PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables re...
Gespeichert in:
| Veröffentlicht in: | PLoS genetics Jg. 7; H. 9; S. e1002262 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
01.09.2011
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. |
|---|---|
| AbstractList | Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single- stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in [Pcna.sup.K164R/K164R] cells, which are resistant to PCNA ubiquitination, compared to [Pcna.sup.+/+] cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH,or Rev1 in [Pcna.sup.K164R/K164R] mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in PcnaK164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in PcnaK164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in PcnaK164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in PcnaK164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity. DNA damage can block replication and lead to mutations, genomic instability, and cancer. In cases when the removal of DNA damage and restoration of the original sequence prior to replication is impossible, cells utilize DNA damage tolerance mechanisms, which help replication to bypass the lesions. A major universal tolerance mechanism is translesion DNA synthesis (TLS), in which specialized low-fidelity DNA polymerases elongate the DNA across the lesion. This is a double-edged sword because the price of completing replication is an increased risk of point mutations opposite the lesion. Thus, TLS regulation is critical for preventing an escalation in mutation rates. A key element in TLS regulation is the attachment of a small protein called ubiquitin to the PCNA protein, a sliding DNA clamp that tethers the DNA polymerases to DNA, which functions to recruit the TLS DNA polymerase to the damaged site in DNA. While in yeast this modification of PCNA is crucial for TLS, there is a debate about its importance in mammals. Here we show that in mammalian cells the modification of PCNA by ubiquitin is important, but there exist secondary yet significant TLS mechanisms that operate in its absence and have an altered mutational outcome. |
| Audience | Academic |
| Author | Diamant, Noam Geacintov, Nicholas E. Tateishi, Satoshi Krijger, Peter H. L. Goren, Zohar Langerak, Petra Carell, Thomas Myung, Kyungjae Kim, Jungmin D'Andrea, Alan Jacobs, Heinz Reißner, Thomas Lee, Kyoo-young Hendel, Ayal Livneh, Zvi |
| AuthorAffiliation | 4 Department of Chemistry and Biochemistry, Ludwig Maximilians-University Munich, Munich, Germany 5 Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America 6 Chemistry Department, New York University, New York, United States of America 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel University of Washington, United States of America 7 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan 2 Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands 3 Department of Radiation Oncology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America |
| AuthorAffiliation_xml | – name: 4 Department of Chemistry and Biochemistry, Ludwig Maximilians-University Munich, Munich, Germany – name: 7 Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan – name: 2 Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands – name: 1 Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel – name: 3 Department of Radiation Oncology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America – name: University of Washington, United States of America – name: 5 Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America – name: 6 Chemistry Department, New York University, New York, United States of America |
| Author_xml | – sequence: 1 givenname: Ayal surname: Hendel fullname: Hendel, Ayal – sequence: 2 givenname: Peter H. L. surname: Krijger fullname: Krijger, Peter H. L. – sequence: 3 givenname: Noam surname: Diamant fullname: Diamant, Noam – sequence: 4 givenname: Zohar surname: Goren fullname: Goren, Zohar – sequence: 5 givenname: Petra surname: Langerak fullname: Langerak, Petra – sequence: 6 givenname: Jungmin surname: Kim fullname: Kim, Jungmin – sequence: 7 givenname: Thomas surname: Reißner fullname: Reißner, Thomas – sequence: 8 givenname: Kyoo-young surname: Lee fullname: Lee, Kyoo-young – sequence: 9 givenname: Nicholas E. surname: Geacintov fullname: Geacintov, Nicholas E. – sequence: 10 givenname: Thomas surname: Carell fullname: Carell, Thomas – sequence: 11 givenname: Kyungjae surname: Myung fullname: Myung, Kyungjae – sequence: 12 givenname: Satoshi surname: Tateishi fullname: Tateishi, Satoshi – sequence: 13 givenname: Alan surname: D'Andrea fullname: D'Andrea, Alan – sequence: 14 givenname: Heinz surname: Jacobs fullname: Jacobs, Heinz – sequence: 15 givenname: Zvi surname: Livneh fullname: Livneh, Zvi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21931560$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk11v0zAYhSM0xD7gHyCIhARCosUfiZNwgVTKgEqjQ2zj1nrtOK0rx-5iB7F_j7O2aEUIgXLhxHnOiXN03uPkwDqrkuQxRmNMC_x65frOghmvF8qOMUKEMHIvOcJ5TkdFhrKDO_eHybH3K4RoXlbFg-SQ4IrinKGjpP4ynU_SK6Gvex20haCdTWc-nbVr1wWw4VX6rg_p3IX01HtlgwaTNq5LLzuw3ig_8O-jxcWNDcv46FNt08_QtmA02HSqjPEPk_sNGK8ebdeT5OrD6eX00-js_ONsOjkbSVYVYQSsJqoCVdeVQJgSKmvFGopogQQozEpWU1mWWBCoBc0YEWVeIFlgIYtGkIKeJE83vmvjPN8G5DmmmOY4y3AWidmGqB2s-LrTLXQ33IHmtxuuW3DogpZGcVGXosjykuQUskYxkAiEyBCpZCPrEqLX2-3XetGqWsZwOjB7pvtvrF7yhfvOKWZVTlg0eLE16Nx1r3zgrfYyBgZWud7zCqGiYITmkXy2IRcQT6Zt46KhHGg-IaxikUTDz43_QMWrVq2WsT2Njvt7gpd7gsgE9SMsoPeezy6-_gc7_3f2_Ns--_wOu1RgwtI70w9F9Pvgk7tx_8p51-UIvNkAsnPed6rhUofbQscYtOEY8WFwdr3gw-Dw7eBEcfabeOf_V9lPlkUb8w |
| CitedBy_id | crossref_primary_10_1074_jbc_M112_394841 crossref_primary_10_1002_em_21741 crossref_primary_10_1016_j_dnarep_2015_01_001 crossref_primary_10_3390_genes8020064 crossref_primary_10_1016_j_jid_2018_05_015 crossref_primary_10_1016_j_dnarep_2015_11_011 crossref_primary_10_1016_j_mrfmmm_2015_08_002 crossref_primary_10_3390_genes11121450 crossref_primary_10_1007_s00018_015_2060_6 crossref_primary_10_3390_genes8010024 crossref_primary_10_1038_ncomms12105 crossref_primary_10_1038_s41388_019_0724_7 crossref_primary_10_1016_j_cbi_2025_111551 crossref_primary_10_3123_jemsge_34_70 crossref_primary_10_1186_1471_2199_14_9 crossref_primary_10_1038_s41388_024_03192_0 crossref_primary_10_1016_j_tcb_2021_05_009 crossref_primary_10_1038_ncomms13326 crossref_primary_10_1007_s00412_013_0410_4 crossref_primary_10_1007_s00294_020_01113_8 crossref_primary_10_3390_genes8010019 crossref_primary_10_1002_ange_201701144 crossref_primary_10_1016_j_cell_2018_10_055 crossref_primary_10_3390_genes11020225 crossref_primary_10_3390_ijms19102909 crossref_primary_10_1093_nar_gkt1040 crossref_primary_10_1093_nar_gkx539 crossref_primary_10_1002_bies_201600129 crossref_primary_10_3390_ijms22136957 crossref_primary_10_1016_j_dnarep_2017_04_003 crossref_primary_10_3389_fgene_2016_00105 crossref_primary_10_1093_nar_gkw280 crossref_primary_10_1016_j_mrfmmm_2012_11_002 crossref_primary_10_1002_ejoc_201500144 crossref_primary_10_1073_pnas_1706508114 crossref_primary_10_1016_j_jbc_2023_104656 crossref_primary_10_1093_pnasnexus_pgae242 crossref_primary_10_4161_cc_21694 crossref_primary_10_1038_ncomms6744 crossref_primary_10_7554_eLife_19788 crossref_primary_10_1016_j_yexcr_2014_07_009 crossref_primary_10_3390_genes15101271 crossref_primary_10_1101_gad_195248_112 crossref_primary_10_1371_journal_pone_0052472 crossref_primary_10_1002_em_22359 crossref_primary_10_3390_cancers12102848 crossref_primary_10_1038_nrm3562 crossref_primary_10_1093_nar_gkt793 crossref_primary_10_1038_nrm3289 crossref_primary_10_1093_nar_gku1301 crossref_primary_10_3390_genes14020391 crossref_primary_10_1038_ncomms6437 crossref_primary_10_1093_nar_gkz531 crossref_primary_10_1074_jbc_M112_380998 crossref_primary_10_1093_nar_gkad1054 crossref_primary_10_3390_genes10010010 crossref_primary_10_1002_anie_201701144 crossref_primary_10_1093_nar_gkae1254 crossref_primary_10_1371_journal_pgen_1007119 crossref_primary_10_1073_pnas_1523653113 crossref_primary_10_1016_j_molcel_2018_10_045 crossref_primary_10_1038_s41467_024_47219_2 crossref_primary_10_1080_10409238_2019_1687420 crossref_primary_10_1073_pnas_1204105109 crossref_primary_10_1016_j_dnarep_2016_12_008 crossref_primary_10_1002_bies_201300002 crossref_primary_10_3389_fgene_2016_00087 crossref_primary_10_1186_s13059_024_03451_z crossref_primary_10_1016_j_gene_2019_144282 crossref_primary_10_1016_j_molcel_2012_10_012 crossref_primary_10_1016_j_dnarep_2021_103163 crossref_primary_10_1002_2211_5463_13099 crossref_primary_10_1242_jcs_094748 crossref_primary_10_3390_biom15010150 crossref_primary_10_1016_j_ab_2013_05_010 crossref_primary_10_1016_j_molcel_2016_12_020 crossref_primary_10_1093_nar_gkt016 crossref_primary_10_1093_nar_gkv712 crossref_primary_10_1038_s41594_020_0418_4 crossref_primary_10_1073_pnas_1701978114 crossref_primary_10_1016_j_bmc_2013_01_022 crossref_primary_10_1016_j_dnarep_2016_05_007 crossref_primary_10_1371_journal_pone_0118775 crossref_primary_10_1016_j_dnarep_2017_05_006 crossref_primary_10_3390_ijms21197264 crossref_primary_10_1016_j_jbc_2022_101861 crossref_primary_10_1002_jcp_30155 crossref_primary_10_1016_j_mrgentox_2018_02_004 crossref_primary_10_1371_journal_pone_0093908 crossref_primary_10_1016_j_dnarep_2015_04_027 crossref_primary_10_1016_j_dnarep_2020_102947 crossref_primary_10_1002_em_21736 crossref_primary_10_1080_10409238_2020_1841089 crossref_primary_10_1016_j_ijbiomac_2024_133187 crossref_primary_10_1093_nar_gkt542 crossref_primary_10_1093_nar_gkae918 crossref_primary_10_3389_fgene_2016_00133 crossref_primary_10_1016_j_dnarep_2012_03_007 crossref_primary_10_3123_jemsge_34_63 crossref_primary_10_1371_journal_pone_0036004 |
| Cites_doi | 10.1016/S1876-1623(08)78004-0 10.1073/pnas.0704219104 10.1073/pnas.0802727105 10.1038/35023030 10.1128/MCB.01196-07 10.1016/j.molcel.2011.02.026 10.1074/jbc.M409155200 10.1038/nrm1781 10.1128/MCB.26.9.3527-3540.2006 10.1016/j.dnarep.2008.06.008 10.1126/science.1120615 10.1038/sj.emboj.7600383 10.1074/jbc.M709835200 10.1016/j.dnarep.2006.07.002 10.1007/978-1-4419-6676-6_15 10.1038/sj.onc.1209315 10.1073/pnas.0809844105 10.1128/MCB.00071-09 10.1038/21447 10.1016/j.cell.2007.05.003 10.1371/journal.pbio.0040366 10.1038/emboj.2008.281 10.1016/j.molcel.2006.03.022 10.1073/pnas.0812744106 10.1128/MCB.24.10.4267-4274.2004 10.4161/cc.9.4.10727 10.1038/cr.2007.117 10.1021/bi702329h 10.1093/nar/gkq403 10.1093/nar/gkn651 10.1126/science.285.5425.263 10.1038/nature00991 10.4161/cc.8.5.7707 10.1016/j.devcel.2009.01.001 10.1042/BST0351334 10.1016/j.molcel.2009.12.018 10.1146/annurev.biochem.74.082803.133250 10.4161/cc.5.17.3193 10.1080/10409230902849180 10.1084/jem.20070902 10.1128/MCB.23.2.474-481.2003 10.1038/nature01965 10.1073/pnas.1005492107 10.1016/j.molcel.2008.03.024 10.1016/j.molcel.2009.12.039 10.1016/S1097-2765(04)00259-X 10.1038/ncb1378 10.1073/pnas.0812548106 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2011 Public Library of Science 2011 2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hendel A, Krijger PHL, Diamant N, Goren Z, Langerak P, et al. (2011) PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells. PLoS Genet 7(9): e1002262. doi:10.1371/journal.pgen.1002262 |
| Copyright_xml | – notice: COPYRIGHT 2011 Public Library of Science – notice: 2011 – notice: 2011 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Hendel A, Krijger PHL, Diamant N, Goren Z, Langerak P, et al. (2011) PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells. PLoS Genet 7(9): e1002262. doi:10.1371/journal.pgen.1002262 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1002262 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale - Opposing Viewpoints in Context Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | PCNA-Ub–Dependent and –Independent TLS in Mammals |
| EISSN | 1553-7404 |
| ExternalDocumentID | 1313514414 oai_doaj_org_article_bd8b7458253a4fe6ac0abb4029cfcd8a PMC3169526 A269690004 21931560 10_1371_journal_pgen_1002262 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Japan |
| GeographicLocations_xml | – name: Japan |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA099194 – fundername: NCI NIH HHS grantid: CA099194 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 QF4 RIG RZL WOQ 7X8 PUEGO 5PM 3V. AAPBV ABPTK M~E |
| ID | FETCH-LOGICAL-c697t-a6d2e9aedd9b01323cde6f30370bae1686d3c881b2adb3462b8570c71bc7fb273 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295419100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Sun Oct 01 00:20:28 EDT 2023 Tue Oct 14 18:55:53 EDT 2025 Tue Nov 04 01:50:57 EST 2025 Wed Oct 01 12:43:44 EDT 2025 Tue Nov 11 10:22:32 EST 2025 Tue Nov 04 17:17:54 EST 2025 Thu Nov 13 15:05:13 EST 2025 Thu Nov 13 15:22:05 EST 2025 Thu Nov 13 14:17:52 EST 2025 Thu May 22 21:16:51 EDT 2025 Thu Apr 03 07:09:30 EDT 2025 Sat Nov 29 01:38:09 EST 2025 Tue Nov 18 21:45:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c697t-a6d2e9aedd9b01323cde6f30370bae1686d3c881b2adb3462b8570c71bc7fb273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: AH PHLK ND ZG. Performed the experiments: AH PHLK ND ZG. Analyzed the data: AH PHLK ND ZG HJ ZL. Contributed reagents/materials/analysis tools: PL JK TR KL NEG TC KM ST AD HJ. Wrote the paper: ZL AH. These authors also contributed equally to this work. |
| OpenAccessLink | https://doaj.org/article/bd8b7458253a4fe6ac0abb4029cfcd8a |
| PMID | 21931560 |
| PQID | 900776235 |
| PQPubID | 23479 |
| ParticipantIDs | plos_journals_1313514414 doaj_primary_oai_doaj_org_article_bd8b7458253a4fe6ac0abb4029cfcd8a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3169526 proquest_miscellaneous_900776235 gale_infotracmisc_A269690004 gale_infotracacademiconefile_A269690004 gale_incontextgauss_ISR_A269690004 gale_incontextgauss_ISN_A269690004 gale_incontextgauss_IOV_A269690004 gale_healthsolutions_A269690004 pubmed_primary_21931560 crossref_citationtrail_10_1371_journal_pgen_1002262 crossref_primary_10_1371_journal_pgen_1002262 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco, USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2011 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | P Langerak (ref29) 2007; 204 S Brown (ref21) 2009; 8 S Shachar (ref6) 2009; 28 N Acharya (ref24) 2008; 105 S Avkin (ref34) 2004; 279 V Schmutz (ref47) 2010; 38 N Acharya (ref27) 2010; 107 G Soria (ref16) 2006; 25 DJ Richard (ref32) 2009; 44 PH Krijger (ref38) 2011 S Prakash (ref1) 2005; 74 K Terai (ref41); 37 A Niimi (ref49) 2008; 105 RE Johnson (ref9) 1999; 285 GN Gan (ref8) 2008; 18 H Arakawa (ref28) 2006; 4 RE Johnson (ref5) 2000; 406 M Bienko (ref22) 2005; 310 J Tomida (ref43) 2008; 283 D Szüts (ref20) 2008; 36 EC Friedberg (ref4) 2005; 6 K Watanabe (ref14) 2004; 23 L Haracska (ref48) 2004; 24 O Ziv (ref36) 2009; 106 C Hoege (ref11) 2002; 419 S Jentsch (ref17) 2010; 54 JG Jansen (ref31) 2009; 29 N Nikolaishvili-Feinberg (ref46) 2008; 47 CE Edmunds (ref19) 2008; 30 N Acharya (ref25) 2007; 27 TT Huang (ref39) 2006; 8 X Bi (ref45) 2006; 26 S Sabbioneda (ref26) 2009; 106 Z Livneh (ref7) 2010; 9 C Masutani (ref10) 1999; 399 P Stelter (ref12) 2003; 425 JR Lin (ref44) 2011; 42 Z Livneh (ref2) 2006; 5 N Diamant (ref33) 2011 A Hendel (ref35) 2008; 7 GL Moldovan (ref42) 2007; 129 S Avkin (ref15) 2006; 22 M Bienko (ref23) 2010; 37 JM Kim (ref40) 2009; 16 H Ohmori (ref50) 2009; 78 W Yang (ref3) 2007; 104 S Tateishi (ref37) 2003; 23 AR Lehmann (ref30) 2006; 5 HD Ulrich (ref18) 2007; 35 PL Kannouche (ref13) 2004; 14 16407842 - Oncogene. 2006 May 11;25(20):2829-38 17956345 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1334-7 16357261 - Science. 2005 Dec 16;310(5755):1821-4 19153606 - EMBO J. 2009 Feb 18;28(4):383-93 10385124 - Nature. 1999 Jun 17;399(6737):700-4 12509447 - Mol Cell Biol. 2003 Jan;23(2):474-81 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35 19217432 - Dev Cell. 2009 Feb;16(2):314-20 21396873 - Mol Cell. 2011 Apr 22;42(2):237-49 20529881 - Nucleic Acids Res. 2010 Oct;38(19):6456-65 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96 21222283 - Subcell Biochem. 2010;54:184-94 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 16611994 - Mol Cell Biol. 2006 May;26(9):3527-40 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 16678112 - Mol Cell. 2006 May 5;22(3):407-13 17512402 - Cell. 2007 May 18;129(4):665-79 18321066 - Biochemistry. 2008 Apr 1;47(13):4141-50 20129063 - Mol Cell. 2010 Jan 15;37(1):143-9 15952890 - Annu Rev Biochem. 2005;74:317-53 18157155 - Cell Res. 2008 Jan;18(1):174-83 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53 15121847 - Mol Cell Biol. 2004 May;24(10):4267-74 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8 19240217 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):E20; author reply E21 20663485 - Adv Protein Chem Struct Biol. 2009;78:99-146 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8 20498091 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10401-5 19001268 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17724-9 18953031 - Nucleic Acids Res. 2008 Dec;36(21):6767-80 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 16531995 - Nat Cell Biol. 2006 Apr;8(4):339-47 18245774 - J Biol Chem. 2008 Apr 4;283(14):9071-9 19221475 - Cell Cycle. 2009 Mar 1;8(5):689-92 21908406 - Nucleic Acids Res. 2012 Jan;40(1):170-80 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 17105346 - PLoS Biol. 2006 Nov;4(11):e366 17709386 - Mol Cell Biol. 2007 Oct;27(20):7266-72 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7 19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116 18498753 - Mol Cell. 2008 May 23;30(4):519-29 12226657 - Nature. 2002 Sep 12;419(6903):135-41 15149598 - Mol Cell. 2004 May 21;14(4):491-500 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23 10398605 - Science. 1999 Jul 9;285(5425):263-5 12968183 - Nature. 2003 Sep 11;425(6954):188-91 16969082 - Cell Cycle. 2006 Sep;5(17):1918-22 21269891 - DNA Repair (Amst). 2011 Apr 3;10(4):438-44 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407 |
| References_xml | – volume: 78 start-page: 99 year: 2009 ident: ref50 article-title: Separate roles of structured and unstructured regions of Y-family DNA polymerases. publication-title: Adv Protein Chem Struct Biol doi: 10.1016/S1876-1623(08)78004-0 – volume: 104 start-page: 15591 year: 2007 ident: ref3 article-title: What a difference a decade makes: Insights into translesion synthesis. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0704219104 – volume: 105 start-page: 16125 year: 2008 ident: ref49 article-title: Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0802727105 – volume: 406 start-page: 1015 year: 2000 ident: ref5 article-title: Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. publication-title: Nature doi: 10.1038/35023030 – volume: 27 start-page: 7266 year: 2007 ident: ref25 article-title: Mutations in the ubiquitin binding UBZ motif of DNA polymerase η do not impair its function in translesion synthesis during replication. publication-title: Mol Cell Biol doi: 10.1128/MCB.01196-07 – volume: 42 start-page: 237 year: 2011 ident: ref44 article-title: SHPRH and HLTF Act in a Damage-Specific Manner to Coordinate Different Forms of Postreplication Repair and Prevent Mutagenesis. publication-title: Mol Cell doi: 10.1016/j.molcel.2011.02.026 – volume: 279 start-page: 53298 year: 2004 ident: ref34 article-title: Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells. The Role of DNA polymerase κ. publication-title: J Biol Chem doi: 10.1074/jbc.M409155200 – volume: 6 start-page: 943 year: 2005 ident: ref4 article-title: Suffering in silence: The tolerance of DNA damage. publication-title: Nature Rev Mol Cell Biol doi: 10.1038/nrm1781 – volume: 26 start-page: 3527 year: 2006 ident: ref45 article-title: Rad18 regulates DNA polymerase κ and is required for recovery from S-phase checkpoint-mediated arrest. publication-title: Mol Cell Biol doi: 10.1128/MCB.26.9.3527-3540.2006 – volume: 7 start-page: 1636 year: 2008 ident: ref35 article-title: Reduced fidelity and increased efficiency of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase η. publication-title: DNA Repair doi: 10.1016/j.dnarep.2008.06.008 – volume: 310 start-page: 1821 year: 2005 ident: ref22 article-title: Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. publication-title: Science doi: 10.1126/science.1120615 – volume: 23 start-page: 3886 year: 2004 ident: ref14 article-title: Rad18 guides polη to replication stalling sites through physical interaction and PCNA monoubiquitination. publication-title: EMBO J doi: 10.1038/sj.emboj.7600383 – volume: 283 start-page: 9071 year: 2008 ident: ref43 article-title: DNA damage-induced ubiquitylation of RFC2 subunit of replication factor C complex. publication-title: J Biol Chem doi: 10.1074/jbc.M709835200 – volume: 5 start-page: 1595 year: 2006 ident: ref30 article-title: Gaps and forks in DNA Replication: Rediscovering old models. publication-title: DNA Repair doi: 10.1016/j.dnarep.2006.07.002 – year: 2011 ident: ref33 article-title: DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity. publication-title: Nucleic Acids Res – volume: 54 start-page: 184 year: 2010 ident: ref17 article-title: Regulatory Functions of Ubiquitin and SUMO in DNA Repair Pathways. publication-title: Subcell Biochem doi: 10.1007/978-1-4419-6676-6_15 – volume: 25 start-page: 2829 year: 2006 ident: ref16 article-title: P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. publication-title: Oncogene doi: 10.1038/sj.onc.1209315 – volume: 105 start-page: 17724 year: 2008 ident: ref24 article-title: Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase η in translesion DNA synthesis. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0809844105 – volume: 29 start-page: 3113 year: 2009 ident: ref31 article-title: Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells. publication-title: Mol Cell Biol doi: 10.1128/MCB.00071-09 – volume: 399 start-page: 700 year: 1999 ident: ref10 article-title: The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. publication-title: Nature doi: 10.1038/21447 – volume: 129 start-page: 665 year: 2007 ident: ref42 article-title: PCNA, the maestro of the replication fork. publication-title: Cell doi: 10.1016/j.cell.2007.05.003 – volume: 4 start-page: e366 year: 2006 ident: ref28 article-title: A role for PCNA ubiquitination in immunoglobulin hypermutation. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040366 – volume: 28 start-page: 383 year: 2009 ident: ref6 article-title: Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. publication-title: EMBO J doi: 10.1038/emboj.2008.281 – volume: 22 start-page: 407 year: 2006 ident: ref15 article-title: p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. publication-title: Mol Cell doi: 10.1016/j.molcel.2006.03.022 – volume: 106 start-page: E20; author reply E21 year: 2009 ident: ref26 article-title: Ubiquitin-binding motif of human DNA polymerase η is required for correct localization. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0812744106 – volume: 24 start-page: 4267 year: 2004 ident: ref48 article-title: Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. publication-title: Mol Cell Biol doi: 10.1128/MCB.24.10.4267-4274.2004 – year: 2011 ident: ref38 article-title: HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: Existence of an alternative E3 ligase. publication-title: DNA Repair (Amst) – volume: 9 start-page: 729 year: 2010 ident: ref7 article-title: Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. publication-title: Cell Cycle doi: 10.4161/cc.9.4.10727 – volume: 18 start-page: 174 year: 2008 ident: ref8 article-title: DNA polymerase ζ (polζ) in higher eukaryotes. publication-title: Cell Research doi: 10.1038/cr.2007.117 – volume: 47 start-page: 4141 year: 2008 ident: ref46 article-title: Ubiquitylation of proliferating cell nuclear antigen and recruitment of human DNA polymerase η. publication-title: Biochemistry doi: 10.1021/bi702329h – volume: 38 start-page: 6456 year: 2010 ident: ref47 article-title: Role of the ubiquitin-binding domain of Polη in Rad18-independent translesion DNA synthesis in human cell extracts. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq403 – volume: 36 start-page: 6767 year: 2008 ident: ref20 article-title: REV1 restrains DNA polymerase ζ to ensure frame fidelity during translesion synthesis of UV photoproducts in vivo. publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn651 – volume: 285 start-page: 263 year: 1999 ident: ref9 article-title: hRAD30 mutations in the variant form of xeroderma pigmentosum. publication-title: Science doi: 10.1126/science.285.5425.263 – volume: 419 start-page: 135 year: 2002 ident: ref11 article-title: RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. publication-title: Nature doi: 10.1038/nature00991 – volume: 8 start-page: 689 year: 2009 ident: ref21 article-title: Ubiquitination and deubiquitination of PCNA in response to stalling of the replication fork. publication-title: Cell Cycle doi: 10.4161/cc.8.5.7707 – volume: 16 start-page: 314 year: 2009 ident: ref40 article-title: Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. publication-title: Dev Cell doi: 10.1016/j.devcel.2009.01.001 – volume: 35 start-page: 1334 year: 2007 ident: ref18 article-title: Conservation of DNA damage tolerance pathways from yeast to humans. publication-title: Biochem Soc Trans doi: 10.1042/BST0351334 – volume: 37 start-page: 143 ident: ref41 article-title: CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. publication-title: Mol Cell doi: 10.1016/j.molcel.2009.12.018 – volume: 74 start-page: 317 year: 2005 ident: ref1 article-title: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.74.082803.133250 – volume: 5 start-page: 1918 year: 2006 ident: ref2 article-title: Keeping mammalian mutation load in check. Regulation of the activity of error-prone DNA polymerases by p53 and p21. publication-title: Cell Cycle doi: 10.4161/cc.5.17.3193 – volume: 44 start-page: 98 year: 2009 ident: ref32 article-title: Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230902849180 – volume: 204 start-page: 1989 year: 2007 ident: ref29 article-title: A/T mutagenesis in hypermutated immunoglobulin genes strongly depends on PCNAK164 modification. publication-title: J Exp Med doi: 10.1084/jem.20070902 – volume: 23 start-page: 474 year: 2003 ident: ref37 article-title: Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. publication-title: Mol Cell Biol doi: 10.1128/MCB.23.2.474-481.2003 – volume: 425 start-page: 188 year: 2003 ident: ref12 article-title: Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. publication-title: Nature doi: 10.1038/nature01965 – volume: 107 start-page: 10401 year: 2010 ident: ref27 article-title: DNA polymerase η lacking the ubiquitin-binding domain promotes replicative lesion bypass in humans cells. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005492107 – volume: 30 start-page: 519 year: 2008 ident: ref19 article-title: PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. publication-title: Mol Cell doi: 10.1016/j.molcel.2008.03.024 – volume: 37 start-page: 396 year: 2010 ident: ref23 article-title: Regulation of translesion synthesis DNA polymerase η by monoubiquitination. publication-title: Mol Cell doi: 10.1016/j.molcel.2009.12.039 – volume: 14 start-page: 491 year: 2004 ident: ref13 article-title: Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00259-X – volume: 8 start-page: 339 year: 2006 ident: ref39 article-title: Regulation of monoubiquitinated PCNA by DUB autocleavage. publication-title: Nature Cell Biol doi: 10.1038/ncb1378 – volume: 106 start-page: 11552 year: 2009 ident: ref36 article-title: DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0812548106 – reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5 – reference: 21396873 - Mol Cell. 2011 Apr 22;42(2):237-49 – reference: 21908406 - Nucleic Acids Res. 2012 Jan;40(1):170-80 – reference: 16357261 - Science. 2005 Dec 16;310(5755):1821-4 – reference: 19240217 - Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):E20; author reply E21 – reference: 20498091 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10401-5 – reference: 18321066 - Biochemistry. 2008 Apr 1;47(13):4141-50 – reference: 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8 – reference: 20129063 - Mol Cell. 2010 Jan 15;37(1):143-9 – reference: 15149598 - Mol Cell. 2004 May 21;14(4):491-500 – reference: 16969082 - Cell Cycle. 2006 Sep;5(17):1918-22 – reference: 19001268 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17724-9 – reference: 19153606 - EMBO J. 2009 Feb 18;28(4):383-93 – reference: 18498753 - Mol Cell. 2008 May 23;30(4):519-29 – reference: 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53 – reference: 21222283 - Subcell Biochem. 2010;54:184-94 – reference: 19221475 - Cell Cycle. 2009 Mar 1;8(5):689-92 – reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41 – reference: 19217432 - Dev Cell. 2009 Feb;16(2):314-20 – reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13 – reference: 15952890 - Annu Rev Biochem. 2005;74:317-53 – reference: 20663485 - Adv Protein Chem Struct Biol. 2009;78:99-146 – reference: 16407842 - Oncogene. 2006 May 11;25(20):2829-38 – reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46 – reference: 18953031 - Nucleic Acids Res. 2008 Dec;36(21):6767-80 – reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8 – reference: 19332561 - Mol Cell Biol. 2009 Jun;29(11):3113-23 – reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7 – reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305 – reference: 17664295 - J Exp Med. 2007 Aug 6;204(8):1989-98 – reference: 16531995 - Nat Cell Biol. 2006 Apr;8(4):339-47 – reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4 – reference: 18845679 - Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16125-30 – reference: 20529881 - Nucleic Acids Res. 2010 Oct;38(19):6456-65 – reference: 10984059 - Nature. 2000 Aug 31;406(6799):1015-9 – reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83 – reference: 17956345 - Biochem Soc Trans. 2007 Nov;35(Pt 5):1334-7 – reference: 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35 – reference: 19367476 - Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):98-116 – reference: 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407 – reference: 16611994 - Mol Cell Biol. 2006 May;26(9):3527-40 – reference: 18245774 - J Biol Chem. 2008 Apr 4;283(14):9071-9 – reference: 17105346 - PLoS Biol. 2006 Nov;4(11):e366 – reference: 21269891 - DNA Repair (Amst). 2011 Apr 3;10(4):438-44 – reference: 12509447 - Mol Cell Biol. 2003 Jan;23(2):474-81 – reference: 12968183 - Nature. 2003 Sep 11;425(6954):188-91 – reference: 15359278 - EMBO J. 2004 Oct 1;23(19):3886-96 – reference: 15121847 - Mol Cell Biol. 2004 May;24(10):4267-74 – reference: 17512402 - Cell. 2007 May 18;129(4):665-79 – reference: 17709386 - Mol Cell Biol. 2007 Oct;27(20):7266-72 |
| SSID | ssj0035897 |
| Score | 2.390629 |
| Snippet | Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and... Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions,... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1002262 |
| SubjectTerms | Animals Biology Biomedical research Brewer's yeast Cancer Cisplatin - pharmacology Cyclin-dependent kinases Deoxyribonucleic acid DNA DNA - biosynthesis DNA - drug effects DNA - genetics DNA Damage DNA Repair DNA Replication DNA synthesis DNA, Single-Stranded - biosynthesis DNA, Single-Stranded - genetics E coli Experiments Genetic aspects Mice Mutagenesis Mutation Physiological aspects Plasmids Proliferating Cell Nuclear Antigen - genetics Proliferating Cell Nuclear Antigen - metabolism Proteins Ubiquitin - genetics Ubiquitin - metabolism Ubiquitin-proteasome system Ubiquitination Ultraviolet Rays |
| SummonAdditionalLinks | – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQAIkXvmGBARZC4oWwxU7t-LErq6gEpWIM7c3yVyBSm5Y5Rdp_j89JC5mYGK_xObJ-tu_O9t3vEHrFeWapFjbVuTFpLoxNC0Jt6gbB2BOr85KZWGyCT6fF6amY_T4oXnjBpzzb7zB9uwqARsJQAir3OqGMQQjXePZho3npoBC8S4-7rGfP_ESW_q0u3lnNl_5vjubFeMk_DND4zv8O_S663bmaeNiujXvomqvvo5tt8cnzB8jORtMhPtHVj3XVVO2lIJ54PFlEl7xu3uDDdYOnywYfeUhRCisVBxcXR_M2d3DNht-FXxyf18GL9JXHVY0_qsUiXp3gkZvP_UN0Mj76MnqfdjUXUsMEb1LFLHFCOWsF3JASaqxjZbBz_EArl7GCWWqK4OsSZTXNGdHAkG94pg0vdfCFHqGdelm7XYRpZq0OLgFhzuYqEyovM2oFuFBUU1ImiG6mQpqOkBzqYsxlfGXj4WDSAiUBP9nhl6B022vVEnL8Q_4QZnkrC3Ta8UOYKNntTqltoTm8IA5oGKVjyhworcPRWpjS2EIl6AWsEdnmpm6VghwSJhiUXc0T9DJKAKVGDTE739Taezn59PUKQsfTqwh97gm97oTKZcDMqC6ZIiAPfF49yb2eZNAepte8C8t-A50PQELNxuAkhya82QoSekE0Xu2Way9FJIEidJCgx-3O2MIbDCCF5PwE8d6e6eHfb6mr75HWnGZMDAh7cvmInqJb7ZU-hPjtoZ3mbO2eoRvmZ1P5s-dRF_wC1INejQ priority: 102 providerName: Public Library of Science |
| Title | PCNA Ubiquitination Is Important, But Not Essential for Translesion DNA Synthesis in Mammalian Cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21931560 https://www.proquest.com/docview/900776235 https://pubmed.ncbi.nlm.nih.gov/PMC3169526 https://doaj.org/article/bd8b7458253a4fe6ac0abb4029cfcd8a http://dx.doi.org/10.1371/journal.pgen.1002262 |
| Volume | 7 |
| WOSCitedRecordID | wos000295419100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeggMQL4nMLjGIhJF4IW-zETh67sYpJUKLxofEUxR-BSG1alhRp_z13dlotCGl74CUP8blS786-ny_n3xHySsrIcJWZUMVah3GmTZgybkKbQLBnRsWV0K7ZhJzN0rOzLL_U6gtrwjw9sFfcvjKpkvhxJ-FlXFlR6oNSKTj1ZLrSJnXQCFDP5jDl92CepL6tSpLwUMKxvr80x2W039vo7QoM5AhImWCDoOS4-7c79Gg1X7b_gp9_V1FeCkvT--RejyfpxP-PB-SGbR6SO77D5MUjYvKj2YSuVf1rXXe1z_zRuqX1wuHupntD1bqjzbKjSCLewHqfU8CxtMMYNreYS6Pv4CfaiwagYotTG7ooFwuXH6GY928fk6_T4y9H78O-sUKoRSa7sBSG2ay0xmSYBmVcGysqCGbyQJU2EqkwXKcAaFlpFI8FU0iDr2WktKwUAJ4nZNQsG7tLKI-MURD3mbAmLqMMbBRxkyFO4oqzKiB8o9lC96zj2PxiXrhPaRJOH15RBdqj6O0RkHA7a-VZN66QP0SjbWWRM9u9AE8qek8qrvKkgLxAkxf-Aup25RcTJjKBvVXjgLx0Esib0WBhzo9y3bbFyadv1xD6PLuO0OlA6HUvVC1BZ7rsb0yA5pG0ayC5N5CELUIPhnfRizeqa0GR2JgRkDAM0Y1nFzgLS-4au1y3ReaYnhhPArLjHX2rXohyHG_gB0QOlsBA_8ORpv7puMt5JLKEiaf_w2DPyF2f4ceKvz0y6s7X9jm5rX93dXs-JjflmXTPdExuHR7P8tOx2yTgOc0_jLHKN4eR_ORj_v0PwUVuDw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQAcEL37DAYBZC4oVsi53a8WNXVq2iKxXb0N4sfwUitelYUqT99_ictCKIiT3wVtXnyv3Zvjv7fL9D6B3niaVa2FinxsSpMDbOCLWx63tjT6xOc2ZCsQk-nWbn52LWUgpBLkyLoD8jzpdViOTDh2Xp9lokm8DpbkJ5shbevfBYBy5RAtr4NhdJBq-7RrPJWinTfiZ4mzl3Xc-OZQoE_hs13YNB_M0H_fMp5W-2afTwP_6rR-hB66DiQdPjMbrlyifoblOy8uopsrPhdIDPdPFjVdRFc5WIxxUeL4IjX9Yf8MGqxtNljQ8rSGzy6xt7xxgHozh3cDmHP_qfOLkqve9ZFRUuSnysFotw4YKHbj6vnqGz0eHp8ChuKzXEhglex4pZ4oRy1gq4VyXUWMdybx35vlYuYRmz1GTeQybKapoyooFX3_BEG55r70E9R73Sw7GFME2s1d6RIMzZVCVCpXlCrQDHi2pK8gjR9SxJ09KYQzWNuQyxOe6PMw1QEvCTLX4Rije9Lhoaj3_IH8AC2MgCCXf4ws-dbOdMaptpDnHHPvWjdEyZfaW1P5ALkxubqQjtwPKRTUbrRpXIAWGCQbHWNEJvgwQQcZTw0uebWlWVHH_-egOhk-lNhL50hN63QvnSY2ZUm4LhkQcWsI7kdkfS6xzTad6CBbyGrvJAQqVH71r7JrzeJRJ6wRu-0i1XlRSBOorQfoReNJtmA683mxRS-iPEO9upg3-3pSy-BzJ0mjDRJ-zl9SPaQfeOTo8ncjKefnqF7jdBAXgkuI169eXKvUZ3zM-6qC7fBJXxC8dmd3s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGuYgX7rDAYBZC4oVsS5za8WPXraJihIoxtJfJ8i0QqU3HkiLt3-PjJBVBTOyFt6o-tpzPl3N87PMdhN4wFhmiuAlVonWYcG3CNCYmtEOn7GOjkpxqn2yCZVl6espnG-isi4VpEXRnxPmy8jf58GNZ2t0WyV3gK2puT3ciwqKuxs65A9wTisZueXvGIfCM1RCAdAPdZDxK4Ww2mR11GzUZppy10XRXNdTTVp7Uf711D6Bjf7NL_3xe-Zu-mtz_z1_6AN1rDVk8alp5iDZs-QjdblJbXj5GZjbORvhEFT9WRV00Lkc8rfB04Q3-sn6H91c1zpY1PqwgAMqtA-wMaOyV59yCEw8fuCaOL0tno1ZFhYsSf5SLhXfM4LGdz6sn6GRy-GX8PmwzOoSaclaHkprYcmmN4eB_jYk2luZOi7I9JW1EU2qITp0lHUujSEJjBfz7mkVKs1w5S-spGpQOok2ESWSMcgZHTK1JZMRlkkfEcDDQiCJxHiDSjZzQLd05ZN2YC3-Hx9yxpwFKAJyihTNA4brWeUP38Q_5fZgUa1kg6_Z_uPEU7TgKZVLF4H5ySFwvLZV6TyrlDu5c59qkMkDbMKVEE_m63nLEKKacQlLXJECvvQQQdpTwIuibXFWVmH76eg2h4-w6Qp97Qm9boXzpMNOyDdVwyMOc7Elu9STd3qR7xZswqTvoKgckZIR0Jrgrwt3KEVAL3vqVdrmqBPcUUzEZBuhZs5DW8Dr1SiD0P0Cst8R6-PdLyuK7J00nEeXDmD6_ukfb6M7sYCKOptmHF-huc3cAbwm30KC-WNmX6Jb-WRfVxSu_i_wC8NOGsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PCNA+ubiquitination+is+important%2C+but+not+essential+for+translesion+DNA+synthesis+in+mammalian+cells&rft.jtitle=PLoS+genetics&rft.au=Hendel%2C+Ayal&rft.au=Krijger%2C+Peter+H.L&rft.au=Diamant%2C+Noam&rft.au=Goren%2C+Zohar&rft.date=2011-09-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=7&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pgen.1002262&rft.externalDocID=A269690004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |