Asymptotics of Statistical Estimates Constructedfrom Censored Samples of Distributions with RegularlyVarying Tails

We consider the asymptotic behavior of the Pitman estimators $\hat \theta_n$ for the density location parameter $f(x-\theta)=C(1+\alpha)(x-\theta)^{\alpha}L(x-\theta)$, $x\downarrow \theta $, $\alpha>-1$, $L(x)=1+D_1(1+\ell (1+\alpha)^{-1})x^{\ell }+o(x^{\ell })$, $\ell >0$, by observations ov...

Full description

Saved in:
Bibliographic Details
Published in:Theory of probability and its applications Vol. 42; no. 3; pp. 495 - 512
Main Author: Tikhov, M. S.
Format: Journal Article
Language:English
Published: Philadelphia Society for Industrial and Applied Mathematics 01.07.1998
Subjects:
ISSN:0040-585X, 1095-7219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the asymptotic behavior of the Pitman estimators $\hat \theta_n$ for the density location parameter $f(x-\theta)=C(1+\alpha)(x-\theta)^{\alpha}L(x-\theta)$, $x\downarrow \theta $, $\alpha>-1$, $L(x)=1+D_1(1+\ell (1+\alpha)^{-1})x^{\ell }+o(x^{\ell })$, $\ell >0$, by observations over the first $k$ ordered statistics $(X_n^{(1)},\ldots,X_n^{(k)})$, when $k=k(n)\to \infty$, $k/n\to 0$ as $n\to \infty$. The limiting distributions of $\hat \theta_n$ are described for various values of $\alpha$. Our proofs use properties and asymptotic expansions of the hypergeometric functions in several variables. Simple asymptotically efficient estimators of $\theta$ are given as linear functionals of the ordered statistics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97976271