Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states

The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in human neuroscience Jg. 7; S. 161
Hauptverfasser: Neuling, Toralf, Rach, Stefan, Herrmann, Christoph S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Research Foundation 2013
Frontiers Media S.A
Schlagworte:
ISSN:1662-5161, 1662-5161
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.
AbstractList The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.
The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the after-effects of tACS depend on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 min with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 min with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 min after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.
The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain oscillations in a frequency specific manner, offering the possibility to demonstrate a causal nature of oscillation behavior relationships. TACS is a strong candidate as a tool for clinical applications, however, to fulfill this potential, certain parameters have yet to be evaluated. First, little is known about long-lasting after-effects of tACS with respect to the modulations of rhythmic brain activity. Second, the power of endogenous brain oscillations might play a crucial role in the efficacy of tACS. We hypothesize that the duration of the after-effects of tACS is dependent on the endogenous power of oscillations. To this end, we modulated the power of endogenous occipital alpha oscillations via tACS. In two experiments, participants either had their eyes open or closed to keep endogenous alpha power either low or high while they were stimulated for 20 minutes with their individual alpha frequency (IAF) and simultaneously performing a vigilance task. After-effects on IAF power were evaluated over a course of 30 minutes with a pre stimulation period serving as baseline. After-effects were strongly dependent on IAF power. Enhanced IAF power was observed for at least 30 minutes after tACS under conditions of low endogenous IAF power, whereas, IAF power could not be further enhanced by tACS under conditions of high IAF power. The current study demonstrates, for the first time, a long lasting effect after tACS on endogenous EEG power in the range of the stimulation frequency. Additionally, we present conclusive evidence that the power of the endogenous oscillations has a critical impact on tACS efficacy. Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.
Author Herrmann, Christoph S.
Rach, Stefan
Neuling, Toralf
AuthorAffiliation 2 Research Center Neurosensory Science, University of Oldenburg Oldenburg, Germany
1 Experimental Psychology Lab, University of Oldenburg Oldenburg, Germany
AuthorAffiliation_xml – name: 2 Research Center Neurosensory Science, University of Oldenburg Oldenburg, Germany
– name: 1 Experimental Psychology Lab, University of Oldenburg Oldenburg, Germany
Author_xml – sequence: 1
  givenname: Toralf
  surname: Neuling
  fullname: Neuling, Toralf
– sequence: 2
  givenname: Stefan
  surname: Rach
  fullname: Rach, Stefan
– sequence: 3
  givenname: Christoph S.
  surname: Herrmann
  fullname: Herrmann, Christoph S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23641206$$D View this record in MEDLINE/PubMed
