: 504 start-page: 451 year: 2013 ident: 10.1016/j.ebiom.2021.103293_bib0051 article-title: Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation publication-title: Nature doi: 10.1038/nature12726 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0006 article-title: Novel pharmacological therapy in inflammatory bowel diseases: beyond anti-tumor necrosis factor publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00671 – volume: 11 start-page: 577 year: 2015 ident: 10.1016/j.ebiom.2021.103293_bib0031 article-title: Short-chain fatty acids in control of body weight and insulin sensitivity publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2015.128 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.ebiom.2021.103293_bib0059 article-title: Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate publication-title: Sci Rep doi: 10.1038/s41598-018-32860-x – start-page: 1 year: 2019 ident: 10.1016/j.ebiom.2021.103293_bib0071 article-title: Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease publication-title: Inflamm Bowel Dis XX |
| SSID | ssj0001542358 |
| Score | 2.6561124 |
| SecondaryResourceType | review_article |
| Snippet | The gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling factor in... AbstractThe gut microbiome and the intestinal immune system are driving contributors to inflammatory bowel diseases (IBD). Both have an important signalling... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 103293 |
| SubjectTerms | Acetate Advanced Basic Science Butyrate Gut Inflammatory bowel disease Internal Medicine propionate Review Short chain fatty acids |
| Title | Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2352396421000864 https://www.clinicalkey.es/playcontent/1-s2.0-S2352396421000864 https://dx.doi.org/10.1016/j.ebiom.2021.103293 https://www.ncbi.nlm.nih.gov/pubmed/33813134 https://www.proquest.com/docview/2508893734 https://pubmed.ncbi.nlm.nih.gov/PMC8047503 https://doaj.org/article/f7ba285643a14c349105b10b9d575977 |
| Volume | 66 |
| WOSCitedRecordID | wos000647447600021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-3964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001542358 issn: 2352-3964 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA56KPgi_nb9cUTw0WKTpk3ii9yph4IcwirsW0iTlO1x9o5rT9j_3pmkXbYqdy--Nk1Kv04y39CZbwh5zRvvgSeorFBKZEKUNZ6DmOzfFJXKi6Z0UV3_qzw-VquV_rbT6gtzwpI8cALubSNry1UJjtMy4QoB7q2sWV5rj60lZawjz6XeCaZSfbDAGtDYWa7kWaErMUkOxeSugMXtEB1yhlXnXBcztxTV-2fe6W_2-WcS5Y5XOrpH7o50kh6k17hPboTuAbmdGkxuHpLlcg30mro1xP-0scOwoda1vqe287QdenoeBV_BfdHU3qn_2b-jBx3FxM5TVOP0NFVobSiwW_rl8OP7R-TH0afvHz5nYxuFzFVaDZnzNQQVLLDS6txzXweBoudOWuuZVBYCjEo2SnqlLESTmgUJQVoTVOMbqbQrHpO97qwLTwkF8qI8c40PDiILXKoKJbeOo4xfpfSC8AlF40aNcWx1cWqmZLITE6E3CL1J0C_Im-2k8ySxcfXth_h5treiPna8ADiZ0WrMdVazIGL6uGYqQYVDExZqr362_Ne00I8bvzfM9NzkZolmh1bHWYwaxYJU25kjt0mc5fpHvppsz8DOx985tgtnl73hyK2BXRaw-JNki1tQCiBiBcMRObPSGWrzka5dR3VxlQv8t_3sf8D8nNzBV0mZTi_I3nBxGV6SW-7X0PYX--SmXKn9uHF_A2MNQR0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+chain+fatty+acids+and+its+producing+organisms%3A+An+overlooked+therapy+for+IBD%3F&rft.jtitle=EBioMedicine&rft.au=Sara+Deleu&rft.au=Kathleen+Machiels&rft.au=Jeroen+Raes&rft.au=Kristin+Verbeke&rft.date=2021-04-01&rft.pub=Elsevier&rft.issn=2352-3964&rft.eissn=2352-3964&rft.volume=66&rft.spage=103293&rft_id=info:doi/10.1016%2Fj.ebiom.2021.103293&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f7ba285643a14c349105b10b9d575977 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F23523964%2FS2352396421X00047%2Fcov150h.gif |