Predicting semantic segmentation quality in laryngeal endoscopy images

Endoscopy is a major tool for assessing the physiology of inner organs. Contemporary artificial intelligence methods are used to fully automatically label medical important classes on a pixel-by-pixel level. This so-called semantic segmentation is for example used to detect cancer tissue or to asses...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 20; číslo 7; s. e0314573
Hlavní autoři: Kist, Andreas M., Razi, Sina, Groh, René, Gritsch, Florian, Schützenberger, Anne
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 03.07.2025
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Endoscopy is a major tool for assessing the physiology of inner organs. Contemporary artificial intelligence methods are used to fully automatically label medical important classes on a pixel-by-pixel level. This so-called semantic segmentation is for example used to detect cancer tissue or to assess laryngeal physiology. However, due to the diversity of patients presenting, it is necessary to judge the segmentation quality. In this study, we present a fully automatic system to evaluate the segmentation performance in laryngeal endoscopy images. We showcase on glottal area segmentation that the predicted segmentation quality represented by the intersection over union metric is on par with human raters. Using a traffic light system, we are able to identify problematic segmentation frames to allow human-in-the-loop improvements, important for the clinical adaptation of automatic analysis procedures.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0314573