BookMark eNp1ksuLFDEQhxtZcR969yQNXrz0mEd3uuNBkMXHwsJe9BzyqJ7J2J2MSVrx6H9uzcyu7C5IQlJU1e-jUqnz6iTEAFX1kpIV54N8O4bNMq8YoXxFCBX0SXVGhWBNh_bJPfu0Os95S4hgoqPPqlPGRUsZEWfVn5tkN5BL0sWHdR1gSTHoCY3yK6bv-V2dl1y0D-BqPRZIDYwj2JLrONaoCtni4VGhJ4yGI8YuKUEodS5-Xib0xVA72EFw9bJD2yQkYlQXyM-rp6OeMry4vS-qb58-fr380lzffL66_HDdWCFFaZzraasdl47z3tlBtI4zyjg1Q2up1UM7gpC0l8zJoaeWilEAyH7UTmoyGH5RXR25Luqt2iU_6_RbRe3VwRHTWulUvJ1AgaUDLiJlb1rT9YYaJztjeCeMJF2PrPdH1m4xMziLb016egB9GAl-o9bxp-KCS94LBLy5BaT4Y8H-q9lnC9OkA8QlK8rboSOsGySmvn6Uuo0LNnrKijHJJG6-B766X9G_Uu5-GhPEMcGmmHOCUVlfDj-DBfpJUaL2I6UOI6X2I6UOI4VC8kh4x_6v5C-II9MN
CitedBy_id crossref_primary_10_1016_j_biopsycho_2015_11_005
crossref_primary_10_3389_fpsyt_2022_928145
crossref_primary_10_3389_fnhum_2016_00135
crossref_primary_10_1016_j_brs_2016_02_005
crossref_primary_10_1016_j_clinph_2021_01_024
crossref_primary_10_1016_j_brs_2017_12_008
crossref_primary_10_1111_ejn_14543
crossref_primary_10_1371_journal_pbio_3001650
crossref_primary_10_3390_jpm11100979
crossref_primary_10_1186_s12993_024_00259_6
crossref_primary_10_1007_s10545_018_0181_4
crossref_primary_10_1016_j_brs_2017_04_129
crossref_primary_10_1523_JNEUROSCI_3740_13_2013
crossref_primary_10_1523_JNEUROSCI_0236_16_2016
crossref_primary_10_1016_j_neuroimage_2016_07_005
crossref_primary_10_3389_fncom_2020_575143
crossref_primary_10_1027_1016_9040_a000242
crossref_primary_10_1016_j_clinph_2015_11_012
crossref_primary_10_1038_s41598_023_34582_1
crossref_primary_10_3389_fnagi_2020_00025
crossref_primary_10_1093_cercor_bhae235
crossref_primary_10_1007_s00221_020_05820_z
crossref_primary_10_1016_j_biopsycho_2021_108081
crossref_primary_10_1007_s10548_019_00727_7
crossref_primary_10_3389_fnhum_2021_628229
crossref_primary_10_1016_j_bandc_2017_07_003
crossref_primary_10_3928_00485713_20221018_02
crossref_primary_10_3390_jcm14020398
crossref_primary_10_1016_j_biopsycho_2023_108521
crossref_primary_10_3389_fnhum_2016_00245
crossref_primary_10_3389_fnins_2019_00311
crossref_primary_10_1038_s44271_025_00202_z
crossref_primary_10_1111_ejn_14677
crossref_primary_10_3389_fnhum_2017_00471
crossref_primary_10_1016_j_brs_2024_04_015
crossref_primary_10_1162_jocn_a_02269
crossref_primary_10_1089_brain_2019_0710
crossref_primary_10_1162_imag_a_00531
crossref_primary_10_1016_j_jpain_2021_03_150
crossref_primary_10_1097_PR9_0000000000000723
crossref_primary_10_1371_journal_pbio_1002424
crossref_primary_10_1371_journal_pone_0162521
crossref_primary_10_3389_fnhum_2014_00899
crossref_primary_10_1016_j_brs_2023_06_013
crossref_primary_10_1088_1741_2552_aba99d
crossref_primary_10_1523_JNEUROSCI_0098_17_2017
crossref_primary_10_3389_fnagi_2023_1187157
crossref_primary_10_3390_brainsci12070929
crossref_primary_10_3389_fnins_2015_00391
crossref_primary_10_1371_journal_pbio_3003180
crossref_primary_10_1016_j_tics_2015_02_004
crossref_primary_10_2196_37282
crossref_primary_10_1162_IMAG_a_140
crossref_primary_10_1016_j_neurom_2022_12_007
crossref_primary_10_1109_TNSRE_2023_3286419
crossref_primary_10_3389_fnhum_2018_00211
crossref_primary_10_1016_j_neuroimage_2014_12_014
crossref_primary_10_1089_brain_2020_0949
crossref_primary_10_3389_fncel_2016_00053
crossref_primary_10_1038_srep27138
crossref_primary_10_3389_fpsyg_2023_1280397
crossref_primary_10_1016_j_brs_2019_07_018
crossref_primary_10_1038_s41598_021_00850_1
crossref_primary_10_1177_2633105520988854
crossref_primary_10_1038_s41598_023_29124_8
crossref_primary_10_1038_s41598_019_39900_0
crossref_primary_10_1038_s43587_022_00237_5
crossref_primary_10_3390_life12091364
crossref_primary_10_1016_j_neuropsychologia_2019_107237
crossref_primary_10_1155_2016_3616807
crossref_primary_10_3389_fncel_2017_00162
crossref_primary_10_1016_j_neuroimage_2018_05_068
crossref_primary_10_1002_brb3_2019
crossref_primary_10_1016_j_ijpsycho_2019_04_002
crossref_primary_10_3389_fnhum_2024_1362593
crossref_primary_10_3389_fnins_2018_00469
crossref_primary_10_3389_fnhum_2021_750329
crossref_primary_10_3389_fnhum_2023_1197393
crossref_primary_10_1007_s00221_018_5314_3
crossref_primary_10_3389_fpsyg_2018_00304
crossref_primary_10_1016_j_neubiorev_2015_05_017
crossref_primary_10_3389_fnhum_2025_1548478
crossref_primary_10_1016_j_neuropsychologia_2020_107702
crossref_primary_10_1002_hbm_23016
crossref_primary_10_1016_j_brs_2019_07_023
crossref_primary_10_3389_fncel_2015_00181
crossref_primary_10_1177_1073858419828646
crossref_primary_10_1002_hbm_24420
crossref_primary_10_3389_fpsyg_2019_00210
crossref_primary_10_1111_cns_13631
crossref_primary_10_1073_pnas_1904160116
crossref_primary_10_1152_jn_00590_2018
crossref_primary_10_3389_fnhum_2016_00184
crossref_primary_10_1016_j_ijpsycho_2025_112539
crossref_primary_10_1016_j_neuroimage_2018_10_056
crossref_primary_10_3389_fncel_2015_00311
crossref_primary_10_1155_2016_4274127
crossref_primary_10_1103_PhysRevE_104_024213
crossref_primary_10_1097_j_pain_0000000000003452
crossref_primary_10_1089_brain_2017_0564
crossref_primary_10_1016_j_concog_2020_102953
crossref_primary_10_1111_ejn_14916
crossref_primary_10_7554_eLife_51184
crossref_primary_10_1111_psyp_70060
crossref_primary_10_1111_ejn_70042
crossref_primary_10_1016_j_bbr_2019_112170
crossref_primary_10_3389_fneur_2016_00213
crossref_primary_10_3390_s25072133
crossref_primary_10_1016_j_neuroimage_2022_119713
crossref_primary_10_1016_j_yebeh_2022_108676
crossref_primary_10_1111_ejn_13940
crossref_primary_10_1016_j_brs_2025_08_011
crossref_primary_10_1016_j_plrev_2025_03_008
crossref_primary_10_3389_fnsys_2014_00132
crossref_primary_10_7554_eLife_87820_3
crossref_primary_10_1038_srep32065
crossref_primary_10_1097_MD_0000000000039304
crossref_primary_10_3389_fneur_2021_729703
crossref_primary_10_1007_s11065_023_09621_3
crossref_primary_10_3389_fnins_2025_1524653
crossref_primary_10_3389_fnins_2025_1566615
crossref_primary_10_1177_1094428116658960
crossref_primary_10_3389_fnbeh_2018_00067
crossref_primary_10_1016_j_clinph_2020_01_008
crossref_primary_10_3389_fnsys_2022_827353
crossref_primary_10_1111_jsr_12301
crossref_primary_10_1007_s12311_021_01362_4
crossref_primary_10_1016_j_brs_2019_10_022
crossref_primary_10_1523_JNEUROSCI_1756_16_2017
crossref_primary_10_3389_fnins_2018_00428
crossref_primary_10_1007_s00426_023_01808_w
crossref_primary_10_1016_j_brs_2014_08_005
crossref_primary_10_1016_j_cub_2013_12_041
crossref_primary_10_1016_j_neuropsychologia_2017_09_005
crossref_primary_10_3389_fnhum_2017_00367
crossref_primary_10_1080_17588928_2020_1817881
crossref_primary_10_3389_fnhum_2021_726604
crossref_primary_10_3389_fnhum_2017_00002
crossref_primary_10_3389_fnins_2018_00433
crossref_primary_10_1155_2023_9958884
crossref_primary_10_3389_fnins_2024_1427462
crossref_primary_10_1016_j_neuroimage_2019_116451
crossref_primary_10_3390_brainsci13071026
crossref_primary_10_1016_j_neuroimage_2025_121237
crossref_primary_10_3389_fnsys_2014_00119
crossref_primary_10_1016_j_neuroimage_2025_121474
crossref_primary_10_1038_s41398_019_0439_0
crossref_primary_10_1371_journal_pone_0143533
crossref_primary_10_1016_j_bbr_2014_07_036
crossref_primary_10_1097_j_pain_0000000000002814
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_1177_15459683241277194
crossref_primary_10_1016_j_clinph_2017_01_003
crossref_primary_10_1016_j_neuroimage_2018_02_005
crossref_primary_10_1038_s41598_022_18665_z
crossref_primary_10_3389_fnhum_2017_00257
crossref_primary_10_1111_ner_12847
crossref_primary_10_3389_fnhum_2022_934382
