Probing T-cell response by sequence-based probabilistic modeling

With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learni...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS computational biology Ročník 17; číslo 9; s. e1009297
Hlavní autoři: Bravi, Barbara, Balachandran, Vinod P., Greenbaum, Benjamin D., Walczak, Aleksandra M., Mora, Thierry, Monasson, Rémi, Cocco, Simona
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 02.09.2021
PLOS
Public Library of Science (PLoS)
Témata:
ISSN:1553-7358, 1553-734X, 1553-7358
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.
AbstractList With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion. Large repertoires of immune cells, such as T cells, are increasingly made available by high-throughput sequencing. Exploiting such datasets to infer how T cells respond to antigens could help design vaccines and adoptive T-cell therapies. We here propose an approach based on probabilistic machine learning to identify and characterize responding T cells. After learning, this approach is able to distinguish clones that specifically respond to different antigen stimulations. The model parameters and the low-dimensional representations of the T-cell sequences identify sequence motifs underlying T-cell recognition at the molecular level. The approach is illustrated on repertoire data describing in vitro stimulation of T cells by cancer-related neoantigens, as well as on data for common infectious diseases.
With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.
With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion.
Audience Academic
Author Greenbaum, Benjamin D.
Walczak, Aleksandra M.
Monasson, Rémi
Bravi, Barbara
Mora, Thierry
Balachandran, Vinod P.
Cocco, Simona
AuthorAffiliation 3 Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York State, United States of America
Emory University, UNITED STATES
2 Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York State, United States of America
1 Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
AuthorAffiliation_xml – name: 2 Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York State, United States of America
– name: 3 Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York State, United States of America
– name: Emory University, UNITED STATES
– name: 1 Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
Author_xml – sequence: 1
  givenname: Barbara
  surname: Bravi
  fullname: Bravi, Barbara
– sequence: 2
  givenname: Vinod P.
  surname: Balachandran
  fullname: Balachandran, Vinod P.
– sequence: 3
  givenname: Benjamin D.
  surname: Greenbaum
  fullname: Greenbaum, Benjamin D.
– sequence: 4
  givenname: Aleksandra M.
  surname: Walczak
  fullname: Walczak, Aleksandra M.
– sequence: 5
  givenname: Thierry
  orcidid: 0000-0002-5456-9361
  surname: Mora
  fullname: Mora, Thierry
– sequence: 6
  givenname: Rémi
  orcidid: 0000-0002-4459-0204
  surname: Monasson
  fullname: Monasson, Rémi
– sequence: 7
  givenname: Simona
  orcidid: 0000-0002-1852-7789
  surname: Cocco
  fullname: Cocco, Simona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34473697$$D View this record in MEDLINE/PubMed
https://hal.sorbonne-universite.fr/hal-03351495$$DView record in HAL
BookMark eNqVk11v0zAUhiM0xD7gHyCIxA27SLHjr5gLRDUBq1QBgnFt-eOkc5XGJU6n7d_PoSlaqwkJxVKsk-d9fc6Jz2l21IYWsuwlRhNMBH63DJuu1c1kbY2fYIRkKcWT7AQzRgpBWHX0YH-cnca4RChtJX-WHRNKBeFSnGQfv3fB-HaRXxUWmibvIK5DGyE3d3mE3xtoLRRGR3D5OpHa-MbH3tt8FRw0Sfg8e1rrJsKL8X2W_fr86erisph_-zK7mM4LyyXrCyJdRXVdsdJoRnUpKk5rhzAYLqFGFEBwDVSUxGBbMVJSKDWm2FS1rJ2pyVn2euu7bkJUY_FRlaxKi9NSJmK2JVzQS7Xu_Ep3dypor_4EQrdQukupN6CwQRKENI5YS0stNXd4SE8iaSh1g9eH8bSNWYGz0PadbvZM97-0_lotwo2qqOAI4WRwvjW4PpBdTudqiCFCGKaS3Qzs2_GwLqSOx16tfBz-hm4hbIYauSSCUzHk9eYAfbwTI7XQqVjf1iHlaAdTNeVCMJSuCkrU5BEqPQ5W3qbLVvsU3xOc7wkS08Ntv9CbGNXs54__YL_us68eNvtvu3a3NAHvt4DtQowd1Mr6Xvc-DL33jcJIDSOx64UaRkKNI5HE9EC88_-n7B59ag7a
CitedBy_id crossref_primary_10_1209_0295_5075_ada636
crossref_primary_10_3389_fimmu_2022_939394
crossref_primary_10_1038_s41586_022_04735_9
crossref_primary_10_7554_eLife_85126
crossref_primary_10_1038_s41541_023_00795_8
crossref_primary_10_1038_s42003_023_04447_4
crossref_primary_10_1073_pnas_2213264120
Cites_doi 10.1186/s13059-017-1272-5
10.1038/nature24473
10.1146/annurev-immunol-042718-041757
10.7554/eLife.22057
10.1038/s41467-018-02832-w
10.1084/jem.20141308
10.7554/eLife.39397
10.1016/j.jim.2007.01.019
10.1038/s41587-020-0505-4
10.1371/journal.pcbi.1008394
10.1162/089976602760128018
10.1016/j.cell.2020.09.015
10.1038/nature22976
10.1073/pnas.73.10.3628
10.1371/journal.pone.0141561
10.1371/journal.pcbi.1007873
10.3389/fimmu.2020.00027
10.1038/nature24462
10.1073/pnas.1409572111
10.7554/eLife.46935
10.1016/j.ccell.2015.03.001
10.1016/j.celrep.2017.03.072
10.1103/PhysRevE.101.062414
10.1103/PhysRevLett.118.138301
10.1038/nrc1167
10.1038/nrc.2016.154
10.1038/nsmb.3383
10.1371/journal.pbio.3000314
10.1038/nature22383
10.1093/bioinformatics/btz035
10.3389/fimmu.2017.01566
10.1017/CBO9780511790492
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Bravi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
2021 Bravi et al 2021 Bravi et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Bravi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
– notice: 2021 Bravi et al 2021 Bravi et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1371/journal.pcbi.1009297
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
CrossRef


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Probabilistic models for T-cell response
EISSN 1553-7358
ExternalDocumentID 2582586429
oai_doaj_org_article_1b09e79bd3cc42a9a6d184af909b44d9
PMC8476001
oai:HAL:hal-03351495v1
A677502970
34473697
10_1371_journal_pcbi_1009297
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations France
GeographicLocations_xml – name: France
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: U01 CA224175
– fundername: ;
– fundername: ;
  grantid: Pershing Square Sohn Prize-Mark Foundation Fellowship
– fundername: ;
  grantid: ANR-17 RBMPro CE30-0021
– fundername: ;
  grantid: ANR-19-CE45-0018 RESP-REP
– fundername: ;
  grantid: NIH U01CA224175
– fundername: ;
  grantid: 724208
– fundername: ;
  grantid: Flash Covid 19 - FRM, PROJET SARS-Cov-2immunRNAs
– fundername: ;
  grantid: QuanTI
– fundername: ;
  grantid: ANR-19 Decrypted CE30-0021-01
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
1XC
VOOES
5PM
AAPBV
ABPTK
ACDSR
BBAFP
M~E
N95
UMP
ID FETCH-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3
IEDL.DBID FPL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000724165700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun Jan 01 07:45:51 EST 2023
Mon Nov 10 04:35:31 EST 2025
Tue Nov 04 01:53:05 EST 2025
Wed Nov 19 06:38:15 EST 2025
Fri Sep 05 08:22:58 EDT 2025
Sat Nov 29 14:45:30 EST 2025
Tue Nov 11 10:29:07 EST 2025
Tue Nov 04 17:57:00 EST 2025
Thu Nov 13 15:07:59 EST 2025
Thu Nov 13 14:59:46 EST 2025
Thu Apr 03 07:06:14 EDT 2025
Sat Nov 29 02:42:13 EST 2025
Tue Nov 18 21:19:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c695t-39d84af852ba54a27864fd01eb69ef04ee76ae4723b1c85324e2a141b8f9fdbf3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8476001
I have read the journal’s policy and the authors of this manuscript have the following competing interests: B.G. has received honoraria for speaking engagements from Merck, Bristol-Meyers Squibb, and Chugai Pharmaceuticals, has received research funding from Bristol-Meyers Squibb, and has been a compensated consultant for Darwin health, PMV Pharma and Rome Therapeutics of which he is a cofounder.
ORCID 0000-0002-5456-9361
0000-0002-1852-7789
0000-0002-4459-0204
0000-0003-4860-7584
0000-0002-2686-5702
OpenAccessLink http://dx.doi.org/10.1371/journal.pcbi.1009297
PMID 34473697
PQID 2582586429
PQPubID 1436340
ParticipantIDs plos_journals_2582586429
doaj_primary_oai_doaj_org_article_1b09e79bd3cc42a9a6d184af909b44d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476001
hal_primary_oai_HAL_hal_03351495v1
proquest_miscellaneous_2569376479
proquest_journals_2582586429
gale_infotracmisc_A677502970
gale_infotracacademiconefile_A677502970
gale_incontextgauss_ISR_A677502970
gale_incontextgauss_ISN_A677502970
pubmed_primary_34473697
crossref_citationtrail_10_1371_journal_pcbi_1009297
crossref_primary_10_1371_journal_pcbi_1009297
PublicationCentury 2000
PublicationDate 20210902
PublicationDateYYYYMMDD 2021-09-02
PublicationDate_xml – month: 9
  year: 2021
  text: 20210902
  day: 2
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2021
Publisher Public Library of Science
PLOS
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: PLOS
– name: Public Library of Science (PLoS)
References Z Sethna (pcbi.1009297.ref015) 2020; 16
DK Wells (pcbi.1009297.ref003) 2020; 183
J Tubiana (pcbi.1009297.ref034) 2017; 118
V Roudko (pcbi.1009297.ref031) 2020; 11
VP Balachandran (pcbi.1009297.ref016) 2017; 551
JW Sidhom (pcbi.1009297.ref029) 2021; 12
I Song (pcbi.1009297.ref005) 2017; 24
G Chen (pcbi.1009297.ref006) 2017; 19
H Huang (pcbi.1009297.ref023) 2020; 38
P Bradley (pcbi.1009297.ref007) 2019; 37
AM Bjerregaard (pcbi.1009297.ref010) 2017; 8
VI Levenshtein (pcbi.1009297.ref037) 1966; 10
P Smolensky (pcbi.1009297.ref012) 1986
V Venturi (pcbi.1009297.ref025) 2007; 321
ME Dudley (pcbi.1009297.ref004) 2003; 3
M Yarchoan (pcbi.1009297.ref002) 2017; 17
F Duan (pcbi.1009297.ref008) 2014; 211
T Mora (pcbi.1009297.ref026) 2018
MP Touzel (pcbi.1009297.ref011) 2020; 16
J Tubiana (pcbi.1009297.ref014) 2019; 8
K Davidsen (pcbi.1009297.ref028) 2019; 8
G Isacchini (pcbi.1009297.ref030) 2020; 101
J Glanville (pcbi.1009297.ref022) 2017; 547
SL Topalian (pcbi.1009297.ref001) 2015; 27
M Łuksza (pcbi.1009297.ref009) 2017; 551
GE Hinton (pcbi.1009297.ref013) 2002; 14
Z Sethna (pcbi.1009297.ref021) 2019; 35
MV Pogorelyy (pcbi.1009297.ref027) 2019; 17
N Hozumi (pcbi.1009297.ref020) 1976; 73
Q Marcou (pcbi.1009297.ref035) 2018; 9
A Madi (pcbi.1009297.ref032) 2017; 6
P Dash (pcbi.1009297.ref017) 2017; 547
R Durbin (pcbi.1009297.ref018) 1998
M Klinger (pcbi.1009297.ref024) 2015; 10
AF Rubin (pcbi.1009297.ref033) 2017; 18
Y Elhanati (pcbi.1009297.ref036) 2014; 111
B Bravi (pcbi.1009297.ref019) 2021; 12
References_xml – volume: 18
  start-page: 150
  issue: 1
  year: 2017
  ident: pcbi.1009297.ref033
  article-title: A Statistical Framework for Analyzing Deep Mutational Scanning Data
  publication-title: Genome Biology
  doi: 10.1186/s13059-017-1272-5
– volume: 551
  start-page: 517
  issue: 7681
  year: 2017
  ident: pcbi.1009297.ref009
  article-title: A Neoantigen Fitness Model Predicts Tumour Response to Checkpoint Blockade Immunotherapy
  publication-title: Nature
  doi: 10.1038/nature24473
– volume: 10
  start-page: 707
  issue: 8
  year: 1966
  ident: pcbi.1009297.ref037
  article-title: Binary Codes Capable of Correcting Deletions, Insertions and Reversals
  publication-title: Soviet Physics Doklady
– start-page: 194
  volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition
  year: 1986
  ident: pcbi.1009297.ref012
– volume: 12
  start-page: 195
  issue: 2
  year: 2021
  ident: pcbi.1009297.ref019
  article-title: RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles
  publication-title: cels
– volume: 37
  start-page: 547
  year: 2019
  ident: pcbi.1009297.ref007
  article-title: Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-042718-041757
– volume: 6
  year: 2017
  ident: pcbi.1009297.ref032
  article-title: T Cell Receptor Repertoires of Mice and Humans Are Clustered in Similarity Networks around Conserved Public CDR3 Sequences
  publication-title: Elife
  doi: 10.7554/eLife.22057
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: pcbi.1009297.ref035
  article-title: High-Throughput Immune Repertoire Analysis with IGoR
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-02832-w
– volume: 211
  start-page: 2231
  issue: 11
  year: 2014
  ident: pcbi.1009297.ref008
  article-title: Genomic and Bioinformatic Profiling of Mutational Neoepitopes Reveals New Rules to Predict Anticancer Immunogenicity
  publication-title: J Exp Med
  doi: 10.1084/jem.20141308
– volume: 8
  start-page: e39397
  year: 2019
  ident: pcbi.1009297.ref014
  article-title: Learning Protein Constitutive Motifs from Sequence Data
  publication-title: eLife
  doi: 10.7554/eLife.39397
– volume: 321
  start-page: 182
  issue: 1-2
  year: 2007
  ident: pcbi.1009297.ref025
  article-title: Methods for Comparing the Diversity of Samples of the T Cell Receptor Repertoire
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2007.01.019
– volume: 38
  start-page: 1194
  issue: 10
  year: 2020
  ident: pcbi.1009297.ref023
  article-title: Analyzing the Mycobacterium Tuberculosis Immune Response by T-Cell Receptor Clustering with GLIPH2 and Genome-Wide Antigen Screening
  publication-title: Nature Biotechnology
  doi: 10.1038/s41587-020-0505-4
– volume: 16
  start-page: e1008394
  issue: 12
  year: 2020
  ident: pcbi.1009297.ref015
  article-title: Population Variability in the Generation and Selection of T-Cell Repertoires
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008394
– volume: 14
  start-page: 1771
  issue: 8
  year: 2002
  ident: pcbi.1009297.ref013
  article-title: Training Products of Experts by Minimizing Contrastive Divergence
  publication-title: Neural Comput
  doi: 10.1162/089976602760128018
– volume: 183
  start-page: 818
  issue: 3
  year: 2020
  ident: pcbi.1009297.ref003
  article-title: Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.015
– volume: 547
  start-page: 94
  issue: 7661
  year: 2017
  ident: pcbi.1009297.ref022
  article-title: Identifying Specificity Groups in the T Cell Receptor Repertoire
  publication-title: Nature
  doi: 10.1038/nature22976
– volume: 73
  start-page: 3628
  issue: 10
  year: 1976
  ident: pcbi.1009297.ref020
  article-title: Evidence for Somatic Rearrangement of Immunoglobulin Genes Coding for Variable and Constant Regions
  publication-title: PNAS
  doi: 10.1073/pnas.73.10.3628
– volume: 10
  start-page: e0141561
  issue: 10
  year: 2015
  ident: pcbi.1009297.ref024
  article-title: Multiplex Identification of Antigen-Specific T Cell Receptors Using a Combination of Immune Assays and Immune Receptor Sequencing
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0141561
– volume: 16
  start-page: e1007873
  issue: 4
  year: 2020
  ident: pcbi.1009297.ref011
  article-title: Inferring the Immune Response from Repertoire Sequencing
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1007873
– volume: 11
  start-page: 27
  year: 2020
  ident: pcbi.1009297.ref031
  article-title: Computational Prediction and Validation of Tumor-Associated Neoantigens
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00027
– volume: 551
  start-page: 512
  issue: 7681
  year: 2017
  ident: pcbi.1009297.ref016
  article-title: Identification of Unique Neoantigen Qualities in Long-Term Survivors of Pancreatic Cancer
  publication-title: Nature
  doi: 10.1038/nature24462
– volume: 111
  start-page: 9875
  issue: 27
  year: 2014
  ident: pcbi.1009297.ref036
  article-title: Quantifying Selection in Immune Receptor Repertoires
  publication-title: PNAS
  doi: 10.1073/pnas.1409572111
– volume: 12
  issue: 1605
  year: 2021
  ident: pcbi.1009297.ref029
  article-title: DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires
  publication-title: Nature Communications
– volume: 8
  start-page: e46935
  year: 2019
  ident: pcbi.1009297.ref028
  article-title: Deep Generative Models for T Cell Receptor Protein Sequences
  publication-title: eLife
  doi: 10.7554/eLife.46935
– volume: 27
  start-page: 450
  issue: 4
  year: 2015
  ident: pcbi.1009297.ref001
  article-title: Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 19
  start-page: 569
  issue: 3
  year: 2017
  ident: pcbi.1009297.ref006
  article-title: Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8+ TCR Repertoires to Immunodominant Viral Antigens
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.072
– volume-title: Quantifying Lymphocyte Receptor Diversity
  year: 2018
  ident: pcbi.1009297.ref026
– volume: 101
  start-page: 062414
  issue: 6
  year: 2020
  ident: pcbi.1009297.ref030
  article-title: Generative Models of T-Cell Receptor Sequences
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.101.062414
– volume: 118
  start-page: 138301
  issue: 13
  year: 2017
  ident: pcbi.1009297.ref034
  article-title: Emergence of Compositional Representations in Restricted Boltzmann Machines
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.118.138301
– volume: 3
  start-page: 666
  issue: 9
  year: 2003
  ident: pcbi.1009297.ref004
  article-title: Adoptive-Cell-Transfer Therapy for the treatment of patients with cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1167
– volume: 17
  start-page: 209
  issue: 4
  year: 2017
  ident: pcbi.1009297.ref002
  article-title: Targeting Neoantigens to Augment Antitumour Immunity
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.154
– volume: 24
  start-page: 395
  issue: 4
  year: 2017
  ident: pcbi.1009297.ref005
  article-title: Broad TCR Repertoire and Diverse Structural Solutions for Recognition of an Immunodominant CD8+ T Cell Epitope
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.3383
– volume: 17
  start-page: e3000314
  issue: 6
  year: 2019
  ident: pcbi.1009297.ref027
  article-title: Detecting T Cell Receptors Involved in Immune Responses from Single Repertoire Snapshots
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.3000314
– volume: 547
  start-page: 89
  issue: 7661
  year: 2017
  ident: pcbi.1009297.ref017
  article-title: Quantifiable Predictive Features Define Epitope-Specific T Cell Receptor Repertoires
  publication-title: Nature
  doi: 10.1038/nature22383
– volume: 35
  start-page: 2974
  issue: 17
  year: 2019
  ident: pcbi.1009297.ref021
  article-title: OLGA: Fast Computation of Generation Probabilities of B- and T-Cell Receptor Amino Acid Sequences and Motifs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz035
– volume: 8
  year: 2017
  ident: pcbi.1009297.ref010
  article-title: An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01566
– volume-title: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
  year: 1998
  ident: pcbi.1009297.ref018
  doi: 10.1017/CBO9780511790492
SSID ssj0035896
Score 2.414445
Snippet With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009297
SubjectTerms Amino acids
Antigen (tumor-associated)
Antigens
Biology and Life Sciences
Cancer
Cancer Survivors
Carcinoma, Pancreatic Ductal - immunology
Cloning
Cluster Analysis
Computational Biology - methods
Cytokines
Datasets
Datasets as Topic
Epitopes
Humans
Immunotherapy
Infectious diseases
Information processing
Learning algorithms
Learning models (Stochastic processes)
Life Sciences
Lymphocytes
Lymphocytes T
Machine learning
Mathematical models
Medicine and Health Sciences
Models, Statistical
Mutation
Neoantigens
Next-generation sequencing
Pancreatic Neoplasms - immunology
Patients
Peptides
Physiological aspects
Probabilistic models
Receptors, Antigen, T-Cell - immunology
Research and Analysis Methods
T cell receptors
T cells
T-cell receptor
T-Lymphocytes - immunology
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdb2GAvpfts1mx4Y7AnrbasD-tt2VjpoISydSNvQpLlJlCcECeF_ve78xfx6OjLXq1z5PuQ7y6--x0hH2wCTr7wGo64iCl3UlCnc07BU2Wew0Jcd8j9PlezWTaf64u9UV9YE9bAAzeCO0lcrIPSLk-958xqK3NISmwBP-I4z-vWPYh6umSqeQenIqsnc-FQHKpSPm-b5lKVnLQ6-rT2bok1AhAfqIFTqrH7-zf0wwUWSI7W16vqriD071rKPed0ekgO2qgymjbcPCUPQvmMPG7mTN4-J58vEG2pvIouKf5RH22awtgQuduoq6Wm6M_yCAfM1KC7iN8c1XNy4MYX5Nfpt8uvZ7QdnUC91GJLU52jkDLBnBXcMpVJXuRxEpzUoYh5CErawBVLXeLBYzMemE144rJCF7kr0pdkVK7KcEQinqhQKG6zQuSgSwkJSGZjZyGyFCrXyZikneyMb3HFcbzFtak_linILxohGJS4aSU-JrS_a93gatxD_wXV0tMiKnZ9AWzFtLZi7rOVMXmPSjWIe1FiYc2V3VWV-f5zZqZSQewEG8X_JPoxIPrYEhUrYNbbtpkBRIZ4WgPKyYASTq8f7rZAVvfYOpueG7wWp9hlocUNiPgI7a8TTGWYgMQeVMqApUlnk3cvv-uXcWesqCvDaoc0EiJTyRXQvGpMuH8KRIFMJQpdDYx78JjDlXK5qLHJIdjBEPr1_1DXMXnCsIIIP9-xCRltN7vwhjzyN9tltXlbH_g_cf9YAg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYAYkXvmGFgQJC4sksdpw4foKCmIaYqgkG2ptlO05baUpK007af89d4pQFDXjgNT7H9vl8d7bPvyPklWFg5EunYImnMRU2S6lVhaBgqXInoCBuX8h9P5LTaX56qo7DgVsTwip7ndgq6qJ2eEa-z1PYy-TgLau3yx8Us0bh7WpIobFDrjPOGcr5Z0l7TZykeZufC1PjUJmI0_B0LpFsP8zUm6WzC4wUAC9BDkxTi-C_1dM7cwyTHC3P6uYqV_T3iMpLJurgzv8O7i65HZzTaNJJ0z1yzVf3yc0uXeXFA_LuGEGbqll0QvG8P1p18bU-shdRH5JN0SwWEeapabF7EQY6atPtQMWH5NvBx5MPhzRkYKAuU-maJqrIhSnzlFuTCsMl9LEsYuZtpnwZC-9lZryQPLHMgeHnwnPDBLN5qcrClskjMqrqyu-SSDDpSylMXqYFiEQG-5jcxNaAg5rKQrExSXrmaxfgyTFLxplu79wkbFM6JmicMh2mbEzottayg-f4B_17nNctLYJrtx_q1UyHtaqZjZWXyhaJc4IbZbKCIRtAbq0QhRqTlygVGuEzKozPmZlN0-hPX6d6kklwwaCh-I9EXwZErwNRWcNgnQlvIoBlCMs1oNwbUIIScMPW5jjUS8M6nBxp_BYn-FhDpefA4l0U4J4xjf4ldvD7XjCvLn6xLcaWMTCv8vUGaTJwcDMhgeZxtwa2vUAwySRDpsvB6hh0c1hSLeYtxDn4TOiJP_l7t56SWxxDjPB-j--R0Xq18c_IDXe-XjSr560u-AmVCGVl
  priority: 102
  providerName: ProQuest
Title Probing T-cell response by sequence-based probabilistic modeling
URI https://www.ncbi.nlm.nih.gov/pubmed/34473697
https://www.proquest.com/docview/2582586429
https://www.proquest.com/docview/2569376479
https://hal.sorbonne-universite.fr/hal-03351495
https://pubmed.ncbi.nlm.nih.gov/PMC8476001
https://doaj.org/article/1b09e79bd3cc42a9a6d184af909b44d9
http://dx.doi.org/10.1371/journal.pcbi.1009297
Volume 17
WOSCitedRecordID wos000724165700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdoBxIvfMM6ShUQEk9hieOP-I0OrdpEqaIxUOHFshNnrTSlVT8m7b_fXZKWZVqFePFDfJZ957PvHJ9_R8hHE4KRz1MFS5wHPrOC-1ZlzAdLFacMKoLyhdyvoRyN4vFYJX8Pindu8CMZHtYy_TxP7RTv9MGeyxbZo5EQGMI1SIabnTfisRL187hdLRvmp0Tp3-7FrQmGQrbnl7Plfe7m3ajJW2Zo8PR_GXhGntQOp9evNOQ5eeCKF-RRlYLy-iX5kiAQU3Hhnfv4D99bVDGzzrPX3ibM2kdTl3mYe6bE40VoZ69MoQMNX5Gfg-Pzryd-nVXBT4XiKz9SWcxMHnNqDWeGyliwPAtCZ4VyecCck8I4JmlkwxSMOWWOmpCFNs5Vntk8ek3axaxw-8RjoXS5ZCbOeQbTLOBsEpvAGnA6ucxU2CHRRtg6rSHHMfPFpS7v0SQcPSohaJSNrmXTIf621byC3PgH_RHO45YWAbPLDzAJul5_OrSBclLZLEpTRo0yIgtRDKCLlrFMdcgH1AKNkBgFxtxcmPVyqU9_jHRfSHCroKNgJ9FZg-hTTZTPgNnU1O8cQGQItdWg7DYoYWGnzd4myOottk76Q43fgggfYCh-BSLeR4XdCGapKYczP0wpBZa6GyW-v_r9thp7xmC7ws3WSCPAaRVMAs2bSue3o0CAyEig0GVjNTSG2awpppMSthz8IPSuD3aP-C15TDFkCO_raJe0V4u1e0cepler6XLRIy05lmUZ98je0fEoOeuVv1B65S4A5Tfp9zB4N4Ey4X-AKjn9nvy-ASalWqU
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLZmCggu7DCFAQICcTKTxYnjA4KyjFq1VCMoqDdjO05baZSULoP6p_iNvJelTNAApzlwjV-8vLzN8fP3CHmqPHDyqRGg4qFLmY5CqkXCKHiq2DBocIsbcl8GfDiMx2NxtEN-1HdhMK2ytomFoU5yg__ID_wQ9jIxRMvi1fwbxapReLpal9AoxaJvN99hy7Z82XsH3_eZ7x--H73t0qqqADWRCFc0EEnMVBqHvlYhUz6HTtPE9ayOhE1dZi2PlGXcD7RnwJn5zPrKY56OU5EmOg2g311ygQUxR6z-Pqe15Q_CuKgHhqV4KA_YuLqqF3DvoJKMF3OjZ5iZAFEJb7jComLA1i_sTjEtszU_zpdnhb6_Z3CecomH1_43Zl4nV6vg2-mU2nKD7NjsJrlUluPc3CKvjxCUKps4I4rnGc6izB-2jt44dco5RbefOFiHp8AmRphrpygnBC_eJp_PZfp3SCvLM7tHHOZxm3Km4jRMQOQj2KfFytUKAvCQJ8Jrk6D-2NJU8OtYBeRYFmeKHLZhJRMkioisRKRN6PateQk_8g_6NyhHW1oEDy8e5IuJrGyR9LQrLBc6CYxhvhIqSjxkA-ilZiwRbfIEpVAiPEiG-UcTtV4uZe_TUHYiDiEmDOT-kehjg-h5RZTmsFijqjsfwDKEHWtQ7jcowciZ5mhTXOqpZXU7A4nP3AAvo4jwBFi8hwpTM2Ypf4k5dF8rwtnNj7fNODImHmY2XyNNBAF8xDjQ3C11bjsLBMsMImQ6b2hjY5rNlmw2LSDcISbEnca9v0_rEbncHX0YyEFv2L9PrviYToVnmf4-aa0Wa_uAXDQnq9ly8bCwQw75et66-hNwBcNc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZ2y0NceMMWFggIxMk0DyeODwgKS7VVq2oFC-rN2I7TVlolpY9F_Wv8OmbyKBu0wGkPXONxbE_m88zE4xlCnisPlHxqBEA8dCnTUUi1SBgFTRUbBg1ucUPuy5CPRvF4LI52yI_6LgyGVdZ7YrFRJ7nBf-QdPwRfJgZrWXTSKizi6KD3Zv6NYgUpPGmty2mUIjKwm-_gvi1f9w_gW7_w_d6H4_eHtKowQE0kwhUNRBIzlcahr1XIlM9hgDRxPasjYVOXWcsjZRn3A-0ZUGw-s77ymKfjVKSJTgN47y65BFo4RIwNOK21QBDGRW0wLMtDecDG1bW9gHudSkpezY2eYZQCWCi8oRaL6gFbHbE7xRDN1vwkX55nBv8ezXlGPfZu_M-MvUmuV0a50y1RdIvs2Ow2uVKW6dzcIW-PMFlVNnGOKZ5zOIsyrtg6euPUoegUzYHEwfo8Rc5iTH_tFGWGoONd8vlCpn-PtLI8s3vEYR63KWcqTsMEoBCB_xYrVyswzEOeCK9NgvrDS1OlZcfqICeyOGvk4J6VTJAoLrISlzah217zMi3JP-jfoUxtaTGpePEgX0xktUdJT7vCcqGTwBjmK6GixEM2AF41Y4lok2cokRLThmQoJxO1Xi5l_9NIdiMOpicM5P6R6GOD6GVFlOawWKOquyDAMkxH1qDcb1DC5meao01xqWeWddgdSnzmBnhJRYSnwOI9BE_NmKX8JfLw-hoU5zc_3TbjyBiQmNl8jTQRGPYR40Bzv8TfdhaYRDOIkOm8gczGNJst2WxapHYHWxE9kAd_n9YTchUgKof90eAhueZjlBUecfr7pLVarO0jctmcrmbLxeNiS3LI14uG6k_aTMwW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+T-cell+response+by+sequence-based+probabilistic+modeling&rft.jtitle=PLoS+computational+biology&rft.au=Bravi%2C+Barbara&rft.au=Balachandran%2C+Vinod&rft.au=Greenbaum%2C+Benjamin&rft.au=Walczak%2C+Aleksandra&rft.date=2021-09-02&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pcbi.1009297&rft.externalDocID=2582586429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon