Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization

•Batch effects introduce significant confounding in multi-batch neuroimaging data.•Removal of batch effects is critical for reproducibility and generalizability.•We review current harmonization methods and describe common evaluation metrics.•We provide guidance to end-users on choosing an appropriat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:NeuroImage (Orlando, Fla.) Ročník 274; s. 120125
Hlavní autoři: Hu, Fengling, Chen, Andrew A., Horng, Hannah, Bashyam, Vishnu, Davatzikos, Christos, Alexander-Bloch, Aaron, Li, Mingyao, Shou, Haochang, Satterthwaite, Theodore D., Yu, Meichen, Shinohara, Russell T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.07.2023
Elsevier Limited
Elsevier
Témata:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Batch effects introduce significant confounding in multi-batch neuroimaging data.•Removal of batch effects is critical for reproducibility and generalizability.•We review current harmonization methods and describe common evaluation metrics.•We provide guidance to end-users on choosing an appropriate harmonization method.•We provide guidance to methodologists on current limitations and future directions. Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Asterisks indicate equal contribution to this work.
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2023.120125