crossref_primary_10_1176_appi_ajp_20250068
crossref_primary_10_3233_RNN_150513
crossref_primary_10_3389_fnhum_2019_00474
crossref_primary_10_1109_TNSRE_2024_3451015
crossref_primary_10_1080_23273798_2025_2454001
crossref_primary_10_1080_23273798_2016_1247970
crossref_primary_10_1038_s41539_024_00222_0
crossref_primary_10_1109_TNSRE_2024_3419753
crossref_primary_10_3389_fnhum_2016_00658
crossref_primary_10_1007_s41465_023_00264_z
crossref_primary_10_1016_j_neurot_2024_e00330
crossref_primary_10_1016_j_brs_2019_06_021
crossref_primary_10_1016_j_brs_2016_04_014
crossref_primary_10_1016_j_brs_2017_10_008
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1016_j_neuropsychologia_2016_04_011
crossref_primary_10_1162_jocn_a_01449
crossref_primary_10_1016_j_brs_2018_04_006
crossref_primary_10_3389_fncel_2015_00477
crossref_primary_10_1016_j_brs_2016_04_009
crossref_primary_10_1016_j_brs_2024_02_016
crossref_primary_10_1016_j_cub_2017_11_071
crossref_primary_10_1371_journal_pbio_3000833
crossref_primary_10_1016_j_biopsych_2013_08_023
crossref_primary_10_1016_j_brs_2015_06_006
crossref_primary_10_1016_j_jpain_2025_105483
crossref_primary_10_1111_ejn_15006
crossref_primary_10_1109_ACCESS_2020_3028618
crossref_primary_10_1016_j_brainres_2019_146324
crossref_primary_10_3389_fnbeh_2016_00004
crossref_primary_10_1111_ejn_14273
crossref_primary_10_3389_fpsyg_2017_01147
crossref_primary_10_1038_s41467_024_51283_z
crossref_primary_10_1016_j_neubiorev_2025_106232
crossref_primary_10_1038_s41598_021_83449_w
crossref_primary_10_1016_j_bandl_2025_105630
crossref_primary_10_3389_fnhum_2018_00387
crossref_primary_10_1089_brain_2021_0006
crossref_primary_10_1155_2016_9674790
crossref_primary_10_1136_acupmed_2015_010978
crossref_primary_10_1007_s00221_021_06051_6
crossref_primary_10_3390_brainsci12020195
crossref_primary_10_3390_bs13010039
crossref_primary_10_1016_j_brs_2015_07_040
crossref_primary_10_3389_fnins_2024_1425527
crossref_primary_10_1371_journal_pone_0208691
crossref_primary_10_1017_cjn_2021_158
crossref_primary_10_1093_cercor_bhy160
crossref_primary_10_1007_s13534_023_00269_9
crossref_primary_10_3390_biomedicines11082218
crossref_primary_10_1007_s11571_022_09880_5
crossref_primary_10_1016_j_chaos_2022_112260
crossref_primary_10_1016_j_heares_2018_03_023
crossref_primary_10_1007_s10548_020_00752_x
crossref_primary_10_7554_eLife_32054
crossref_primary_10_1371_journal_pbio_1002031
crossref_primary_10_3389_fpsyt_2024_1493675
crossref_primary_10_1038_s41598_023_48313_z
crossref_primary_10_1016_j_tins_2016_09_001
crossref_primary_10_3389_fnins_2020_00828
crossref_primary_10_1016_j_brs_2021_03_011
crossref_primary_10_1007_s00429_023_02667_2
crossref_primary_10_3390_brainsci9110324
crossref_primary_10_1016_j_clinph_2016_10_321
crossref_primary_10_1016_j_ijpsycho_2015_02_003
crossref_primary_10_1016_j_neubiorev_2021_08_017
crossref_primary_10_3389_fnhum_2015_00118
crossref_primary_10_1016_j_msard_2023_105090
crossref_primary_10_1016_j_neuropsychologia_2017_10_035
crossref_primary_10_1371_journal_pone_0217729
crossref_primary_10_1038_s41467_019_13417_6
crossref_primary_10_1093_cercor_bhw404
crossref_primary_10_3389_fnhum_2020_00366
crossref_primary_10_1111_ncn3_12391
crossref_primary_10_1016_j_brs_2021_11_004
crossref_primary_10_3389_fnins_2018_00067
crossref_primary_10_3389_fpsyg_2017_00952
crossref_primary_10_1016_j_neurobiolaging_2015_04_016
crossref_primary_10_1016_j_cortex_2018_03_001
crossref_primary_10_1038_s41467_021_23021_2
crossref_primary_10_3389_fncel_2017_00214
crossref_primary_10_1016_j_brs_2016_11_003
crossref_primary_10_1016_j_neucli_2023_102887
crossref_primary_10_1002_brb3_1754
crossref_primary_10_1002_gps_70025
crossref_primary_10_1162_jocn_a_01403
crossref_primary_10_1371_journal_pone_0102834
crossref_primary_10_3389_fnins_2018_00376
crossref_primary_10_1371_journal_pcbi_1008144
crossref_primary_10_7554_eLife_87820
crossref_primary_10_1002_wcs_1319
crossref_primary_10_1038_s41467_018_02928_3
crossref_primary_10_1080_20445911_2021_1954013
crossref_primary_10_1016_j_brs_2020_06_008
crossref_primary_10_1016_j_cortex_2022_01_021
crossref_primary_10_1186_s12883_022_02932_7
crossref_primary_10_1371_journal_pone_0161488
crossref_primary_10_3389_fnhum_2021_640609
crossref_primary_10_1111_psyp_14651
crossref_primary_10_3389_fnhum_2016_00560
crossref_primary_10_1016_j_clinph_2021_09_013
crossref_primary_10_1371_journal_pone_0151218
crossref_primary_10_3389_fnhum_2017_00432
crossref_primary_10_1088_1741_2552_ac3ef3
crossref_primary_10_1097_YCO_0000000000000809
crossref_primary_10_1016_j_brainres_2022_147834
crossref_primary_10_1371_journal_pbio_3001999
crossref_primary_10_1002_hbm_23990
crossref_primary_10_1016_j_neuroscience_2018_09_013
crossref_primary_10_1093_scan_nsy096
crossref_primary_10_1016_j_neuroscience_2021_10_006
crossref_primary_10_1016_j_neuroimage_2022_119109
crossref_primary_10_3389_fnins_2020_00735
crossref_primary_10_1016_j_ijpsycho_2014_06_015
crossref_primary_10_1016_j_neures_2019_12_003
crossref_primary_10_3389_fpsyg_2018_02117
crossref_primary_10_3389_fnbeh_2024_1378059
crossref_primary_10_1016_j_brs_2022_01_001
crossref_primary_10_1016_j_jpain_2018_02_014
crossref_primary_10_3389_fnins_2022_870758
crossref_primary_10_1016_j_neuroimage_2021_118299
crossref_primary_10_3389_fncel_2015_00374
crossref_primary_10_1002_qub2_70
crossref_primary_10_1016_j_brs_2014_07_033
crossref_primary_10_3389_fnhum_2017_00649
crossref_primary_10_1016_j_clinph_2017_08_029
crossref_primary_10_1155_2018_3156796
crossref_primary_10_3390_brainsci14121284
crossref_primary_10_1016_j_neuron_2019_11_001
crossref_primary_10_7717_peerj_17144
crossref_primary_10_1016_j_neuroimage_2015_11_034
crossref_primary_10_1016_j_neuroimage_2015_11_035
crossref_primary_10_3389_fpsyg_2018_00984
crossref_primary_10_1038_s41467_018_07233_7
crossref_primary_10_1007_s00115_015_4317_6
crossref_primary_10_1371_journal_pone_0178579
crossref_primary_10_3389_fnhum_2017_00651
crossref_primary_10_1016_j_brs_2014_12_004
crossref_primary_10_3390_brainsci10110888
crossref_primary_10_1016_j_neuroimage_2015_10_003
crossref_primary_10_1007_s40473_017_0114_9
crossref_primary_10_1088_1741_2552_aaeb03
crossref_primary_10_3389_fnhum_2021_661432
ContentType Journal Article
Copyright 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2013 Neuling, Rach and Herrmann. 2013
Copyright_xml – notice: 2013. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2013 Neuling, Rach and Herrmann. 2013
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2013.00161
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_ec181810997b4b57b1bd95bb356b9057
PMC3639376
23641206
10_3389_fnhum_2013_00161
Genre Journal Article
GeographicLocations New York
Germany
GeographicLocations_xml – name: New York
– name: Germany
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IPNFZ
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RIG
RNS
RPM
TR2
ACXDI
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c696t-dd714ad39d337dc864d321231b84c1ca84fe691792d9871c16f6ee97fad9a08b3
IEDL.DBID M7P
ISICitedReferencesCount 328
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318337900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5161
IngestDate Fri Oct 03 12:37:10 EDT 2025
Tue Nov 04 02:01:36 EST 2025
Sun Nov 09 13:07:40 EST 2025
Fri Jul 25 11:56:00 EDT 2025
Mon Jul 21 06:04:16 EDT 2025
Tue Nov 18 21:50:58 EST 2025
Sat Nov 29 03:19:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords tACS
brain state
transcranial alternating current stimulation
EEG
alpha
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c696t-dd714ad39d337dc864d321231b84c1ca84fe691792d9871c16f6ee97fad9a08b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Caspar M. Schwiedrzik, The Rockefeller University, USA; Manuela Ruzzoli, Pompeu Fabra University, Spain
Edited by: Carlo Miniussi, University of Brescia, Italy
OpenAccessLink https://www.proquest.com/docview/2292992936?pq-origsite=%requestingapplication%
PMID 23641206
PQID 2292992936
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_ec181810997b4b57b1bd95bb356b9057
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3639376
proquest_miscellaneous_1348502589
proquest_journals_2292992936
pubmed_primary_23641206
crossref_citationtrail_10_3389_fnhum_2013_00161
crossref_primary_10_3389_fnhum_2013_00161
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2013
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 17086200 - Nature. 2006 Nov 30;444(7119):610-3
19692511 - J Neurophysiol. 2009 Oct;102(4):2303-11
20573914 - J Neurosci. 2010 Jun 23;30(25):8692-7
19026538 - Curr Biol. 2008 Dec 9;18(23):1839-43
22836177 - Neuroimage. 2012 Nov 1;63(2):771-8
22683259 - Curr Biol. 2012 Jul 24;22(14):1314-8
21072168 - PLoS One. 2010 Nov 01;5(11):e13766
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
11355381 - Exp Brain Res. 2001 Apr;137(3-4):346-53
20624597 - Neuron. 2010 Jul 15;67(1):129-43
21811485 - Front Psychol. 2011 Jul 20;2:170
10782127 - Trends Neurosci. 2000 May;23(5):216-22
12505648 - Brain Res Brain Res Rev. 2003 Jan;41(1):57-78
21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85
20962008 - J Physiol. 2010 Dec 15;588(Pt 24):4891-904
11723286 - Neurology. 2001 Nov 27;57(10):1899-901
22956647 - Clin EEG Neurosci. 2012 Jul;43(3):192-9
19800236 - Curr Biol. 2009 Oct 13;19(19):1637-41
20350556 - Neuropsychologia. 2010 Jun;48(7):1985-93
19506706 - Front Integr Neurosci. 2009 May 18;3:6
22855777 - J Neurophysiol. 2012 Oct;108(8):2173-8
23015792 - Front Psychiatry. 2012 Sep 24;3:83
23457586 - PLoS One. 2013;8(2):e56589
20633376 - Brain Stimul. 2008 Apr;1(2):97-105
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
8985014 - Science. 1997 Jan 10;275(5297):213-5
11163901 - Int J Psychophysiol. 2001 Jan;39(2-3):241-8
22715493 - Clin EEG Neurosci. 2012 Jul;43(3):184-91
1372224 - Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):101-9
21713181 - Front Psychol. 2011 Feb 02;2:13
17532060 - Trends Neurosci. 2007 Jul;30(7):357-64
23219965 - Behav Brain Res. 2013 Mar 15;241:1-6
18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88
15218136 - Science. 2004 Jun 25;304(5679):1926-9
16253555 - Clin Neurophysiol. 2005 Dec;116(12):2719-33
19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
7691543 - Electroencephalogr Clin Neurophysiol. 1993 Sep;87(3):164-6
18562344 - Schizophr Bull. 2008 Sep;34(5):927-43
21320389 - Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45
11376500 - Hum Brain Mapp. 2001 Jul;13(3):125-64
References_xml – reference: 23457586 - PLoS One. 2013;8(2):e56589
– reference: 21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85
– reference: 11376500 - Hum Brain Mapp. 2001 Jul;13(3):125-64
– reference: 10782127 - Trends Neurosci. 2000 May;23(5):216-22
– reference: 8985014 - Science. 1997 Jan 10;275(5297):213-5
– reference: 20962008 - J Physiol. 2010 Dec 15;588(Pt 24):4891-904
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 15218136 - Science. 2004 Jun 25;304(5679):1926-9
– reference: 18562344 - Schizophr Bull. 2008 Sep;34(5):927-43
– reference: 21811485 - Front Psychol. 2011 Jul 20;2:170
– reference: 21072168 - PLoS One. 2010 Nov 01;5(11):e13766
– reference: 22715493 - Clin EEG Neurosci. 2012 Jul;43(3):184-91
– reference: 21320389 - Int J Neuropsychopharmacol. 2011 Sep;14(8):1133-45
– reference: 19026538 - Curr Biol. 2008 Dec 9;18(23):1839-43
– reference: 22683259 - Curr Biol. 2012 Jul 24;22(14):1314-8
– reference: 22855777 - J Neurophysiol. 2012 Oct;108(8):2173-8
– reference: 18829955 - J Neurosci. 2008 Oct 1;28(40):9976-88
– reference: 20573914 - J Neurosci. 2010 Jun 23;30(25):8692-7
– reference: 20350556 - Neuropsychologia. 2010 Jun;48(7):1985-93
– reference: 12505648 - Brain Res Brain Res Rev. 2003 Jan;41(1):57-78
– reference: 11163901 - Int J Psychophysiol. 2001 Jan;39(2-3):241-8
– reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
– reference: 20624597 - Neuron. 2010 Jul 15;67(1):129-43
– reference: 11355381 - Exp Brain Res. 2001 Apr;137(3-4):346-53
– reference: 22956647 - Clin EEG Neurosci. 2012 Jul;43(3):192-9
– reference: 20633376 - Brain Stimul. 2008 Apr;1(2):97-105
– reference: 16253555 - Clin Neurophysiol. 2005 Dec;116(12):2719-33
– reference: 22836177 - Neuroimage. 2012 Nov 1;63(2):771-8
– reference: 1372224 - Electroencephalogr Clin Neurophysiol. 1992 Mar-Apr;84(2):101-9
– reference: 7691543 - Electroencephalogr Clin Neurophysiol. 1993 Sep;87(3):164-6
– reference: 19692511 - J Neurophysiol. 2009 Oct;102(4):2303-11
– reference: 17532060 - Trends Neurosci. 2007 Jul;30(7):357-64
– reference: 23219965 - Behav Brain Res. 2013 Mar 15;241:1-6
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 19506706 - Front Integr Neurosci. 2009 May 18;3:6
– reference: 11723286 - Neurology. 2001 Nov 27;57(10):1899-901
– reference: 23015792 - Front Psychiatry. 2012 Sep 24;3:83
– reference: 17086200 - Nature. 2006 Nov 30;444(7119):610-3
– reference: 19800236 - Curr Biol. 2009 Oct 13;19(19):1637-41
– reference: 21713181 - Front Psychol. 2011 Feb 02;2:13
SSID ssj0062651
Score 2.5123441
Snippet The interest in transcranial alternating current stimulation (tACS) has significantly increased in the past decade. It has potential to modulate brain...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 161
SubjectTerms alpha
Brain
Brain State
EEG
Electric fields
Electroencephalography
Experiments
Mental disorders
Neural networks
Neuroscience
Oscillations
Rhythm
Rhythms
TACs
Therapeutic applications
transcranial alternating current stimulation
Vigilance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SPHgRtX5MrRJBBA_DbiaZTOKtisWDVA8qvYV82oLNlp3dQo_-576XzC5dEb0Iy7JMJkN23kvee3kvvx8hL30KwQvhWi0G0QqXdKuilK1QVkho0qIk2r99HE5O1Omp_nyD6gtrwio8cH1xs-jBBinM3wxOuH5wzAXdO8d76TQ4G7j6gtezCabqGgxees9qUhJCMD1L-WyNx84ZwpkyyXaMUMHq_5OD-Xud5A3Dc3yP3J08RnpUR3qf3Ir5Adk_yhAtX1zTV7TUcJbN8X3y89OyEGChWPN3WsAqsXOuxd7jGzrWA1Mx0MIO3k71HHSR6ArNlocvUElasui5PsZXDCcKq8HFxPZFK3kuXV_Cb4c0E7QcTRofkq_H77-8-9BOJAutl1qu2hAGJmzgOnA-BK-kCBzNGXNKeOatEilKiOl0FzQEV57JJGPUQ7JB27ly_BHZy4scnxDqVMeTnVvlkNiMaQvRmeXRg4sSuyRcQ2abt278hECORBg_DEQiKCdT5GRQTqbIqSGvtz0uK_rGX-59i4Lc3oe42eUCaJOZtMn8S5sacrhRAzNN5tF0HfiQ8OGyIS-2zTANMbdic1ysR8O4UD34j0o35HHVmu1IEKOfdXPoPezo085Qd1vy-VmB-uYSAQvlwf_4b0_Jna5weeD-0SHZWy3X8Rm57a9W5-PyeZk_vwC8jiTN
  priority: 102
  providerName: Directory of Open Access Journals
Title Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states
URI https://www.ncbi.nlm.nih.gov/pubmed/23641206
https://www.proquest.com/docview/2292992936
https://www.proquest.com/docview/1348502589
https://pubmed.ncbi.nlm.nih.gov/PMC3639376
https://doaj.org/article/ec181810997b4b57b1bd95bb356b9057
Volume 7
WOSCitedRecordID wos000318337900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M7P
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: BENPR
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: PIMPY
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M2P
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEA_enQ---HV6rp4lggg-LG02aTbxRe6kh4JXF1GpT8vmY-8OvGzttoIvgv-5M9lttSL3IixhaTYlMJPMTGby-xHy1NbOWSFMqkUuUmFqnSovZSpUJSR0aRET7Z_e5tOpms100R-4tX1Z5XpPjBu1ayyekQ-zDAw5PFy-nH9NkTUKs6s9hcYO2UOUBB5L94r1Tgy--ph1qUkIxPSwDucrvHzOENSUSbZliiJi_7_czL-rJf8wPye3_nfit8nN3vGkR52m3CHXfLhL9o8CBN2X3-kzGktB4xn7Pvn5bhF5tFA7whmNmJc4OHQ14-0L2nb3rryjkWQ87ctCaFPTJVo_Cw1oNo3J-ND9je2goChsKpc9aRjtOHjpag7vBtkqaLzh1N4jH08mH169TnuuhtRKLZepczkTlePacZ47q6RwHK0iM0pYZislai8hNNSZ0xCjWSZr6b3O68rpaqQMv092QxP8A0KNynhdjSplkB-N6QqCvIp7C56Oz2phEjJci620PZA58ml8KSGgQUGXUdAlCrqMgk7I882IeQficcW3x6gJm-8Qfjv-0CzOyn41l96CY6QwqZgbYca5YcbpsTF8LI0GDzghh2tdKPs9oS1_K0JCnmy6YTVjiqYKvlm1JeNCjcENVTohB53abWaCUP8sG8HofEsht6a63RMuziNiOJeIeygfXj2tR-RGFsk-8IDpkOwuFyv_mFy335YX7WJAdvKZGpC948m0eD-IZxfQnmbFIC46bH9MoL94c1p8_gUi1Trt
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILrwJdKGAkQOIQ7Tr2OjYSQuVRteqy9FBQbyZ-pK3UJstmF9Qjf4jfyIyTLCxCvfWAFEVRHFtW8s14JjOej5CnrvDeCWETLTKRCFvoRAUpE6FyIaFJixho_zzKxmN1cKD3VsjPbi8MplV2OjEqal85_EfeT1NYyOHg8vXka4KsURhd7Sg0GljshrPv4LLVr3bewfd9lqZb7_ffbictq0DipJazxPuMidxz7TnPvFNSeI76m1klHHO5EkWQ4MTo1IM_zhyThQxBZ0XudT5QlsO4l8hlMCNSFVMF9zrND77BkDWhUHD8dL8oj-a42Z1hEVUm2dLSFxkC_mXW_p2d-cdyt3Xjf3tRN8n11rCmm40k3CIrobxN1jbLfFadntHnNKa6xhjCGvnxcRp5whD95SGNNT2xc9nkxNcvad3sKwueRhL1pE17oVVBZ7i6OziB5NKYbFA2w7im1BUFpXnakqLRhmOYzidwbZGNg8YdXPUd8ulCXsZdslpWZVgn1KqUF_kgVxb535jOwYnNeXBgyYW0ELZH-h1MjGsLtSNfyIkBhw2BZSKwDALLRGD1yItFj0lTpOScZ98g8hbPYXnxeKOaHppWW5ngwPBTGDTNrLDDzDLr9dBaPpRWg4XfIxsd9kyr82rzG3g98mTRDNoKQ1B5Gap5bRgXaghmttI9cq-B-WImSGXA0gH0zpYEYGmqyy3l8VGsiM4l1nWU98-f1mNydXv_w8iMdsa7D8i1NBKb4M-0DbI6m87DQ3LFfZsd19NHUawp-XLR4vEL26SQnQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXbgNWGGAkQOIhah27jo2E0GBUTJtKHwDtLfiWbdKWlKYF7ZG_xa_jHCcpFKG97QEpqqI4jqz0O7ec4_MR8tQV3jshbKJFJhJhC52oIGUilBEShrSIifbP-9l4rA4O9GSN_Oz2wmBZZacTo6L2lcNv5P00BUMOB5f9oi2LmOyMXk-_JsgghZnWjk6jgcheOPsO4Vv9ancH_utnaTp69_Ht-6RlGEic1HKeeJ8xYTzXnvPMOyWF56jLmVXCMWeUKIKEgEanHmJz5pgsZAg6K4zXZqAsh-deIpczbFoeywYnnRWAOGHImrQoBIG6X5RHC9z4zrChKpNsxQxGtoB_ubh_V2r-YfpGN_7nl3aTXG8dbrrdSMgtshbK22RjuzTz6vSMPqexBDbmFjbIjw-zyB-GUlEe0tjrEyeXTa18_ZLWzX6z4GkkV0_achhaFXSOVt_BD0g0jUUIZfMY17TAoqBMT1uyNNpwD9PFFM4tsnTQuLOrvkM-XcjLuEvWy6oMm4RalfLCDIyyyAvHtIHg1vDgwMMLaSFsj_Q7yOSubeCOPCInOQRyCLI8gixHkOURZD3yYjlj2jQvOefeN4jC5X3YdjxeqGaHeavF8uDAIVSYTM2ssMPMMuv10Fo-lFaD598jWx0O81YX1vlvEPbIk-UwaDFMTZkyVIs6Z1yoIbjfSvfIvQbyy5UgxQFLBzA7WxGGlaWujpTHR7FTOpfY71HeP39Zj8lVkIp8f3e894BcSyPfCX5j2yLr89kiPCRX3Lf5cT17FCWcki8XLR2_AIgnmVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orchestrating+neuronal+networks%3A+sustained+after-effects+of+transcranial+alternating+current+stimulation+depend+upon+brain+states&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Neuling%2C+Toralf&rft.au=Rach%2C+Stefan&rft.au=Herrmann%2C+Christoph+S.&rft.date=2013&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=7&rft_id=info:doi/10.3389%2Ffnhum.2013.00161&rft_id=info%3Apmid%2F23641206&rft.externalDocID=PMC3639376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon