Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states
The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a...
Gespeichert in:
| Veröffentlicht in: | Frontiers in human neuroscience Jg. 7; S. 161 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Switzerland
Frontiers Research Foundation
2013
Frontiers Media S.A |
| Schlagworte: | |
| ISSN: | 1662-5161, 1662-5161 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations. |
|---|---|
| AbstractList | The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations. The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations. The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the duration of the after-effects of tACS is dependent on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 minutes with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 minutes with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 minutes after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations. |
| Author | Herrmann, Christoph S. Rach, Stefan Neuling, Toralf |
| AuthorAffiliation | 2 Research Center Neurosensory Science, University of Oldenburg Oldenburg, Germany 1 Experimental Psychology Lab, University of Oldenburg Oldenburg, Germany |
| AuthorAffiliation_xml | – name: 2 Research Center Neurosensory Science, University of Oldenburg Oldenburg, Germany – name: 1 Experimental Psychology Lab, University of Oldenburg Oldenburg, Germany |
| Author_xml | – sequence: 1 givenname: Toralf surname: Neuling fullname: Neuling, Toralf – sequence: 2 givenname: Stefan surname: Rach fullname: Rach, Stefan – sequence: 3 givenname: Christoph S. surname: Herrmann fullname: Herrmann, Christoph S. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23641206$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ksuLFDEQhxtZcR969yQNXrz0mEd3uuNBkMXHwsJe9BzyqJ7J2J2MSVrx6H9uzcyu7C5IQlJU1e-jUqnz6iTEAFX1kpIV54N8O4bNMq8YoXxFCBX0SXVGhWBNh_bJPfu0Os95S4hgoqPPqlPGRUsZEWfVn5tkN5BL0sWHdR1gSTHoCY3yK6bv-V2dl1y0D-BqPRZIDYwj2JLrONaoCtni4VGhJ4yGI8YuKUEodS5-Xib0xVA72EFw9bJD2yQkYlQXyM-rp6OeMry4vS-qb58-fr380lzffL66_HDdWCFFaZzraasdl47z3tlBtI4zyjg1Q2up1UM7gpC0l8zJoaeWilEAyH7UTmoyGH5RXR25Luqt2iU_6_RbRe3VwRHTWulUvJ1AgaUDLiJlb1rT9YYaJztjeCeMJF2PrPdH1m4xMziLb016egB9GAl-o9bxp-KCS94LBLy5BaT4Y8H-q9lnC9OkA8QlK8rboSOsGySmvn6Uuo0LNnrKijHJJG6-B766X9G_Uu5-GhPEMcGmmHOCUVlfDj-DBfpJUaL2I6UOI6X2I6UOI4VC8kh4x_6v5C-II9MN |
| CitedBy_id | crossref_primary_10_1016_j_biopsycho_2015_11_005 crossref_primary_10_3389_fpsyt_2022_928145 crossref_primary_10_3389_fnhum_2016_00135 crossref_primary_10_1016_j_brs_2016_02_005 crossref_primary_10_1016_j_clinph_2021_01_024 crossref_primary_10_1016_j_brs_2017_12_008 crossref_primary_10_1111_ejn_14543 crossref_primary_10_1371_journal_pbio_3001650 crossref_primary_10_3390_jpm11100979 crossref_primary_10_1186_s12993_024_00259_6 crossref_primary_10_1007_s10545_018_0181_4 crossref_primary_10_1016_j_brs_2017_04_129 crossref_primary_10_1523_JNEUROSCI_3740_13_2013 crossref_primary_10_1523_JNEUROSCI_0236_16_2016 crossref_primary_10_1016_j_neuroimage_2016_07_005 crossref_primary_10_3389_fncom_2020_575143 crossref_primary_10_1027_1016_9040_a000242 crossref_primary_10_1016_j_clinph_2015_11_012 crossref_primary_10_1038_s41598_023_34582_1 crossref_primary_10_3389_fnagi_2020_00025 crossref_primary_10_1093_cercor_bhae235 crossref_primary_10_1007_s00221_020_05820_z crossref_primary_10_1016_j_biopsycho_2021_108081 crossref_primary_10_1007_s10548_019_00727_7 crossref_primary_10_3389_fnhum_2021_628229 crossref_primary_10_1016_j_bandc_2017_07_003 crossref_primary_10_3928_00485713_20221018_02 crossref_primary_10_3390_jcm14020398 crossref_primary_10_1016_j_biopsycho_2023_108521 crossref_primary_10_3389_fnhum_2016_00245 crossref_primary_10_3389_fnins_2019_00311 crossref_primary_10_1038_s44271_025_00202_z crossref_primary_10_1111_ejn_14677 crossref_primary_10_3389_fnhum_2017_00471 crossref_primary_10_1016_j_brs_2024_04_015 crossref_primary_10_1162_jocn_a_02269 crossref_primary_10_1089_brain_2019_0710 crossref_primary_10_1162_imag_a_00531 crossref_primary_10_1016_j_jpain_2021_03_150 crossref_primary_10_1097_PR9_0000000000000723 crossref_primary_10_1371_journal_pbio_1002424 crossref_primary_10_1371_journal_pone_0162521 crossref_primary_10_3389_fnhum_2014_00899 crossref_primary_10_1016_j_brs_2023_06_013 crossref_primary_10_1088_1741_2552_aba99d crossref_primary_10_1523_JNEUROSCI_0098_17_2017 crossref_primary_10_3389_fnagi_2023_1187157 crossref_primary_10_3390_brainsci12070929 crossref_primary_10_3389_fnins_2015_00391 crossref_primary_10_1371_journal_pbio_3003180 crossref_primary_10_1016_j_tics_2015_02_004 crossref_primary_10_2196_37282 crossref_primary_10_1162_IMAG_a_140 crossref_primary_10_1016_j_neurom_2022_12_007 crossref_primary_10_1109_TNSRE_2023_3286419 crossref_primary_10_3389_fnhum_2018_00211 crossref_primary_10_1016_j_neuroimage_2014_12_014 crossref_primary_10_1089_brain_2020_0949 crossref_primary_10_3389_fncel_2016_00053 crossref_primary_10_1038_srep27138 crossref_primary_10_3389_fpsyg_2023_1280397 crossref_primary_10_1016_j_brs_2019_07_018 crossref_primary_10_1038_s41598_021_00850_1 crossref_primary_10_1177_2633105520988854 crossref_primary_10_1038_s41598_023_29124_8 crossref_primary_10_1038_s41598_019_39900_0 crossref_primary_10_1038_s43587_022_00237_5 crossref_primary_10_3390_life12091364 crossref_primary_10_1016_j_neuropsychologia_2019_107237 crossref_primary_10_1155_2016_3616807 crossref_primary_10_3389_fncel_2017_00162 crossref_primary_10_1016_j_neuroimage_2018_05_068 crossref_primary_10_1002_brb3_2019 crossref_primary_10_1016_j_ijpsycho_2019_04_002 crossref_primary_10_3389_fnhum_2024_1362593 crossref_primary_10_3389_fnins_2018_00469 crossref_primary_10_3389_fnhum_2021_750329 crossref_primary_10_3389_fnhum_2023_1197393 crossref_primary_10_1007_s00221_018_5314_3 crossref_primary_10_3389_fpsyg_2018_00304 crossref_primary_10_1016_j_neubiorev_2015_05_017 crossref_primary_10_3389_fnhum_2025_1548478 crossref_primary_10_1016_j_neuropsychologia_2020_107702 crossref_primary_10_1002_hbm_23016 crossref_primary_10_1016_j_brs_2019_07_023 crossref_primary_10_3389_fncel_2015_00181 crossref_primary_10_1177_1073858419828646 crossref_primary_10_1002_hbm_24420 crossref_primary_10_3389_fpsyg_2019_00210 crossref_primary_10_1111_cns_13631 crossref_primary_10_1073_pnas_1904160116 crossref_primary_10_1152_jn_00590_2018 crossref_primary_10_3389_fnhum_2016_00184 crossref_primary_10_1016_j_ijpsycho_2025_112539 crossref_primary_10_1016_j_neuroimage_2018_10_056 crossref_primary_10_3389_fncel_2015_00311 crossref_primary_10_1155_2016_4274127 crossref_primary_10_1103_PhysRevE_104_024213 crossref_primary_10_1097_j_pain_0000000000003452 crossref_primary_10_1089_brain_2017_0564 crossref_primary_10_1016_j_concog_2020_102953 crossref_primary_10_1111_ejn_14916 crossref_primary_10_7554_eLife_51184 crossref_primary_10_1111_psyp_70060 crossref_primary_10_1111_ejn_70042 crossref_primary_10_1016_j_bbr_2019_112170 crossref_primary_10_3389_fneur_2016_00213 crossref_primary_10_3390_s25072133 crossref_primary_10_1016_j_neuroimage_2022_119713 crossref_primary_10_1016_j_yebeh_2022_108676 crossref_primary_10_1111_ejn_13940 crossref_primary_10_1016_j_brs_2025_08_011 crossref_primary_10_1016_j_plrev_2025_03_008 crossref_primary_10_3389_fnsys_2014_00132 crossref_primary_10_7554_eLife_87820_3 crossref_primary_10_1038_srep32065 crossref_primary_10_1097_MD_0000000000039304 crossref_primary_10_3389_fneur_2021_729703 crossref_primary_10_1007_s11065_023_09621_3 crossref_primary_10_3389_fnins_2025_1524653 crossref_primary_10_3389_fnins_2025_1566615 crossref_primary_10_1177_1094428116658960 crossref_primary_10_3389_fnbeh_2018_00067 crossref_primary_10_1016_j_clinph_2020_01_008 crossref_primary_10_3389_fnsys_2022_827353 crossref_primary_10_1111_jsr_12301 crossref_primary_10_1007_s12311_021_01362_4 crossref_primary_10_1016_j_brs_2019_10_022 crossref_primary_10_1523_JNEUROSCI_1756_16_2017 crossref_primary_10_3389_fnins_2018_00428 crossref_primary_10_1007_s00426_023_01808_w crossref_primary_10_1016_j_brs_2014_08_005 crossref_primary_10_1016_j_cub_2013_12_041 crossref_primary_10_1016_j_neuropsychologia_2017_09_005 crossref_primary_10_3389_fnhum_2017_00367 crossref_primary_10_1080_17588928_2020_1817881 crossref_primary_10_3389_fnhum_2021_726604 crossref_primary_10_3389_fnhum_2017_00002 crossref_primary_10_3389_fnins_2018_00433 crossref_primary_10_1155_2023_9958884 crossref_primary_10_3389_fnins_2024_1427462 crossref_primary_10_1016_j_neuroimage_2019_116451 crossref_primary_10_3390_brainsci13071026 crossref_primary_10_1016_j_neuroimage_2025_121237 crossref_primary_10_3389_fnsys_2014_00119 crossref_primary_10_1016_j_neuroimage_2025_121474 crossref_primary_10_1038_s41398_019_0439_0 crossref_primary_10_1371_journal_pone_0143533 crossref_primary_10_1016_j_bbr_2014_07_036 crossref_primary_10_1097_j_pain_0000000000002814 crossref_primary_10_1162_jocn_a_01591 crossref_primary_10_1177_15459683241277194 crossref_primary_10_1016_j_clinph_2017_01_003 crossref_primary_10_1016_j_neuroimage_2018_02_005 crossref_primary_10_1038_s41598_022_18665_z crossref_primary_10_3389_fnhum_2017_00257 crossref_primary_10_1111_ner_12847 crossref_primary_10_3389_fnhum_2022_934382 crossref_primary_10_1176_appi_ajp_20250068 crossref_primary_10_3233_RNN_150513 crossref_primary_10_3389_fnhum_2019_00474 crossref_primary_10_1109_TNSRE_2024_3451015 crossref_primary_10_1080_23273798_2025_2454001 crossref_primary_10_1080_23273798_2016_1247970 crossref_primary_10_1038_s41539_024_00222_0 crossref_primary_10_1109_TNSRE_2024_3419753 crossref_primary_10_3389_fnhum_2016_00658 crossref_primary_10_1007_s41465_023_00264_z crossref_primary_10_1016_j_neurot_2024_e00330 crossref_primary_10_1016_j_brs_2019_06_021 crossref_primary_10_1016_j_brs_2016_04_014 crossref_primary_10_1016_j_brs_2017_10_008 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1016_j_neuropsychologia_2016_04_011 crossref_primary_10_1162_jocn_a_01449 crossref_primary_10_1016_j_brs_2018_04_006 crossref_primary_10_3389_fncel_2015_00477 crossref_primary_10_1016_j_brs_2016_04_009 crossref_primary_10_1016_j_brs_2024_02_016 crossref_primary_10_1016_j_cub_2017_11_071 crossref_primary_10_1371_journal_pbio_3000833 crossref_primary_10_1016_j_biopsych_2013_08_023 crossref_primary_10_1016_j_brs_2015_06_006 crossref_primary_10_1016_j_jpain_2025_105483 crossref_primary_10_1111_ejn_15006 crossref_primary_10_1109_ACCESS_2020_3028618 crossref_primary_10_1016_j_brainres_2019_146324 crossref_primary_10_3389_fnbeh_2016_00004 crossref_primary_10_1111_ejn_14273 crossref_primary_10_3389_fpsyg_2017_01147 crossref_primary_10_1038_s41467_024_51283_z crossref_primary_10_1016_j_neubiorev_2025_106232 crossref_primary_10_1038_s41598_021_83449_w crossref_primary_10_1016_j_bandl_2025_105630 crossref_primary_10_3389_fnhum_2018_00387 crossref_primary_10_1089_brain_2021_0006 crossref_primary_10_1155_2016_9674790 crossref_primary_10_1136_acupmed_2015_010978 crossref_primary_10_1007_s00221_021_06051_6 crossref_primary_10_3390_brainsci12020195 crossref_primary_10_3390_bs13010039 crossref_primary_10_1016_j_brs_2015_07_040 crossref_primary_10_3389_fnins_2024_1425527 crossref_primary_10_1371_journal_pone_0208691 crossref_primary_10_1017_cjn_2021_158 crossref_primary_10_1093_cercor_bhy160 crossref_primary_10_1007_s13534_023_00269_9 crossref_primary_10_3390_biomedicines11082218 crossref_primary_10_1007_s11571_022_09880_5 crossref_primary_10_1016_j_chaos_2022_112260 crossref_primary_10_1016_j_heares_2018_03_023 crossref_primary_10_1007_s10548_020_00752_x crossref_primary_10_7554_eLife_32054 crossref_primary_10_1371_journal_pbio_1002031 crossref_primary_10_3389_fpsyt_2024_1493675 crossref_primary_10_1038_s41598_023_48313_z crossref_primary_10_1016_j_tins_2016_09_001 crossref_primary_10_3389_fnins_2020_00828 crossref_primary_10_1016_j_brs_2021_03_011 crossref_primary_10_1007_s00429_023_02667_2 crossref_primary_10_3390_brainsci9110324 crossref_primary_10_1016_j_clinph_2016_10_321 crossref_primary_10_1016_j_ijpsycho_2015_02_003 crossref_primary_10_1016_j_neubiorev_2021_08_017 crossref_primary_10_3389_fnhum_2015_00118 crossref_primary_10_1016_j_msard_2023_105090 crossref_primary_10_1016_j_neuropsychologia_2017_10_035 crossref_primary_10_1371_journal_pone_0217729 crossref_primary_10_1038_s41467_019_13417_6 crossref_primary_10_1093_cercor_bhw404 crossref_primary_10_3389_fnhum_2020_00366 crossref_primary_10_1111_ncn3_12391 crossref_primary_10_1016_j_brs_2021_11_004 crossref_primary_10_3389_fnins_2018_00067 crossref_primary_10_3389_fpsyg_2017_00952 crossref_primary_10_1016_j_neurobiolaging_2015_04_016 crossref_primary_10_1016_j_cortex_2018_03_001 crossref_primary_10_1038_s41467_021_23021_2 crossref_primary_10_3389_fncel_2017_00214 crossref_primary_10_1016_j_brs_2016_11_003 crossref_primary_10_1016_j_neucli_2023_102887 crossref_primary_10_1002_brb3_1754 crossref_primary_10_1002_gps_70025 crossref_primary_10_1162_jocn_a_01403 crossref_primary_10_1371_journal_pone_0102834 crossref_primary_10_3389_fnins_2018_00376 crossref_primary_10_1371_journal_pcbi_1008144 crossref_primary_10_7554_eLife_87820 crossref_primary_10_1002_wcs_1319 crossref_primary_10_1038_s41467_018_02928_3 crossref_primary_10_1080_20445911_2021_1954013 crossref_primary_10_1016_j_brs_2020_06_008 crossref_primary_10_1016_j_cortex_2022_01_021 crossref_primary_10_1186_s12883_022_02932_7 crossref_primary_10_1371_journal_pone_0161488 crossref_primary_10_3389_fnhum_2021_640609 crossref_primary_10_1111_psyp_14651 crossref_primary_10_3389_fnhum_2016_00560 crossref_primary_10_1016_j_clinph_2021_09_013 crossref_primary_10_1371_journal_pone_0151218 crossref_primary_10_3389_fnhum_2017_00432 crossref_primary_10_1088_1741_2552_ac3ef3 crossref_primary_10_1097_YCO_0000000000000809 crossref_primary_10_1016_j_brainres_2022_147834 crossref_primary_10_1371_journal_pbio_3001999 crossref_primary_10_1002_hbm_23990 crossref_primary_10_1016_j_neuroscience_2018_09_013 crossref_primary_10_1093_scan_nsy096 crossref_primary_10_1016_j_neuroscience_2021_10_006 crossref_primary_10_1016_j_neuroimage_2022_119109 crossref_primary_10_3389_fnins_2020_00735 crossref_primary_10_1016_j_ijpsycho_2014_06_015 crossref_primary_10_1016_j_neures_2019_12_003 crossref_primary_10_3389_fpsyg_2018_02117 crossref_primary_10_3389_fnbeh_2024_1378059 crossref_primary_10_1016_j_brs_2022_01_001 crossref_primary_10_1016_j_jpain_2018_02_014 crossref_primary_10_3389_fnins_2022_870758 crossref_primary_10_1016_j_neuroimage_2021_118299 crossref_primary_10_3389_fncel_2015_00374 crossref_primary_10_1002_qub2_70 crossref_primary_10_1016_j_brs_2014_07_033 crossref_primary_10_3389_fnhum_2017_00649 crossref_primary_10_1016_j_clinph_2017_08_029 crossref_primary_10_1155_2018_3156796 crossref_primary_10_3390_brainsci14121284 crossref_primary_10_1016_j_neuron_2019_11_001 crossref_primary_10_7717_peerj_17144 crossref_primary_10_1016_j_neuroimage_2015_11_034 crossref_primary_10_1016_j_neuroimage_2015_11_035 crossref_primary_10_3389_fpsyg_2018_00984 crossref_primary_10_1038_s41467_018_07233_7 crossref_primary_10_1007_s00115_015_4317_6 crossref_primary_10_1371_journal_pone_0178579 crossref_primary_10_3389_fnhum_2017_00651 crossref_primary_10_1016_j_brs_2014_12_004 crossref_primary_10_3390_brainsci10110888 crossref_primary_10_1016_j_neuroimage_2015_10_003 crossref_primary_10_1007_s40473_017_0114_9 crossref_primary_10_1088_1741_2552_aaeb03 crossref_primary_10_3389_fnhum_2021_661432 |
| ContentType | Journal Article |
| Copyright | 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2013 Neuling, Rach and Herrmann. 2013 |
| Copyright_xml | – notice: 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2013 Neuling, Rach and Herrmann. 2013 |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3389/fnhum.2013.00161 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5161 |
| ExternalDocumentID | oai_doaj_org_article_ec181810997b4b57b1bd95bb356b9057 PMC3639376 23641206 10_3389_fnhum_2013_00161 |
| Genre | Journal Article |
| GeographicLocations | New York Germany |
| GeographicLocations_xml | – name: New York – name: Germany |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IPNFZ KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RIG RNS RPM TR2 ACXDI NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c696t-dd714ad39d337dc864d321231b84c1ca84fe691792d9871c16f6ee97fad9a08b3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 328 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318337900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1662-5161 |
| IngestDate | Fri Oct 03 12:37:10 EDT 2025 Tue Nov 04 02:01:36 EST 2025 Sun Nov 09 13:07:40 EST 2025 Fri Jul 25 11:56:00 EDT 2025 Mon Jul 21 06:04:16 EDT 2025 Tue Nov 18 21:50:58 EST 2025 Sat Nov 29 03:19:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | tACS brain state transcranial alternating current stimulation EEG alpha |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c696t-dd714ad39d337dc864d321231b84c1ca84fe691792d9871c16f6ee97fad9a08b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Caspar M. Schwiedrzik, The Rockefeller University, USA; Manuela Ruzzoli, Pompeu Fabra University, Spain Edited by: Carlo Miniussi, University of Brescia, Italy |
| OpenAccessLink | https://www.proquest.com/docview/2292992936?pq-origsite=%requestingapplication% |
| PMID | 23641206 |
| PQID | 2292992936 |
| PQPubID | 4424408 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ec181810997b4b57b1bd95bb356b9057 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3639376 proquest_miscellaneous_1348502589 proquest_journals_2292992936 pubmed_primary_23641206 crossref_citationtrail_10_3389_fnhum_2013_00161 crossref_primary_10_3389_fnhum_2013_00161 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in human neuroscience |
| PublicationTitleAlternate | Front Hum Neurosci |
| PublicationYear | 2013 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | 17086200 - Nature. 2006 Nov 30;444(7119):610-3 19692511 - J Neurophysiol. 2009 Oct;102(4):2303-11 20573914 - J Neurosci. 2010 Jun 23;30(25):8692-7 19026538 - Curr Biol. 2008 Dec 9;18(23):1839-43 22836177 - Neuroimage. 2012 Nov 1;63(2):771-8 22683259 - Curr Biol. 2012 Jul 24;22(14):1314-8 21072168 - PLoS One. 2010 Nov 01;5(11):e13766 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 11355381 - Exp Brain Res. 2001 Apr;137(3-4):346-53 20624597 - Neuron. 2010 Jul 15;67(1):129-43 21811485 - Front Psychol. 2011 Jul 20;2:170 10782127 - Trends Neurosci. 2000 May;23(5):216-22 12505648 - Brain Res Brain Res Rev. 2003 Jan;41(1):57-78 21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85 20962008 - J Physiol. 2010 Dec 15;588(Pt 24):4891-904 11723286 - Neurology. 2001 Nov 27;57(10):1899-901 22956647 - Clin EEG Neurosci. 2012 Jul;43(3):192-9 19800236 - Curr Biol. 2009 Oct 13;19(19):1637-41 20350556 - Neuropsychologia. 2010 Jun;48(7):1985-93 19506706 - Front Integr Neurosci. 2009 May 18;3:6 22855777 - J Neurophysiol. 2012 Oct;108(8):2173-8 23015792 - Front Psychiatry. 2012 Sep 24;3:83 23457586 - PLoS One. 2013;8(2):e56589 20633376 - Brain Stimul. 2008 Apr;1(2):97-105 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 8985014 - Science. 1997 Jan 10;275(5297):213-5 11163901 - Int J Psychophysiol. 2001 Jan;39(2-3):241-8 22715493 - Clin EEG Neurosci. 2012 Jul;43(3):184-91 1372224 - Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):101-9 21713181 - Front Psychol. 2011 Feb 02;2:13 17532060 - Trends Neurosci. 2007 Jul;30(7):357-64 23219965 - Behav Brain Res. 2013 Mar 15;241:1-6 18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88 15218136 - Science. 2004 Jun 25;304(5679):1926-9 16253555 - Clin Neurophysiol. 2005 Dec;116(12):2719-33 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 7691543 - Electroencephalogr Clin Neurophysiol. 1993 Sep;87(3):164-6 18562344 - Schizophr Bull. 2008 Sep;34(5):927-43 21320389 - Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45 11376500 - Hum Brain Mapp. 2001 Jul;13(3):125-64 |
| References_xml | – reference: 23457586 - PLoS One. 2013;8(2):e56589 – reference: 21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85 – reference: 11376500 - Hum Brain Mapp. 2001 Jul;13(3):125-64 – reference: 10782127 - Trends Neurosci. 2000 May;23(5):216-22 – reference: 8985014 - Science. 1997 Jan 10;275(5297):213-5 – reference: 20962008 - J Physiol. 2010 Dec 15;588(Pt 24):4891-904 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 15218136 - Science. 2004 Jun 25;304(5679):1926-9 – reference: 18562344 - Schizophr Bull. 2008 Sep;34(5):927-43 – reference: 21811485 - Front Psychol. 2011 Jul 20;2:170 – reference: 21072168 - PLoS One. 2010 Nov 01;5(11):e13766 – reference: 22715493 - Clin EEG Neurosci. 2012 Jul;43(3):184-91 – reference: 21320389 - Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45 – reference: 19026538 - Curr Biol. 2008 Dec 9;18(23):1839-43 – reference: 22683259 - Curr Biol. 2012 Jul 24;22(14):1314-8 – reference: 22855777 - J Neurophysiol. 2012 Oct;108(8):2173-8 – reference: 18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88 – reference: 20573914 - J Neurosci. 2010 Jun 23;30(25):8692-7 – reference: 20350556 - Neuropsychologia. 2010 Jun;48(7):1985-93 – reference: 12505648 - Brain Res Brain Res Rev. 2003 Jan;41(1):57-78 – reference: 11163901 - Int J Psychophysiol. 2001 Jan;39(2-3):241-8 – reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 – reference: 20624597 - Neuron. 2010 Jul 15;67(1):129-43 – reference: 11355381 - Exp Brain Res. 2001 Apr;137(3-4):346-53 – reference: 22956647 - Clin EEG Neurosci. 2012 Jul;43(3):192-9 – reference: 20633376 - Brain Stimul. 2008 Apr;1(2):97-105 – reference: 16253555 - Clin Neurophysiol. 2005 Dec;116(12):2719-33 – reference: 22836177 - Neuroimage. 2012 Nov 1;63(2):771-8 – reference: 1372224 - Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):101-9 – reference: 7691543 - Electroencephalogr Clin Neurophysiol. 1993 Sep;87(3):164-6 – reference: 19692511 - J Neurophysiol. 2009 Oct;102(4):2303-11 – reference: 17532060 - Trends Neurosci. 2007 Jul;30(7):357-64 – reference: 23219965 - Behav Brain Res. 2013 Mar 15;241:1-6 – reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 – reference: 19506706 - Front Integr Neurosci. 2009 May 18;3:6 – reference: 11723286 - Neurology. 2001 Nov 27;57(10):1899-901 – reference: 23015792 - Front Psychiatry. 2012 Sep 24;3:83 – reference: 17086200 - Nature. 2006 Nov 30;444(7119):610-3 – reference: 19800236 - Curr Biol. 2009 Oct 13;19(19):1637-41 – reference: 21713181 - Front Psychol. 2011 Feb 02;2:13 |
| SSID | ssj0062651 |
| Score | 2.5123441 |
| Snippet | The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 161 |
| SubjectTerms | alpha Brain Brain State EEG Electric fields Electroencephalography Experiments Mental disorders Neural networks Neuroscience Oscillations Rhythm Rhythms TACs Therapeutic applications transcranial alternating current stimulation Vigilance |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SPHgRtX5MrRJBBA_DbiaZTOKtisWDVA8qvYV82oLNlp3dQo_-576XzC5dEb0Iy7JMJkN23kvee3kvvx8hL30KwQvhWi0G0QqXdKuilK1QVkho0qIk2r99HE5O1Omp_nyD6gtrwio8cH1xs-jBBinM3wxOuH5wzAXdO8d76TQ4G7j6gtezCabqGgxees9qUhJCMD1L-WyNx84ZwpkyyXaMUMHq_5OD-Xud5A3Dc3yP3J08RnpUR3qf3Ir5Adk_yhAtX1zTV7TUcJbN8X3y89OyEGChWPN3WsAqsXOuxd7jGzrWA1Mx0MIO3k71HHSR6ArNlocvUElasui5PsZXDCcKq8HFxPZFK3kuXV_Cb4c0E7QcTRofkq_H77-8-9BOJAutl1qu2hAGJmzgOnA-BK-kCBzNGXNKeOatEilKiOl0FzQEV57JJGPUQ7JB27ly_BHZy4scnxDqVMeTnVvlkNiMaQvRmeXRg4sSuyRcQ2abt278hECORBg_DEQiKCdT5GRQTqbIqSGvtz0uK_rGX-59i4Lc3oe42eUCaJOZtMn8S5sacrhRAzNN5tF0HfiQ8OGyIS-2zTANMbdic1ysR8O4UD34j0o35HHVmu1IEKOfdXPoPezo085Qd1vy-VmB-uYSAQvlwf_4b0_Jna5weeD-0SHZWy3X8Rm57a9W5-PyeZk_vwC8jiTN priority: 102 providerName: Directory of Open Access Journals |
| Title | Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23641206 https://www.proquest.com/docview/2292992936 https://www.proquest.com/docview/1348502589 https://pubmed.ncbi.nlm.nih.gov/PMC3639376 https://doaj.org/article/ec181810997b4b57b1bd95bb356b9057 |
| Volume | 7 |
| WOSCitedRecordID | wos000318337900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M7P dateStart: 20080328 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: BENPR dateStart: 20080328 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: PIMPY dateStart: 20080328 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 1662-5161 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M2P dateStart: 20080328 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA_enQ---HV6rp4lggg-LG02aTbxRe6kh4JXF1GpT8vmY-8OvGzttoIvgv-5M9lttSL3IixhaTYlMJPMTGby-xHy1NbOWSFMqkUuUmFqnSovZSpUJSR0aRET7Z_e5tOpms100R-4tX1Z5XpPjBu1ayyekQ-zDAw5PFy-nH9NkTUKs6s9hcYO2UOUBB5L94r1Tgy--ph1qUkIxPSwDucrvHzOENSUSbZliiJi_7_czL-rJf8wPye3_nfit8nN3vGkR52m3CHXfLhL9o8CBN2X3-kzGktB4xn7Pvn5bhF5tFA7whmNmJc4OHQ14-0L2nb3rryjkWQ87ctCaFPTJVo_Cw1oNo3J-ND9je2goChsKpc9aRjtOHjpag7vBtkqaLzh1N4jH08mH169TnuuhtRKLZepczkTlePacZ47q6RwHK0iM0pYZislai8hNNSZ0xCjWSZr6b3O68rpaqQMv092QxP8A0KNynhdjSplkB-N6QqCvIp7C56Oz2phEjJci620PZA58ml8KSGgQUGXUdAlCrqMgk7I882IeQficcW3x6gJm-8Qfjv-0CzOyn41l96CY6QwqZgbYca5YcbpsTF8LI0GDzghh2tdKPs9oS1_K0JCnmy6YTVjiqYKvlm1JeNCjcENVTohB53abWaCUP8sG8HofEsht6a63RMuziNiOJeIeygfXj2tR-RGFsk-8IDpkOwuFyv_mFy335YX7WJAdvKZGpC948m0eD-IZxfQnmbFIC46bH9MoL94c1p8_gUi1Trt |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILrwJdKGAkQOIQ7Tr2OjYSQuVRteqy9FBQbyZ-pK3UJstmF9Qjf4jfyIyTLCxCvfWAFEVRHFtW8s14JjOej5CnrvDeCWETLTKRCFvoRAUpE6FyIaFJixho_zzKxmN1cKD3VsjPbi8MplV2OjEqal85_EfeT1NYyOHg8vXka4KsURhd7Sg0GljshrPv4LLVr3bewfd9lqZb7_ffbictq0DipJazxPuMidxz7TnPvFNSeI76m1klHHO5EkWQ4MTo1IM_zhyThQxBZ0XudT5QlsO4l8hlMCNSFVMF9zrND77BkDWhUHD8dL8oj-a42Z1hEVUm2dLSFxkC_mXW_p2d-cdyt3Xjf3tRN8n11rCmm40k3CIrobxN1jbLfFadntHnNKa6xhjCGvnxcRp5whD95SGNNT2xc9nkxNcvad3sKwueRhL1pE17oVVBZ7i6OziB5NKYbFA2w7im1BUFpXnakqLRhmOYzidwbZGNg8YdXPUd8ulCXsZdslpWZVgn1KqUF_kgVxb535jOwYnNeXBgyYW0ELZH-h1MjGsLtSNfyIkBhw2BZSKwDALLRGD1yItFj0lTpOScZ98g8hbPYXnxeKOaHppWW5ngwPBTGDTNrLDDzDLr9dBaPpRWg4XfIxsd9kyr82rzG3g98mTRDNoKQ1B5Gap5bRgXaghmttI9cq-B-WImSGXA0gH0zpYEYGmqyy3l8VGsiM4l1nWU98-f1mNydXv_w8iMdsa7D8i1NBKb4M-0DbI6m87DQ3LFfZsd19NHUawp-XLR4vEL26SQnQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXbgNWGGAkQOIhah27jo2E0GBUTJtKHwDtLfiWbdKWlKYF7ZG_xa_jHCcpFKG97QEpqqI4jqz0O7ec4_MR8tQV3jshbKJFJhJhC52oIGUilBEShrSIifbP-9l4rA4O9GSN_Oz2wmBZZacTo6L2lcNv5P00BUMOB5f9oi2LmOyMXk-_JsgghZnWjk6jgcheOPsO4Vv9ancH_utnaTp69_Ht-6RlGEic1HKeeJ8xYTzXnvPMOyWF56jLmVXCMWeUKIKEgEanHmJz5pgsZAg6K4zXZqAsh-deIpczbFoeywYnnRWAOGHImrQoBIG6X5RHC9z4zrChKpNsxQxGtoB_ubh_V2r-YfpGN_7nl3aTXG8dbrrdSMgtshbK22RjuzTz6vSMPqexBDbmFjbIjw-zyB-GUlEe0tjrEyeXTa18_ZLWzX6z4GkkV0_achhaFXSOVt_BD0g0jUUIZfMY17TAoqBMT1uyNNpwD9PFFM4tsnTQuLOrvkM-XcjLuEvWy6oMm4RalfLCDIyyyAvHtIHg1vDgwMMLaSFsj_Q7yOSubeCOPCInOQRyCLI8gixHkOURZD3yYjlj2jQvOefeN4jC5X3YdjxeqGaHeavF8uDAIVSYTM2ssMPMMuv10Fo-lFaD598jWx0O81YX1vlvEPbIk-UwaDFMTZkyVIs6Z1yoIbjfSvfIvQbyy5UgxQFLBzA7WxGGlaWujpTHR7FTOpfY71HeP39Zj8lVkIp8f3e894BcSyPfCX5j2yLr89kiPCRX3Lf5cT17FCWcki8XLR2_AIgnmVo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orchestrating+neuronal+networks%3A+sustained+after-effects+of+transcranial+alternating+current+stimulation+depend+upon+brain+states&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Neuling%2C+Toralf&rft.au=Rach%2C+Stefan&rft.au=Herrmann%2C+Christoph+S.&rft.date=2013&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=7&rft_id=info:doi/10.3389%2Ffnhum.2013.00161&rft_id=info%3Apmid%2F23641206&rft.externalDocID=PMC3639376 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |