DockStream: a docking wrapper to enhance de novo molecular design
Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstac...
Uložené v:
| Vydané v: | Journal of cheminformatics Ročník 13; číslo 1; s. 89 - 21 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
17.11.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1758-2946, 1758-2946 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at
https://github.com/MolecularAI/DockStream
. |
|---|---|
| AbstractList | Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at
https://github.com/MolecularAI/DockStream
. Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream. Abstract Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream . Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream .Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream . Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at Keywords: De novo design, Generative Models, Reinforcement Learning (RL), Molecular docking, Structure-based drug discovery (SBDD) |
| ArticleNumber | 89 |
| Audience | Academic |
| Author | Papadopoulos, Kostas Nittinger, Eva Engkvist, Ola Guo, Jeff Bauer, Matthias R. Janet, Jon Paul Giblin, Kathryn A. Margreitter, Christian Voronov, Alexey Patronov, Atanas |
| Author_xml | – sequence: 1 givenname: Jeff surname: Guo fullname: Guo, Jeff organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca – sequence: 2 givenname: Jon Paul surname: Janet fullname: Janet, Jon Paul organization: Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca – sequence: 3 givenname: Matthias R. surname: Bauer fullname: Bauer, Matthias R. organization: Structure & Biophysics, Discovery Sciences, R&D, AstraZeneca – sequence: 4 givenname: Eva surname: Nittinger fullname: Nittinger, Eva organization: Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca – sequence: 5 givenname: Kathryn A. surname: Giblin fullname: Giblin, Kathryn A. organization: Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca – sequence: 6 givenname: Kostas surname: Papadopoulos fullname: Papadopoulos, Kostas organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca – sequence: 7 givenname: Alexey surname: Voronov fullname: Voronov, Alexey organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca – sequence: 8 givenname: Atanas surname: Patronov fullname: Patronov, Atanas organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca – sequence: 9 givenname: Ola surname: Engkvist fullname: Engkvist, Ola organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca, Department of Computer Science and Engineering, Chalmers University of Technology – sequence: 10 givenname: Christian orcidid: 0000-0002-5473-6318 surname: Margreitter fullname: Margreitter, Christian email: christian.margreitter@astrazeneca.com organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca |
| BackLink | https://research.chalmers.se/publication/527226$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9kktv1DAUhSNURB_wB1hFYgOLKX47ZoE0Kq-RKiExsLYc-ybjktiDnWnh3-MwRWUqVEVW7OtzPlvH97Q6CjFAVT3H6BzjRrzOmFKCF2geiAu6kI-qEyx5syCKiaN_5sfVac5XCAkukXxSHVMmG0UpP6mW76L9vp4SmPFNbWpXVj709U0y2y2keoo1hI0JFmoHdYjXsR7jAHY3mFQq2ffhafW4M0OGZ7f_s-rbh_dfLz4tLj9_XF0sLxdWKDYtbOsYw4S25RJKcExAMgGybbqOcwJWYkuFocg5cMJCY5xzAhSTSnZN5xw9q1Z7rovmSm-TH036paPx-k8hpl6bNHk7gOaEMsEQ5hhbhjFWyri2nE8IFq0CWVjrPSvfwHbXHtASZDDJbrTdmGGElHUGLRF0XdspzTsFmiFltFJSaosJp0xZhzpVqG_31IIcwVkIUzLDAfxwJ_iN7uO1bkoiDZ4BL28BKf7YQZ706LOFYTAB4i5rwpVCUmCCi_TFPelV3KVQHmBWNUQJJuSdqjclFh-6WM61M1QvRSOYJIqzojr_j6p8DkZvS891vtQPDK8ODEUzwc-pN7uc9Wr95VDb7LU2xZwTdNr6yUw-zhH4QWOk52bW-2bWaB5zM-v59uSe9W-UD5ro7dMWcegh3QXzgOs3g8kEew |
| CitedBy_id | crossref_primary_10_1038_s41598_025_12685_1 crossref_primary_10_1186_s13321_023_00772_2 crossref_primary_10_1007_s10822_023_00512_6 crossref_primary_10_1186_s13321_022_00667_8 crossref_primary_10_1186_s13321_023_00781_1 crossref_primary_10_1186_s13321_024_00812_5 crossref_primary_10_1186_s13321_022_00646_z crossref_primary_10_1021_acs_jchemed_4c00253 crossref_primary_10_3390_technologies12070095 crossref_primary_10_1021_acs_jmedchem_5c00359 crossref_primary_10_1038_s41467_025_60629_0 crossref_primary_10_3389_fchem_2022_1012507 crossref_primary_10_1107_S1600576724005934 crossref_primary_10_1016_j_drudis_2024_104106 crossref_primary_10_1038_s42256_022_00494_4 crossref_primary_10_1186_s13321_024_00861_w crossref_primary_10_1016_j_sbi_2023_102559 crossref_primary_10_1186_s13321_023_00760_6 crossref_primary_10_1016_j_drudis_2022_103439 crossref_primary_10_1016_j_mycmed_2023_101411 crossref_primary_10_1039_D3SC04653B |
| Cites_doi | 10.1039/C6CP01555G 10.1021/jm051256o 10.26434/chemrxiv.14371967.v1 10.1016/j.bmcl.2009.10.102 10.1038/s41573-019-0050-3 10.1146/annurev-biophys-083012-130318 10.1080/17460441.2021.1909567 10.1002/jcc.21334 10.1016/j.cbpa.2010.02.018 10.1002/jcc.21498 10.1038/384644a0 10.1021/acs.jcim.9b00383 10.1038/s41586-019-0917-9 10.1186/s13321-020-00473-0 10.1098/rstb.2017.0070 10.1007/s10822-013-9672-4 10.1038/nchem.1243 10.1186/1758-2946-3-33 10.1126/sciadv.aap7885 10.1016/j.ddtec.2010.10.003 10.1101/2021.04.06.438722 10.3390/ijms17020144 10.1021/acsomega.7b00274 10.1016/j.bmcl.2010.03.091 10.1186/s13321-021-00516-0 10.1007/978-1-60327-216-2_23 10.1021/jm901137j 10.1186/s13321-017-0256-5 10.1042/BCJ20200781 10.1021/ct300857j 10.1007/s10822-012-9584-8 10.1016/S0169-409X(96)00423-1 10.1517/17460441.2012.714363 10.1021/jm0306430 10.1093/biomet/33.3.239 10.1186/s13321-019-0404-1 10.1021/ci400115b 10.1006/jmbi.1996.0897 10.5772/intechopen.68318 10.1021/ci00020a039 10.1021/jm030644s 10.1186/s13321-018-0286-7 10.1080/03610910903168603 10.1158/0008-5472.CAN-12-2038 10.3390/ijms20184331 10.1093/nar/gkw1074 10.1021/acs.jcim.0c00171 10.1107/S2052520616003954 10.1371/journal.pcbi.1003571 10.1007/s10822-013-9644-8 10.1186/1741-7007-9-71 10.1093/bib/bbaa161 10.1186/s13321-019-0393-0 10.1073/pnas.0705356104 10.1088/2632-2153/abcf91 10.1186/s13321-021-00498-z 10.1021/acs.jcim.5b00142 10.1021/acs.jctc.8b01026 10.1007/s10822-008-9181-z 10.1110/ps.47601 10.1007/s00894-019-4032-5 10.1021/ci100031x 10.1038/s41598-020-78537-2 10.1021/ci100050t 10.1021/ja00051a040 10.26434/chemrxiv.14045072.v1 10.1201/9780367802417 10.1002/3527603743.ch11 10.1021/acs.jcim.0c00915 10.26434/chemrxiv.14774223.v1 10.3115/v1/D14-1179 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7X7 7XB 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P P5Z P62 P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC DOA |
| DOI | 10.1186/s13321-021-00563-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1758-2946 |
| EndPage | 21 |
| ExternalDocumentID | oai_doaj_org_article_52346401511c411199adbbd42216b9e7 oai_research_chalmers_se_70effbf9_5f9e_409a_9977_c125349cd0f9 PMC8596819 A686472954 10_1186_s13321_021_00563_7 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 29K 2WC 3V. 4.4 40G 53G 5VS 7X7 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABJCF ABUWG ACACY ACGFS ACIHN ACIWK ACPRK ACUHS ACULB ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AEUYN AFGXO AFKRA AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU D-I D1I DIK E3Z EBLON EBS ESX F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IGS IHR ISR ITC KB. KQ8 LK8 M48 M7P MK0 M~E O5R O5S OK1 P62 PDBOC PGMZT PIMPY PQQKQ PROAC RBZ RNS RPM RSV RVI SOJ SPH TR2 TUS U2A UKHRP AASML AAYXX AFPKN CITATION 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 PUEGO 5PM 2VQ ABBSD ADTPV AFFHD AHSBF AOWAS D8T EJD F1S H13 IPNFZ RIG ROL ZZAVC |
| ID | FETCH-LOGICAL-c694t-cbd44123b06596512e746e7b8ff552ec71c36a30dded6ce8addd6e94797f8fdd3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719901900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1758-2946 |
| IngestDate | Fri Oct 03 12:43:31 EDT 2025 Wed Nov 05 04:20:56 EST 2025 Tue Nov 04 01:56:10 EST 2025 Fri Sep 05 09:51:21 EDT 2025 Sat Oct 18 23:49:48 EDT 2025 Mon Oct 20 22:15:01 EDT 2025 Mon Oct 20 16:48:30 EDT 2025 Thu Oct 16 15:19:33 EDT 2025 Sat Nov 29 05:55:22 EST 2025 Tue Nov 18 22:29:26 EST 2025 Fri Feb 21 02:48:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Generative Models Reinforcement Learning (RL) Structure-based drug discovery (SBDD) De novo design Molecular docking |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c694t-cbd44123b06596512e746e7b8ff552ec71c36a30dded6ce8addd6e94797f8fdd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5473-6318 |
| OpenAccessLink | https://link.springer.com/10.1186/s13321-021-00563-7 |
| PMID | 34789335 |
| PQID | 2598296467 |
| PQPubID | 54992 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_52346401511c411199adbbd42216b9e7 swepub_primary_oai_research_chalmers_se_70effbf9_5f9e_409a_9977_c125349cd0f9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8596819 proquest_miscellaneous_2599076121 proquest_journals_2598296467 gale_infotracmisc_A686472954 gale_infotracacademiconefile_A686472954 gale_incontextgauss_ISR_A686472954 crossref_citationtrail_10_1186_s13321_021_00563_7 crossref_primary_10_1186_s13321_021_00563_7 springer_journals_10_1186_s13321_021_00563_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-17 |
| PublicationDateYYYYMMDD | 2021-11-17 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: London |
| PublicationTitle | Journal of cheminformatics |
| PublicationTitleAbbrev | J Cheminform |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: Springer International Publishing – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | Jeon, Kim (CR21) 2020; 10 Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez, Mutowo, Atkinson, Bellis, Cibrián-Uhalte, Davies, Dedman, Karlsson, Magariños, Overington, Papadatos, Smit, Leach (CR50) 2017; 45 Halgren, Murphy, Friesner, Beard, Frye, Pollard, Banks (CR35) 2004; 47 Bai, Tan, Xu, Liu, Huang, Yao (CR20) 2021 Deb, Mailabaram, Al-Jaidi, Saadh (CR61) 2017; 23 Durrant, McCammon (CR70) 2011; 9 Li, Li, Cheng, Liu, Wang (CR22) 2010; 31 CR39 Wang, Sun, Yao, Li, Xu, Li, Tian, Hou (CR23) 2016; 18 CR37 Chodera, Mobley (CR25) 2013; 42 Anderson (CR42) 2012; 823 Madhavi Sastry, Adzhigirey, Day, Annabhimoju, Sherman (CR75) 2013; 27 Polishchuk, Madzhidov, Varnek (CR3) 2013; 27 CR32 CR76 CR30 CR73 Jones, Willett, Glen, Leach, Taylor (CR38) 1997; 267 El Kerdawy, Osman, Zaater (CR14) 2019; 25 Friesner, Murphy, Repasky, Frye, Greenwood, Halgren, Sanschagrin, Mainz (CR36) 2006; 49 Ferreira, Hitchcock (CR62) 2009; 38 Almog, Waddling, Maley, Maley, Roey (CR67) 2001; 10 CR4 Popova, Isayev, Tropsha (CR8) 2018; 4 Lim, Ryu, Kim, Kim (CR5) 2018; 10 Blaschke, Engkvist, Bajorath, Chen (CR47) 2020; 12 Bauer, Ibrahim, Vogel, Boeckler (CR26) 2013; 53 CR49 O’Boyle, Banck, James, Morley, Vandermeersch, Hutchison (CR79) 2011; 3 Pereira, Abbasi, Ribeiro, Arrais (CR9) 2021; 13 Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gildehaus, Iyashiro, Penning, Seibert, Isakson, Stallings (CR60) 1996; 384 CR45 Arús-Pous, Johansson, Prykhodko, Bjerrum, Tyrchan, Reymond, Chen, Engkvist (CR48) 2019; 11 Pinzi, Rastelli (CR13) 2019; 20 CR82 CR80 Mercado, Rastemo, Lindelöf, Klambauer, Engkvist, Chen, Jannik Bjerrum (CR7) 2021; 2 Hawkins, Skillman, Warren, Ellingson, Stahl (CR31) 2010; 50 Sadowski, Gasteiger, Klebe (CR27) 1994; 34 Jiménez-Luna, Grisoni, Weskamp, Schneider (CR2) 2021 Schneider, Walters, Plowright, Sieroka, Listgarten, Goodnow, Fisher, Jansen, Duca, Rush, Zentgraf, Hill, Krutoholow, Kohler, Blaney, Funatsu, Luebkemann, Schneider (CR1) 2020; 19 Kendall (CR46) 1945; 33 Bickerton, Paolini, Besnard, Muresan, Hopkins (CR57) 2012; 4 Roos, Wu, Damm, Reboul, Stevenson, Lu, Dahlgren, Mondal, Chen, Wang, Abel, Friesner, Harder (CR77) 2019; 15 Lyu, Wang, Balius, Singh, Levit, Moroz, O’Meara, Che, Algaa, Tolmachova, Tolmachev, Shoichet, Roth, Irwin (CR16) 2019; 566 Kudo, Ito, Arata, Nakata, Yoshida (CR74) 2018 Du, Li, Xia, Ai, Liang, Sang, Ji, Liu (CR24) 2016 Clark, Webster-Clark (CR44) 2008; 22 Ruiz-Carmona, Alvarez-Garcia, Foloppe, Garmendia-Doval, Juhos, Schmidtke, Barril, Hubbard, Morley (CR41) 2014; 10 Maziarka, Pocha, Kaczmarczyk, Rataj, Danel, Warchoł (CR6) 2020; 12 CR59 CR58 McGann (CR40) 2012; 26 Baell, Holloway (CR53) 2010; 53 CR55 Schwab (CR28) 2010; 7 CR54 CR51 Zhao, Xiong, Yuan, Li, Sun, Xu (CR15) 2020; 60 Nahoum, Perez, Germain, Rodriguez-Barrios, Manzo, Kammerer, Lemaire, Hirsch, Royer, Gronemeyer, de Lera, Bourguet (CR65) 2007; 104 Zhao, Wang, Sedykh, Zhu (CR12) 2017; 2 Kausar, Falcao (CR11) 2018; 10 Kurkinen, Lätti, Pentikäinen, Postila (CR71) 2019; 59 Groom, Bruno, Lightfoot, Ward (CR81) 2016; 72 Thomas, Smith, O’Boyle, de Graaf, Bender (CR18) 2021; 13 CR29 Eastman, Friedrichs, Chodera, Radmer, Bruns, Ku, Beauchamp, Lane, Wang, Shukla, Tye, Houston, Stich, Klein, Shirts, Pande (CR78) 2013; 9 Kell, Samanta, Swainston (CR10) 2020; 477 Ma, Terayama, Matsumoto, Isaka, Sasakura, Iwata, Araki, Okuno (CR19) 2021 Trott, Olson (CR33) 2010; 31 Bressi, Jennings, Skene, Wu, Melkus, Jong, O’Connell, Grimshaw, Navre, Gangloff (CR64) 2010; 20 Arnott, Planey (CR52) 2012; 7 CR69 CR68 Gu, Smith, Yang, Irwin, Shoichet (CR72) 2021 Friesner, Banks, Murphy, Halgren, Klicic, Mainz, Repasky, Knoll, Shelley, Perry, Shaw, Francis, Shenkin (CR34) 2004; 47 Welsch, Snyder, Stockwell (CR17) 2010; 14 Lipinski, Lombardo, Dominy, Feeney (CR56) 1997; 23 Kelley, Brown, Warren, Muchmore (CR43) 2015; 55 Argiriadi, Ericsson, Harris, Banach, Borhani, Calderwood, Demers, DiMauro, Dixon, Hardman, Kwak, Li, Mankovich, Marcotte, Mullen, Ni, Pietras, Sadhukhan, Sousa, Tomlinson, Wang, Xiang, Talanian (CR63) 2010; 20 Wang, Jiang, Duan, Zeng, Chen, Dai, Chen, Liu, Liu, Zhou, Chen, Zeng, Su, Yao, Zhang (CR66) 2013; 73 X Du (563_CR24) 2016 P Schneider (563_CR1) 2020; 19 S Kausar (563_CR11) 2018; 10 M Thomas (563_CR18) 2021; 13 JC Bressi (563_CR64) 2010; 20 563_CR80 ME Welsch (563_CR17) 2010; 14 563_CR82 S Ruiz-Carmona (563_CR41) 2014; 10 K Roos (563_CR77) 2019; 15 RA Friesner (563_CR34) 2004; 47 PK Deb (563_CR61) 2017; 23 JD Durrant (563_CR70) 2011; 9 MR Bauer (563_CR26) 2013; 53 563_CR45 563_CR37 563_CR39 L Pinzi (563_CR13) 2019; 20 X Li (563_CR22) 2010; 31 ST Kurkinen (563_CR71) 2019; 59 PCD Hawkins (563_CR31) 2010; 50 NM O’Boyle (563_CR79) 2011; 3 563_CR51 A Gaulton (563_CR50) 2017; 45 563_CR54 563_CR55 L Zhao (563_CR12) 2017; 2 563_CR58 M Popova (563_CR8) 2018; 4 563_CR49 G-H Wang (563_CR66) 2013; 73 S Gu (563_CR72) 2021 MA Argiriadi (563_CR63) 2010; 20 GR Bickerton (563_CR57) 2012; 4 G Madhavi Sastry (563_CR75) 2013; 27 TA Halgren (563_CR35) 2004; 47 J Arús-Pous (563_CR48) 2019; 11 RD Clark (563_CR44) 2008; 22 MG Kendall (563_CR46) 1945; 33 M McGann (563_CR40) 2012; 26 JA Arnott (563_CR52) 2012; 7 V Nahoum (563_CR65) 2007; 104 P Eastman (563_CR78) 2013; 9 BP Kelley (563_CR43) 2015; 55 J Lim (563_CR5) 2018; 10 J Sadowski (563_CR27) 1994; 34 563_CR68 Ł Maziarka (563_CR6) 2020; 12 JB Baell (563_CR53) 2010; 53 563_CR69 R Mercado (563_CR7) 2021; 2 563_CR59 CR Groom (563_CR81) 2016; 72 563_CR4 O Trott (563_CR33) 2010; 31 B Ma (563_CR19) 2021 N Kudo (563_CR74) 2018 Q Bai (563_CR20) 2021 CA Lipinski (563_CR56) 1997; 23 J Lyu (563_CR16) 2019; 566 W Zhao (563_CR15) 2020; 60 Z Wang (563_CR23) 2016; 18 JD Chodera (563_CR25) 2013; 42 563_CR73 563_CR30 L Ferreira (563_CR62) 2009; 38 G Jones (563_CR38) 1997; 267 563_CR32 563_CR76 PG Polishchuk (563_CR3) 2013; 27 AC Anderson (563_CR42) 2012; 823 J Jiménez-Luna (563_CR2) 2021 T Blaschke (563_CR47) 2020; 12 T Pereira (563_CR9) 2021; 13 DB Kell (563_CR10) 2020; 477 RG Kurumbail (563_CR60) 1996; 384 563_CR29 R Almog (563_CR67) 2001; 10 AM El Kerdawy (563_CR14) 2019; 25 CH Schwab (563_CR28) 2010; 7 RA Friesner (563_CR36) 2006; 49 W Jeon (563_CR21) 2020; 10 |
| References_xml | – ident: CR45 – volume: 18 start-page: 12964 issue: 18 year: 2016 end-page: 12975 ident: CR23 article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP01555G – volume: 49 start-page: 6177 issue: 21 year: 2006 end-page: 6196 ident: CR36 article-title: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes publication-title: J Med Chem doi: 10.1021/jm051256o – year: 2021 ident: CR19 article-title: Structure-based de novo molecular generator combined with artificial intelligence and docking simulations publication-title: J Chem Inf Model doi: 10.26434/chemrxiv.14371967.v1 – volume: 20 start-page: 330 issue: 1 year: 2010 end-page: 333 ident: CR63 article-title: 2,4-diaminopyrimidine MK2 inhibitors. Part I: observation of an unexpected inhibitor binding mode publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.10.102 – volume: 19 start-page: 353 issue: 5 year: 2020 end-page: 364 ident: CR1 article-title: Rethinking Drug design in the artificial intelligence era publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0050-3 – volume: 42 start-page: 121 year: 2013 end-page: 142 ident: CR25 article-title: Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-083012-130318 – year: 2021 ident: CR2 article-title: Artificial intelligence in drug discovery: recent advances and future perspectives publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2021.1909567 – ident: CR49 – ident: CR68 – volume: 31 start-page: 455 issue: 2 year: 2010 end-page: 461 ident: CR33 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading publication-title: J Comput Chem doi: 10.1002/jcc.21334 – ident: CR4 – ident: CR39 – volume: 14 start-page: 347 issue: 3 year: 2010 end-page: 361 ident: CR17 article-title: Privileged scaffolds for library design and drug discovery publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2010.02.018 – ident: CR51 – volume: 31 start-page: 2109 issue: 11 year: 2010 end-page: 2125 ident: CR22 article-title: Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes publication-title: J Comput Chem doi: 10.1002/jcc.21498 – volume: 384 start-page: 644 issue: 6610 year: 1996 end-page: 648 ident: CR60 article-title: Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents publication-title: Nature doi: 10.1038/384644a0 – volume: 59 start-page: 3584 issue: 8 year: 2019 end-page: 3599 ident: CR71 article-title: Getting docking into shape using negative image-based rescoring publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00383 – ident: CR29 – ident: CR54 – volume: 566 start-page: 224 issue: 7743 year: 2019 end-page: 229 ident: CR16 article-title: Ultra-large library docking for discovering new chemotypes publication-title: Nature doi: 10.1038/s41586-019-0917-9 – volume: 12 start-page: 68 issue: 1 year: 2020 ident: CR47 article-title: Memory-assisted reinforcement learning for diverse molecular de novo design publication-title: J Cheminformatics doi: 10.1186/s13321-020-00473-0 – ident: CR80 – year: 2018 ident: CR74 article-title: Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2 publication-title: Philos Trans R Soc B Biol Sci. doi: 10.1098/rstb.2017.0070 – ident: CR58 – volume: 27 start-page: 675 issue: 8 year: 2013 end-page: 679 ident: CR3 article-title: Estimation of the size of drug-like chemical space based on GDB-17 data publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-013-9672-4 – volume: 4 start-page: 90 issue: 2 year: 2012 end-page: 98 ident: CR57 article-title: Quantifying the chemical beauty of drugs publication-title: Nat Chem doi: 10.1038/nchem.1243 – volume: 3 start-page: 33 issue: 1 year: 2011 ident: CR79 article-title: Open babel: an open chemical toolbox publication-title: J Cheminformatics doi: 10.1186/1758-2946-3-33 – volume: 4 start-page: eaap7885 issue: 7 year: 2018 ident: CR8 article-title: Deep reinforcement learning for de novo drug design publication-title: Sci Adv doi: 10.1126/sciadv.aap7885 – volume: 7 start-page: e245 issue: 4 year: 2010 end-page: e253 ident: CR28 article-title: Conformations and 3D pharmacophore searching publication-title: Drug Discov Today Technol doi: 10.1016/j.ddtec.2010.10.003 – year: 2021 ident: CR72 article-title: Ligand Strain energy in large library docking publication-title: bioRxiv doi: 10.1101/2021.04.06.438722 – year: 2016 ident: CR24 article-title: Insights into protein-ligand interactions: mechanisms, models, and methods publication-title: Int J Mol Sci doi: 10.3390/ijms17020144 – volume: 2 start-page: 2805 issue: 6 year: 2017 end-page: 2812 ident: CR12 article-title: Experimental errors in QSAR modeling sets: what we can do and what we cannot do publication-title: ACS Omega doi: 10.1021/acsomega.7b00274 – volume: 20 start-page: 3142 issue: 10 year: 2010 end-page: 3145 ident: CR64 article-title: Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.03.091 – volume: 13 start-page: 39 issue: 1 year: 2021 ident: CR18 article-title: Comparison of structure- and ligand-based scoring functions for deep generative models: A GPCR case study publication-title: J Cheminformatics doi: 10.1186/s13321-021-00516-0 – ident: CR32 – volume: 823 start-page: 359 year: 2012 end-page: 366 ident: CR42 article-title: Structure-based functional design of drugs: from target to lead compound publication-title: Methods Mol Biol Clifton NJ doi: 10.1007/978-1-60327-216-2_23 – volume: 53 start-page: 2719 issue: 7 year: 2010 end-page: 2740 ident: CR53 article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays publication-title: J Med Chem doi: 10.1021/jm901137j – volume: 10 start-page: 1 issue: 1 year: 2018 ident: CR11 article-title: An automated framework for QSAR model building publication-title: J Cheminformatics doi: 10.1186/s13321-017-0256-5 – volume: 477 start-page: 4559 issue: 23 year: 2020 end-page: 4580 ident: CR10 article-title: Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently publication-title: Biochem J doi: 10.1042/BCJ20200781 – volume: 9 start-page: 461 issue: 1 year: 2013 end-page: 469 ident: CR78 article-title: OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation publication-title: J Chem Theory Comput doi: 10.1021/ct300857j – volume: 26 start-page: 897 issue: 8 year: 2012 end-page: 906 ident: CR40 article-title: FRED and HYBRID docking performance on standardized datasets publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9584-8 – volume: 23 start-page: 3 issue: 1 year: 1997 end-page: 25 ident: CR56 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(96)00423-1 – volume: 7 start-page: 863 issue: 10 year: 2012 end-page: 875 ident: CR52 article-title: The influence of lipophilicity in drug discovery and design publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2012.714363 – volume: 47 start-page: 1739 issue: 7 year: 2004 end-page: 1749 ident: CR34 article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J Med Chem doi: 10.1021/jm0306430 – volume: 33 start-page: 239 issue: 3 year: 1945 end-page: 251 ident: CR46 article-title: The treatment of ties in ranking problems publication-title: Biometrika doi: 10.1093/biomet/33.3.239 – volume: 12 start-page: 2 issue: 1 year: 2020 ident: CR6 article-title: Mol-CycleGAN: a generative model for molecular optimization publication-title: J Cheminformatics doi: 10.1186/s13321-019-0404-1 – ident: CR37 – ident: CR30 – volume: 53 start-page: 1447 issue: 6 year: 2013 end-page: 1462 ident: CR26 article-title: Evaluation and optimization of virtual screening workflows with DEKOIS 2.0—a public library of challenging docking benchmark sets publication-title: J Chem Inf Model doi: 10.1021/ci400115b – volume: 267 start-page: 727 issue: 3 year: 1997 end-page: 748 ident: CR38 article-title: Development and validation of a genetic algorithm for flexible docking11edited by F. E. Cohen publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0897 – ident: CR82 – volume: 23 start-page: 101 issue: 6 year: 2017 end-page: 121 ident: CR61 article-title: Molecular basis of binding interactions of NSAIDs and computer-aided drug design approaches in the pursuit of the development of cyclooxygenase-2 (COX-2) selective inhibitors publication-title: Nonsteroidal Anti Inflamm Drugs. doi: 10.5772/intechopen.68318 – volume: 34 start-page: 1000 issue: 4 year: 1994 end-page: 1008 ident: CR27 article-title: Comparison of automatic three-dimensional model builders using 639 X-Ray structures publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00020a039 – volume: 47 start-page: 1750 issue: 7 year: 2004 end-page: 1759 ident: CR35 article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening publication-title: J Med Chem doi: 10.1021/jm030644s – volume: 10 start-page: 31 issue: 1 year: 2018 ident: CR5 article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design publication-title: J Cheminformatics doi: 10.1186/s13321-018-0286-7 – volume: 38 start-page: 1925 issue: 9 year: 2009 end-page: 1949 ident: CR62 article-title: A comparison of hierarchical methods for clustering functional data publication-title: Commun Stat Simul Comput doi: 10.1080/03610910903168603 – volume: 73 start-page: 307 issue: 1 year: 2013 end-page: 318 ident: CR66 article-title: Targeting truncated retinoid X receptor-α by CF31 induces TNF-α–dependent apoptosis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2038 – volume: 20 start-page: 4331 issue: 18 year: 2019 ident: CR13 article-title: Molecular docking: shifting paradigms in drug discovery publication-title: Int J Mol Sci doi: 10.3390/ijms20184331 – volume: 45 start-page: D945 issue: D1 year: 2017 end-page: D954 ident: CR50 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 60 start-page: 3265 issue: 6 year: 2020 end-page: 3276 ident: CR15 article-title: In silico screening-based discovery of novel inhibitors of human cyclic GMP–AMP synthase: a cross-validation study of molecular docking and experimental testing publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00171 – ident: CR69 – volume: 72 start-page: 171 issue: 2 year: 2016 end-page: 179 ident: CR81 article-title: The Cambridge structural database publication-title: Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. doi: 10.1107/S2052520616003954 – ident: CR73 – volume: 10 issue: 4 year: 2014 ident: CR41 article-title: RDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1003571 – volume: 27 start-page: 221 issue: 3 year: 2013 end-page: 234 ident: CR75 article-title: Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-013-9644-8 – volume: 9 start-page: 71 issue: 1 year: 2011 ident: CR70 article-title: Molecular dynamics simulations and drug discovery publication-title: BMC Biol doi: 10.1186/1741-7007-9-71 – year: 2021 ident: CR20 article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm publication-title: Brief Bioinform doi: 10.1093/bib/bbaa161 – volume: 11 start-page: 71 issue: 1 year: 2019 ident: CR48 article-title: Randomized SMILES strings improve the quality of molecular generative models publication-title: J Cheminformatics doi: 10.1186/s13321-019-0393-0 – volume: 104 start-page: 17323 issue: 44 year: 2007 end-page: 17328 ident: CR65 article-title: Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0705356104 – volume: 2 issue: 2 year: 2021 ident: CR7 article-title: Graph networks for molecular design publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/abcf91 – volume: 13 start-page: 21 issue: 1 year: 2021 ident: CR9 article-title: Diversity oriented deep reinforcement learning for targeted molecule generation publication-title: J Cheminformatics doi: 10.1186/s13321-021-00498-z – volume: 55 start-page: 1771 issue: 8 year: 2015 end-page: 1780 ident: CR43 article-title: POSIT: flexible shape-guided docking for pose prediction publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00142 – volume: 15 start-page: 1863 issue: 3 year: 2019 end-page: 1874 ident: CR77 article-title: OPLS3e: extending force field coverage for drug-like small molecules publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.8b01026 – ident: CR55 – ident: CR59 – ident: CR76 – volume: 22 start-page: 141 issue: 3 year: 2008 end-page: 146 ident: CR44 article-title: Managing bias in ROC curves publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-008-9181-z – volume: 10 start-page: 988 issue: 5 year: 2001 end-page: 996 ident: CR67 article-title: Crystal structure of a deletion mutant of human thymidylate synthase Δ (7–29) and its ternary complex with tomudex and DUMP publication-title: Protein Sci doi: 10.1110/ps.47601 – volume: 25 start-page: 171 issue: 6 year: 2019 ident: CR14 article-title: Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors publication-title: J Mol Model doi: 10.1007/s00894-019-4032-5 – volume: 50 start-page: 572 issue: 4 year: 2010 end-page: 584 ident: CR31 article-title: Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database publication-title: J Chem Inf Model doi: 10.1021/ci100031x – volume: 10 start-page: 22104 issue: 1 year: 2020 ident: CR21 article-title: Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors publication-title: Sci Rep doi: 10.1038/s41598-020-78537-2 – year: 2021 ident: 563_CR2 publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2021.1909567 – ident: 563_CR39 – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 563_CR11 publication-title: J Cheminformatics doi: 10.1186/s13321-017-0256-5 – volume: 13 start-page: 21 issue: 1 year: 2021 ident: 563_CR9 publication-title: J Cheminformatics doi: 10.1186/s13321-021-00498-z – volume: 31 start-page: 2109 issue: 11 year: 2010 ident: 563_CR22 publication-title: J Comput Chem doi: 10.1002/jcc.21498 – ident: 563_CR58 – volume: 34 start-page: 1000 issue: 4 year: 1994 ident: 563_CR27 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci00020a039 – volume: 31 start-page: 455 issue: 2 year: 2010 ident: 563_CR33 publication-title: J Comput Chem doi: 10.1002/jcc.21334 – volume: 55 start-page: 1771 issue: 8 year: 2015 ident: 563_CR43 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.5b00142 – volume: 4 start-page: 90 issue: 2 year: 2012 ident: 563_CR57 publication-title: Nat Chem doi: 10.1038/nchem.1243 – volume: 60 start-page: 3265 issue: 6 year: 2020 ident: 563_CR15 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00171 – volume: 72 start-page: 171 issue: 2 year: 2016 ident: 563_CR81 publication-title: Acta Crystallogr Sect B Struct Sci Cryst Eng Mater. doi: 10.1107/S2052520616003954 – volume: 10 issue: 4 year: 2014 ident: 563_CR41 publication-title: PLOS Comput Biol doi: 10.1371/journal.pcbi.1003571 – year: 2021 ident: 563_CR72 publication-title: bioRxiv doi: 10.1101/2021.04.06.438722 – volume: 38 start-page: 1925 issue: 9 year: 2009 ident: 563_CR62 publication-title: Commun Stat Simul Comput doi: 10.1080/03610910903168603 – volume: 73 start-page: 307 issue: 1 year: 2013 ident: 563_CR66 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2038 – volume: 42 start-page: 121 year: 2013 ident: 563_CR25 publication-title: Annu Rev Biophys doi: 10.1146/annurev-biophys-083012-130318 – ident: 563_CR68 – volume: 10 start-page: 31 issue: 1 year: 2018 ident: 563_CR5 publication-title: J Cheminformatics doi: 10.1186/s13321-018-0286-7 – volume: 7 start-page: e245 issue: 4 year: 2010 ident: 563_CR28 publication-title: Drug Discov Today Technol doi: 10.1016/j.ddtec.2010.10.003 – volume: 104 start-page: 17323 issue: 44 year: 2007 ident: 563_CR65 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0705356104 – volume: 27 start-page: 221 issue: 3 year: 2013 ident: 563_CR75 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-013-9644-8 – volume: 4 start-page: eaap7885 issue: 7 year: 2018 ident: 563_CR8 publication-title: Sci Adv doi: 10.1126/sciadv.aap7885 – year: 2018 ident: 563_CR74 publication-title: Philos Trans R Soc B Biol Sci. doi: 10.1098/rstb.2017.0070 – ident: 563_CR69 doi: 10.1021/ci100050t – volume: 26 start-page: 897 issue: 8 year: 2012 ident: 563_CR40 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-012-9584-8 – ident: 563_CR82 doi: 10.1021/ja00051a040 – volume: 10 start-page: 988 issue: 5 year: 2001 ident: 563_CR67 publication-title: Protein Sci doi: 10.1110/ps.47601 – volume: 10 start-page: 22104 issue: 1 year: 2020 ident: 563_CR21 publication-title: Sci Rep doi: 10.1038/s41598-020-78537-2 – volume: 49 start-page: 6177 issue: 21 year: 2006 ident: 563_CR36 publication-title: J Med Chem doi: 10.1021/jm051256o – ident: 563_CR80 – volume: 19 start-page: 353 issue: 5 year: 2020 ident: 563_CR1 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0050-3 – ident: 563_CR32 – ident: 563_CR51 doi: 10.26434/chemrxiv.14045072.v1 – volume: 15 start-page: 1863 issue: 3 year: 2019 ident: 563_CR77 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.8b01026 – year: 2021 ident: 563_CR20 publication-title: Brief Bioinform doi: 10.1093/bib/bbaa161 – ident: 563_CR29 – volume: 384 start-page: 644 issue: 6610 year: 1996 ident: 563_CR60 publication-title: Nature doi: 10.1038/384644a0 – ident: 563_CR45 doi: 10.1201/9780367802417 – volume: 13 start-page: 39 issue: 1 year: 2021 ident: 563_CR18 publication-title: J Cheminformatics doi: 10.1186/s13321-021-00516-0 – volume: 12 start-page: 68 issue: 1 year: 2020 ident: 563_CR47 publication-title: J Cheminformatics doi: 10.1186/s13321-020-00473-0 – year: 2016 ident: 563_CR24 publication-title: Int J Mol Sci doi: 10.3390/ijms17020144 – ident: 563_CR54 doi: 10.1002/3527603743.ch11 – ident: 563_CR4 doi: 10.1021/acs.jcim.0c00915 – volume: 45 start-page: D945 issue: D1 year: 2017 ident: 563_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1074 – volume: 9 start-page: 461 issue: 1 year: 2013 ident: 563_CR78 publication-title: J Chem Theory Comput doi: 10.1021/ct300857j – volume: 12 start-page: 2 issue: 1 year: 2020 ident: 563_CR6 publication-title: J Cheminformatics doi: 10.1186/s13321-019-0404-1 – volume: 11 start-page: 71 issue: 1 year: 2019 ident: 563_CR48 publication-title: J Cheminformatics doi: 10.1186/s13321-019-0393-0 – ident: 563_CR37 – volume: 18 start-page: 12964 issue: 18 year: 2016 ident: 563_CR23 publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP01555G – volume: 14 start-page: 347 issue: 3 year: 2010 ident: 563_CR17 publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2010.02.018 – volume: 59 start-page: 3584 issue: 8 year: 2019 ident: 563_CR71 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00383 – volume: 27 start-page: 675 issue: 8 year: 2013 ident: 563_CR3 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-013-9672-4 – volume: 53 start-page: 1447 issue: 6 year: 2013 ident: 563_CR26 publication-title: J Chem Inf Model doi: 10.1021/ci400115b – volume: 53 start-page: 2719 issue: 7 year: 2010 ident: 563_CR53 publication-title: J Med Chem doi: 10.1021/jm901137j – volume: 23 start-page: 101 issue: 6 year: 2017 ident: 563_CR61 publication-title: Nonsteroidal Anti Inflamm Drugs. doi: 10.5772/intechopen.68318 – volume: 33 start-page: 239 issue: 3 year: 1945 ident: 563_CR46 publication-title: Biometrika doi: 10.1093/biomet/33.3.239 – volume: 7 start-page: 863 issue: 10 year: 2012 ident: 563_CR52 publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.2012.714363 – volume: 9 start-page: 71 issue: 1 year: 2011 ident: 563_CR70 publication-title: BMC Biol doi: 10.1186/1741-7007-9-71 – volume: 50 start-page: 572 issue: 4 year: 2010 ident: 563_CR31 publication-title: J Chem Inf Model doi: 10.1021/ci100031x – volume: 3 start-page: 33 issue: 1 year: 2011 ident: 563_CR79 publication-title: J Cheminformatics doi: 10.1186/1758-2946-3-33 – volume: 477 start-page: 4559 issue: 23 year: 2020 ident: 563_CR10 publication-title: Biochem J doi: 10.1042/BCJ20200781 – volume: 20 start-page: 3142 issue: 10 year: 2010 ident: 563_CR64 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2010.03.091 – volume: 20 start-page: 4331 issue: 18 year: 2019 ident: 563_CR13 publication-title: Int J Mol Sci doi: 10.3390/ijms20184331 – volume: 2 issue: 2 year: 2021 ident: 563_CR7 publication-title: Mach Learn Sci Technol doi: 10.1088/2632-2153/abcf91 – volume: 823 start-page: 359 year: 2012 ident: 563_CR42 publication-title: Methods Mol Biol Clifton NJ doi: 10.1007/978-1-60327-216-2_23 – volume: 22 start-page: 141 issue: 3 year: 2008 ident: 563_CR44 publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-008-9181-z – ident: 563_CR59 – volume: 566 start-page: 224 issue: 7743 year: 2019 ident: 563_CR16 publication-title: Nature doi: 10.1038/s41586-019-0917-9 – volume: 267 start-page: 727 issue: 3 year: 1997 ident: 563_CR38 publication-title: J Mol Biol doi: 10.1006/jmbi.1996.0897 – ident: 563_CR76 – volume: 25 start-page: 171 issue: 6 year: 2019 ident: 563_CR14 publication-title: J Mol Model doi: 10.1007/s00894-019-4032-5 – volume: 47 start-page: 1750 issue: 7 year: 2004 ident: 563_CR35 publication-title: J Med Chem doi: 10.1021/jm030644s – volume: 20 start-page: 330 issue: 1 year: 2010 ident: 563_CR63 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.10.102 – ident: 563_CR30 – ident: 563_CR55 – ident: 563_CR73 doi: 10.26434/chemrxiv.14774223.v1 – ident: 563_CR49 doi: 10.3115/v1/D14-1179 – volume: 47 start-page: 1739 issue: 7 year: 2004 ident: 563_CR34 publication-title: J Med Chem doi: 10.1021/jm0306430 – year: 2021 ident: 563_CR19 publication-title: J Chem Inf Model doi: 10.26434/chemrxiv.14371967.v1 – volume: 23 start-page: 3 issue: 1 year: 1997 ident: 563_CR56 publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(96)00423-1 – volume: 2 start-page: 2805 issue: 6 year: 2017 ident: 563_CR12 publication-title: ACS Omega doi: 10.1021/acsomega.7b00274 |
| SSID | ssj0065707 |
| Score | 2.4873488 |
| Snippet | Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring... Abstract Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and... |
| SourceID | doaj swepub pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 89 |
| SubjectTerms | Algorithms Analysis Benchmarks Binding sites Chemistry Chemistry and Materials Science Computational Biology/Bioinformatics Computer Applications in Chemistry Configurations De novo design Documentation and Information in Chemistry Drug discovery Generative Models Iterative methods Molecular docking Reinforcement Learning (RL) Research Article Structure-activity relationships Structure-based drug discovery (SBDD) Theoretical and Computational Chemistry Workflow |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXVF4iUJBBSBwgauJ4_eC2VFQgVRXipd6s-NWtoMlqs9v-fWacZCFUKhcOPmw82WxmxvNYj78h5CUkVdqKqs6FK1TORfC5wkDOej2DEb1PxZjfj-TxsTo50Z_-aPWFNWE9PHDPuH1IlLiAJAACA8dhYWpde2s9Z6wUVod0jhyinjGZ6m0w1nPI8YiMEvsdZGIM0mYc4PGrXE7cUELrv2qTr9ZJbjdL_wIWTc7ocJfcGaJIOu9__V1yIzT3yK2DsXnbfTIH5_EDd5zr87e0ph4-wTfSy1W9XIYVXbc0NAsUOPWBNu1FS8_HPrlwBYs6HpBvh--_HnzIh24JuROar3MHTOHghyzulArw40EC66VVMc5mLDhZukrUVQH2zAsXFBg2L4LmUsuoQCbVQ7LTtE14RCikQAhsJiqmAy-9slwXvrQSOFGxyERGypF5xg1Q4tjR4qdJKYUSpme4KXAgw43MyOvtPcseSONa6ncoky0lgmCnC6AaZlAN8y_VyMgLlKhBmIsG62hO603XmY9fPpu5UIibr2c8I68GotjCO7h6OJYAnEBkrAnl3oQSJOqm06PimMEOdIYhPqIW4I0y8nw7jXdibVsT2k2i0fhvEiszIicKN3n96UxztkhY4ApkDUFdRt6Mqvn74dex96hX38kTBniphXGL1LunM10wsggx2qjNLOpgeKFroyFnMA4i44pr54uoH_8PaT0htxkuUCyxlHtkZ73ahKfkprtYn3WrZ2l5_wLMoE7c priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFNyJQkEFIHCBq4jh-cEFLRQVSVVW8VHGxEj-6FW2y3eyWv89M1tkqVNoLB1_iSSLPjMcz9vgbQl5DUKVrUVSpsJlKufAuVejI1U6X0IJzfTLmz315cKCOjvRh3HDrYlrlYBN7Q-1ai3vkOwyR5rSAef1hdp5i1Sg8XY0lNK6TG4iSgBPzsPw1WGLM6pDDRRkldjqIxxgEz9hg3S9SOVqMesz-q5b5arbk-sj0H3jRfknau_u_g7lH7kRnlE5W2nOfXPPNA3Jrd6gB95BMYA36jQfX1dl7WlH4MO6s0z_zajbzc7poqW-mqDfUedq0Fy09G8rtwhPMDXlEfux9-r77OY1FF1IrNF-ktnbgIbGixgNXAe6AlyBBWasQypJ5K3NbiKrIwCw6Yb0C--iE11xqGRSItnhMtpq28U8IhUgK8dFEwbTnuVM115nLawmsLFhgIiH5wH1jIyI5FsY4NX1kooRZScxk2FBiRibk7fqd2QqPYyP1RxTqmhKxtPsH7fzYxKlpIBTnAsJMcD0tB9OvdeVq4AJjuai1h4-8QpUwiJbRYDrOcbXsOvPl21czEQrh93XJE_ImEoUWxmCreLsBOIEAWyPK7RElSNSOuweVMdGcdOZSXxLyct2Nb2KKXOPbZU-jcVOK5QmRI40dDX_c05xMe0hxBbIG3zAh7wbdvvz5Jvbur_R_9IeIUjU1dtqXAOpM543MfAh10KYM2hue6cpoCD2MBQe74Nq6LOinm4f-jNxmOHcxB1Nuk63FfOmfk5v2YnHSzV_0M_8vCqNexw priority: 102 providerName: ProQuest |
| Title | DockStream: a docking wrapper to enhance de novo molecular design |
| URI | https://link.springer.com/article/10.1186/s13321-021-00563-7 https://www.proquest.com/docview/2598296467 https://www.proquest.com/docview/2599076121 https://pubmed.ncbi.nlm.nih.gov/PMC8596819 https://research.chalmers.se/publication/527226 https://doaj.org/article/52346401511c411199adbbd42216b9e7 |
| Volume | 13 |
| WOSCitedRecordID | wos000719901900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: RBZ dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: C24 dateStart: 20090112 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYhgQvfCMCowoIiQcI5NMfvLVVJyZGFY0PFV6sxB_rBEuqph1v_O3cuUlRGJoED7aU-BzL5_OdLz7_TMgzcKpESZMioCrkQUqNDjgu5EotMkhWaxeM-fmITad8NhN5eyis6aLduy1Jp6ndtOb0dQPeVAyuLyaw2knAdsheFnGBcj3GMw4b_YuxHKw7HvPXej0T5JD6L-rjizGS243SP0BFnSE6uPl_XbhFbrQLT3-4kZTb5Iqp7pBr4-6-t7tkCPbmG25SF2dv_MLX8ATf9n8si8XCLP1V7ZtqjjLia-NX9Xntn3VX68IbjAO5Rz4dTD6O3wbtBQuBoiJdBarUsBqKkxI3VymYfsNgtFjJrc2y2CgWqYQWSQgqUFNlOOhCTY1ImWCWwzAm98luVVfmAfHBa0IsNJrEwqSR5mUqQh2VDBiYxDamHok6nkvVoo_jJRjfpfNCOJUb5sgQEzJHMo-82NZZbLA3LqUe4VBuKRE3272olyeynYYS3O6UgksJy0yVgpoXotAlcCGOI1oKAx95ioIgERmjwtCbk2LdNPLww7EcUo5Q-yJLPfK8JbI19EEV7UkG4ASCafUo93uUMKKqX9zJm2xVRyNjhFQUFAyYR55si7EmhsNVpl47GoE_oOLII6wnp73u90uq07mDD-cw1rAO9MjLTkh_N34Ze482Ut9roUWkmks1d9f9NLIxkoXG2tIKmVlhZBqKQgpwM6SCxXSSCqVDKx7-W-uPyPUYpw3GX7J9srtars1jclWdr06b5YDssBlzOR-QvdFkmh8PnE4YuF8skL8bvRpgWG-O-c8J5Hn2FWjzw_f5l1-Zal3s |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFUKUnvhjTAUMAjEAazaa3sfSAiFQtWoIUJQUG6LvY-mKrVDnLTip_hGZhw7lamUWw8c9uIdP2Z3np7ZGUKeg1MlcxZnAdOhCBJmTSDQkMuNTGE4Y-pkzO8DPhyK0Uh-XiN_2rMwmFbZysRaUJtS4z_ybYqV5iQDvn43-RVg1yiMrrYtNBZksW9_n4HLVr3tf4D9fUHp7seDnb2g6SoQaCaTWaBzAyYAjXOMKDLQd5bDJ_JcOJem1Goe6ZhlcQh8b5i2AgSAYVYmXHIn4NtjeO4VchXkOMcUMj5aOniYRcLbgzmCbVfg_1Fw1nGAnREHvKP86h4BFzXBxezMZYj2n3KmtQrcvfG_Ld5Ncr0xtv3egjtukTVb3CYbO22PuzukBzr2GAPz2ckbP_MBEYwc-GfTbDKxU39W-rYYI1_4xvpFeVr6J207YbiCuS93ybdLweAeWS_Kwt4nPniKWP-NxVTaJDIiT2RoopzD1sXUUeaRqN1tpZuK69j446eqPS_B1IJCVIgDKURxj7xa3jNZ1BtZCf0eiWgJibXC6wvl9FA1okelNE4YuNFgWusEVJuUmclhFSiNWC4tPOQZkqDCaiAFphsdZvOqUv2vX1SPCWwvINPEIy8bIFcCDjprTm_ASmABsQ7kVgcSdlR3p1sSVY24rNQ5fXrk6XIa78QUwMKW8xpG4k83GnmEdzikg353pjga1yXTBew12L4eed3y0vnLVy3vYMFvnTc0VbjGSo_rFkeVqqzioXUud1KlTlqVhDJTElwrpcGBiBOpTejkg9WoPyEbewefBmrQH-4_JJsU5Qbmm_Itsj6bzu0jck2fzo6q6eNa6vjkx2Vz6l-3t73i |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFUKAi68EYYCBoE4gBV7be8DCaHQEhE1iiJeqrgs9j6aCmqHOGnFr_F1zDh2KlOptx447MU7a3t257k7O0PIM3CqZM7iLGA6FEHCrAkEGnK5kSk0Z0wdjPl1xMdjsbcnJxvkT3sXBsMqW5lYC2pTatwj71HMNCcZ8HXPNWERk53B29mvACtI4UlrW05jRSK79vcxuG_Vm-EOrPVzSgfvP29_CJoKA4FmMlkEOjdgDtA4x9NFBrrPcvhdngvn0pRazSMdsywOQQYYpq0AYWCYlQmX3AnAI4b3XiAXYZBEx2-Sfmu1AEaU8PaSjmC9CnxBCo47NrA54oB3FGFdL-C0Vjgdqbk-rv0ntWmtDgfX_-eJvEGuNUa4319xzU2yYYtb5Mp2W_vuNumD7v2BB_bZ4Ws_8wEpPFHwj-fZbGbn_qL0bTFFfvGN9YvyqPQP2zLD8ARjYu6QL-eCwV2yWZSFvUd88CAxLxyLqbRJZESeyNBEOYdljKmjzCNRu_JKN5nYsSDIT1V7ZIKpFbWoEBtSi-IeebkeM1vlITkT-h0S1BoSc4jXD8r5vmpEkkppnDBwr8Hk1gmoPCkzk8MsUBqxXFp4yVMkR4VZQgokk_1sWVVq-Omj6jOBZQdkmnjkRQPkSsBBZ82tDpgJTCzWgdzqQMKK6m53S66qEaOVOqFVjzxZd-NIDA0sbLmsYSRuxtHII7zDLR30uz3FwbROpS5grcEm9sirlq9OPn7W9I5WvNf5QpOda6r0tC59VKnKKh5a53InVeqkVUkoMyXB5VIaHIs4kdqETt4_G_XH5DIwqBoNx7sPyFWKIgTDUPkW2VzMl_YhuaSPFgfV_FEtgHzy_bwZ9S9aQcbV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DockStream%3A+a+docking+wrapper+to+enhance+de+novo+molecular+design&rft.jtitle=Journal+of+cheminformatics&rft.au=Guo%2C+Jeff&rft.au=Janet%2C+Jon+Paul&rft.au=Bauer%2C+Matthias+R.&rft.au=Nittinger%2C+Eva&rft.date=2021-11-17&rft.pub=Springer+International+Publishing&rft.eissn=1758-2946&rft.volume=13&rft_id=info:doi/10.1186%2Fs13321-021-00563-7&rft_id=info%3Apmid%2F34789335&rft.externalDocID=PMC8596819 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon |