DockStream: a docking wrapper to enhance de novo molecular design

Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of cheminformatics Ročník 13; číslo 1; s. 89 - 21
Hlavní autori: Guo, Jeff, Janet, Jon Paul, Bauer, Matthias R., Nittinger, Eva, Giblin, Kathryn A., Papadopoulos, Kostas, Voronov, Alexey, Patronov, Atanas, Engkvist, Ola, Margreitter, Christian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 17.11.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1758-2946, 1758-2946
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream .
AbstractList Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream .
Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream.
Abstract Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream .
Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream .Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at https://github.com/MolecularAI/DockStream .
Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring function components, which allows bespoke and tailor-made protocols to maximize impact in small molecule drug discovery projects. A major obstacle of generative models is producing active compounds, in which predictive (QSAR) models have been applied to enrich target activity. However, QSAR models are inherently limited by their applicability domains. To overcome these limitations, we introduce a structure-based scoring component for REINVENT. DockStream is a flexible, stand-alone molecular docking wrapper that provides access to a collection of ligand embedders and docking backends. Using the benchmarking and analysis workflow provided in DockStream, execution and subsequent analysis of a variety of docking configurations can be automated. Docking algorithms vary greatly in performance depending on the target and the benchmarking and analysis workflow provides a streamlined solution to identifying productive docking configurations. We show that an informative docking configuration can inform the REINVENT agent to optimize towards improving docking scores using public data. With docking activated, REINVENT is able to retain key interactions in the binding site, discard molecules which do not fit the binding cavity, harness unused (sub-)pockets, and improve overall performance in the scaffold-hopping scenario. The code is freely available at Keywords: De novo design, Generative Models, Reinforcement Learning (RL), Molecular docking, Structure-based drug discovery (SBDD)
ArticleNumber 89
Audience Academic
Author Papadopoulos, Kostas
Nittinger, Eva
Engkvist, Ola
Guo, Jeff
Bauer, Matthias R.
Janet, Jon Paul
Giblin, Kathryn A.
Margreitter, Christian
Voronov, Alexey
Patronov, Atanas
Author_xml – sequence: 1
  givenname: Jeff
  surname: Guo
  fullname: Guo, Jeff
  organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca
– sequence: 2
  givenname: Jon Paul
  surname: Janet
  fullname: Janet, Jon Paul
  organization: Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca
– sequence: 3
  givenname: Matthias R.
  surname: Bauer
  fullname: Bauer, Matthias R.
  organization: Structure & Biophysics, Discovery Sciences, R&D, AstraZeneca
– sequence: 4
  givenname: Eva
  surname: Nittinger
  fullname: Nittinger, Eva
  organization: Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca
– sequence: 5
  givenname: Kathryn A.
  surname: Giblin
  fullname: Giblin, Kathryn A.
  organization: Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca
– sequence: 6
  givenname: Kostas
  surname: Papadopoulos
  fullname: Papadopoulos, Kostas
  organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca
– sequence: 7
  givenname: Alexey
  surname: Voronov
  fullname: Voronov, Alexey
  organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca
– sequence: 8
  givenname: Atanas
  surname: Patronov
  fullname: Patronov, Atanas
  organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca
– sequence: 9
  givenname: Ola
  surname: Engkvist
  fullname: Engkvist, Ola
  organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca, Department of Computer Science and Engineering, Chalmers University of Technology
– sequence: 10
  givenname: Christian
  orcidid: 0000-0002-5473-6318
  surname: Margreitter
  fullname: Margreitter, Christian
  email: christian.margreitter@astrazeneca.com
  organization: Molecular AI, Discovery Sciences, R&D, AstraZeneca
BackLink https://research.chalmers.se/publication/527226$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kktv1DAUhSNURB_wB1hFYgOLKX47ZoE0Kq-RKiExsLYc-ybjktiDnWnh3-MwRWUqVEVW7OtzPlvH97Q6CjFAVT3H6BzjRrzOmFKCF2geiAu6kI-qEyx5syCKiaN_5sfVac5XCAkukXxSHVMmG0UpP6mW76L9vp4SmPFNbWpXVj709U0y2y2keoo1hI0JFmoHdYjXsR7jAHY3mFQq2ffhafW4M0OGZ7f_s-rbh_dfLz4tLj9_XF0sLxdWKDYtbOsYw4S25RJKcExAMgGybbqOcwJWYkuFocg5cMJCY5xzAhSTSnZN5xw9q1Z7rovmSm-TH036paPx-k8hpl6bNHk7gOaEMsEQ5hhbhjFWyri2nE8IFq0CWVjrPSvfwHbXHtASZDDJbrTdmGGElHUGLRF0XdspzTsFmiFltFJSaosJp0xZhzpVqG_31IIcwVkIUzLDAfxwJ_iN7uO1bkoiDZ4BL28BKf7YQZ706LOFYTAB4i5rwpVCUmCCi_TFPelV3KVQHmBWNUQJJuSdqjclFh-6WM61M1QvRSOYJIqzojr_j6p8DkZvS891vtQPDK8ODEUzwc-pN7uc9Wr95VDb7LU2xZwTdNr6yUw-zhH4QWOk52bW-2bWaB5zM-v59uSe9W-UD5ro7dMWcegh3QXzgOs3g8kEew
CitedBy_id crossref_primary_10_1038_s41598_025_12685_1
crossref_primary_10_1186_s13321_023_00772_2
crossref_primary_10_1007_s10822_023_00512_6
crossref_primary_10_1186_s13321_022_00667_8
crossref_primary_10_1186_s13321_023_00781_1
crossref_primary_10_1186_s13321_024_00812_5
crossref_primary_10_1186_s13321_022_00646_z
crossref_primary_10_1021_acs_jchemed_4c00253
crossref_primary_10_3390_technologies12070095
crossref_primary_10_1021_acs_jmedchem_5c00359
crossref_primary_10_1038_s41467_025_60629_0
crossref_primary_10_3389_fchem_2022_1012507
crossref_primary_10_1107_S1600576724005934
crossref_primary_10_1016_j_drudis_2024_104106
crossref_primary_10_1038_s42256_022_00494_4
crossref_primary_10_1186_s13321_024_00861_w
crossref_primary_10_1016_j_sbi_2023_102559
crossref_primary_10_1186_s13321_023_00760_6
crossref_primary_10_1016_j_drudis_2022_103439
crossref_primary_10_1016_j_mycmed_2023_101411
crossref_primary_10_1039_D3SC04653B
Cites_doi 10.1039/C6CP01555G
10.1021/jm051256o
10.26434/chemrxiv.14371967.v1
10.1016/j.bmcl.2009.10.102
10.1038/s41573-019-0050-3
10.1146/annurev-biophys-083012-130318
10.1080/17460441.2021.1909567
10.1002/jcc.21334
10.1016/j.cbpa.2010.02.018
10.1002/jcc.21498
10.1038/384644a0
10.1021/acs.jcim.9b00383
10.1038/s41586-019-0917-9
10.1186/s13321-020-00473-0
10.1098/rstb.2017.0070
10.1007/s10822-013-9672-4
10.1038/nchem.1243
10.1186/1758-2946-3-33
10.1126/sciadv.aap7885
10.1016/j.ddtec.2010.10.003
10.1101/2021.04.06.438722
10.3390/ijms17020144
10.1021/acsomega.7b00274
10.1016/j.bmcl.2010.03.091
10.1186/s13321-021-00516-0
10.1007/978-1-60327-216-2_23
10.1021/jm901137j
10.1186/s13321-017-0256-5
10.1042/BCJ20200781
10.1021/ct300857j
10.1007/s10822-012-9584-8
10.1016/S0169-409X(96)00423-1
10.1517/17460441.2012.714363
10.1021/jm0306430
10.1093/biomet/33.3.239
10.1186/s13321-019-0404-1
10.1021/ci400115b
10.1006/jmbi.1996.0897
10.5772/intechopen.68318
10.1021/ci00020a039
10.1021/jm030644s
10.1186/s13321-018-0286-7
10.1080/03610910903168603
10.1158/0008-5472.CAN-12-2038
10.3390/ijms20184331
10.1093/nar/gkw1074
10.1021/acs.jcim.0c00171
10.1107/S2052520616003954
10.1371/journal.pcbi.1003571
10.1007/s10822-013-9644-8
10.1186/1741-7007-9-71
10.1093/bib/bbaa161
10.1186/s13321-019-0393-0
10.1073/pnas.0705356104
10.1088/2632-2153/abcf91
10.1186/s13321-021-00498-z
10.1021/acs.jcim.5b00142
10.1021/acs.jctc.8b01026
10.1007/s10822-008-9181-z
10.1110/ps.47601
10.1007/s00894-019-4032-5
10.1021/ci100031x
10.1038/s41598-020-78537-2
10.1021/ci100050t
10.1021/ja00051a040
10.26434/chemrxiv.14045072.v1
10.1201/9780367802417
10.1002/3527603743.ch11
10.1021/acs.jcim.0c00915
10.26434/chemrxiv.14774223.v1
10.3115/v1/D14-1179
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOA
DOI 10.1186/s13321-021-00563-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic




Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 21
ExternalDocumentID oai_doaj_org_article_52346401511c411199adbbd42216b9e7
oai_research_chalmers_se_70effbf9_5f9e_409a_9977_c125349cd0f9
PMC8596819
A686472954
10_1186_s13321_021_00563_7
GroupedDBID -5F
-5G
-A0
-BR
0R~
29K
2WC
3V.
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D-I
D1I
DIK
E3Z
EBLON
EBS
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KB.
KQ8
LK8
M48
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
RSV
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
AASML
AAYXX
AFPKN
CITATION
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
PUEGO
5PM
2VQ
ABBSD
ADTPV
AFFHD
AHSBF
AOWAS
D8T
EJD
F1S
H13
IPNFZ
RIG
ROL
ZZAVC
ID FETCH-LOGICAL-c694t-cbd44123b06596512e746e7b8ff552ec71c36a30dded6ce8addd6e94797f8fdd3
IEDL.DBID C24
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000719901900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-2946
IngestDate Fri Oct 03 12:43:31 EDT 2025
Wed Nov 05 04:20:56 EST 2025
Tue Nov 04 01:56:10 EST 2025
Fri Sep 05 09:51:21 EDT 2025
Sat Oct 18 23:49:48 EDT 2025
Mon Oct 20 22:15:01 EDT 2025
Mon Oct 20 16:48:30 EDT 2025
Thu Oct 16 15:19:33 EDT 2025
Sat Nov 29 05:55:22 EST 2025
Tue Nov 18 22:29:26 EST 2025
Fri Feb 21 02:48:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Generative Models
Reinforcement Learning (RL)
Structure-based drug discovery (SBDD)
De novo design
Molecular docking
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c694t-cbd44123b06596512e746e7b8ff552ec71c36a30dded6ce8addd6e94797f8fdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5473-6318
OpenAccessLink https://link.springer.com/10.1186/s13321-021-00563-7
PMID 34789335
PQID 2598296467
PQPubID 54992
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_52346401511c411199adbbd42216b9e7
swepub_primary_oai_research_chalmers_se_70effbf9_5f9e_409a_9977_c125349cd0f9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8596819
proquest_miscellaneous_2599076121
proquest_journals_2598296467
gale_infotracmisc_A686472954
gale_infotracacademiconefile_A686472954
gale_incontextgauss_ISR_A686472954
crossref_citationtrail_10_1186_s13321_021_00563_7
crossref_primary_10_1186_s13321_021_00563_7
springer_journals_10_1186_s13321_021_00563_7
PublicationCentury 2000
PublicationDate 2021-11-17
PublicationDateYYYYMMDD 2021-11-17
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-17
  day: 17
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationYear 2021
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Jeon, Kim (CR21) 2020; 10
Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez, Mutowo, Atkinson, Bellis, Cibrián-Uhalte, Davies, Dedman, Karlsson, Magariños, Overington, Papadatos, Smit, Leach (CR50) 2017; 45
Halgren, Murphy, Friesner, Beard, Frye, Pollard, Banks (CR35) 2004; 47
Bai, Tan, Xu, Liu, Huang, Yao (CR20) 2021
Deb, Mailabaram, Al-Jaidi, Saadh (CR61) 2017; 23
Durrant, McCammon (CR70) 2011; 9
Li, Li, Cheng, Liu, Wang (CR22) 2010; 31
CR39
Wang, Sun, Yao, Li, Xu, Li, Tian, Hou (CR23) 2016; 18
CR37
Chodera, Mobley (CR25) 2013; 42
Anderson (CR42) 2012; 823
Madhavi Sastry, Adzhigirey, Day, Annabhimoju, Sherman (CR75) 2013; 27
Polishchuk, Madzhidov, Varnek (CR3) 2013; 27
CR32
CR76
CR30
CR73
Jones, Willett, Glen, Leach, Taylor (CR38) 1997; 267
El Kerdawy, Osman, Zaater (CR14) 2019; 25
Friesner, Murphy, Repasky, Frye, Greenwood, Halgren, Sanschagrin, Mainz (CR36) 2006; 49
Ferreira, Hitchcock (CR62) 2009; 38
Almog, Waddling, Maley, Maley, Roey (CR67) 2001; 10
CR4
Popova, Isayev, Tropsha (CR8) 2018; 4
Lim, Ryu, Kim, Kim (CR5) 2018; 10
Blaschke, Engkvist, Bajorath, Chen (CR47) 2020; 12
Bauer, Ibrahim, Vogel, Boeckler (CR26) 2013; 53
CR49
O’Boyle, Banck, James, Morley, Vandermeersch, Hutchison (CR79) 2011; 3
Pereira, Abbasi, Ribeiro, Arrais (CR9) 2021; 13
Kurumbail, Stevens, Gierse, McDonald, Stegeman, Pak, Gildehaus, Iyashiro, Penning, Seibert, Isakson, Stallings (CR60) 1996; 384
CR45
Arús-Pous, Johansson, Prykhodko, Bjerrum, Tyrchan, Reymond, Chen, Engkvist (CR48) 2019; 11
Pinzi, Rastelli (CR13) 2019; 20
CR82
CR80
Mercado, Rastemo, Lindelöf, Klambauer, Engkvist, Chen, Jannik Bjerrum (CR7) 2021; 2
Hawkins, Skillman, Warren, Ellingson, Stahl (CR31) 2010; 50
Sadowski, Gasteiger, Klebe (CR27) 1994; 34
Jiménez-Luna, Grisoni, Weskamp, Schneider (CR2) 2021
Schneider, Walters, Plowright, Sieroka, Listgarten, Goodnow, Fisher, Jansen, Duca, Rush, Zentgraf, Hill, Krutoholow, Kohler, Blaney, Funatsu, Luebkemann, Schneider (CR1) 2020; 19
Kendall (CR46) 1945; 33
Bickerton, Paolini, Besnard, Muresan, Hopkins (CR57) 2012; 4
Roos, Wu, Damm, Reboul, Stevenson, Lu, Dahlgren, Mondal, Chen, Wang, Abel, Friesner, Harder (CR77) 2019; 15
Lyu, Wang, Balius, Singh, Levit, Moroz, O’Meara, Che, Algaa, Tolmachova, Tolmachev, Shoichet, Roth, Irwin (CR16) 2019; 566
Kudo, Ito, Arata, Nakata, Yoshida (CR74) 2018
Du, Li, Xia, Ai, Liang, Sang, Ji, Liu (CR24) 2016
Clark, Webster-Clark (CR44) 2008; 22
Ruiz-Carmona, Alvarez-Garcia, Foloppe, Garmendia-Doval, Juhos, Schmidtke, Barril, Hubbard, Morley (CR41) 2014; 10
Maziarka, Pocha, Kaczmarczyk, Rataj, Danel, Warchoł (CR6) 2020; 12
CR59
CR58
McGann (CR40) 2012; 26
Baell, Holloway (CR53) 2010; 53
CR55
Schwab (CR28) 2010; 7
CR54
CR51
Zhao, Xiong, Yuan, Li, Sun, Xu (CR15) 2020; 60
Nahoum, Perez, Germain, Rodriguez-Barrios, Manzo, Kammerer, Lemaire, Hirsch, Royer, Gronemeyer, de Lera, Bourguet (CR65) 2007; 104
Zhao, Wang, Sedykh, Zhu (CR12) 2017; 2
Kausar, Falcao (CR11) 2018; 10
Kurkinen, Lätti, Pentikäinen, Postila (CR71) 2019; 59
Groom, Bruno, Lightfoot, Ward (CR81) 2016; 72
Thomas, Smith, O’Boyle, de Graaf, Bender (CR18) 2021; 13
CR29
Eastman, Friedrichs, Chodera, Radmer, Bruns, Ku, Beauchamp, Lane, Wang, Shukla, Tye, Houston, Stich, Klein, Shirts, Pande (CR78) 2013; 9
Kell, Samanta, Swainston (CR10) 2020; 477
Ma, Terayama, Matsumoto, Isaka, Sasakura, Iwata, Araki, Okuno (CR19) 2021
Trott, Olson (CR33) 2010; 31
Bressi, Jennings, Skene, Wu, Melkus, Jong, O’Connell, Grimshaw, Navre, Gangloff (CR64) 2010; 20
Arnott, Planey (CR52) 2012; 7
CR69
CR68
Gu, Smith, Yang, Irwin, Shoichet (CR72) 2021
Friesner, Banks, Murphy, Halgren, Klicic, Mainz, Repasky, Knoll, Shelley, Perry, Shaw, Francis, Shenkin (CR34) 2004; 47
Welsch, Snyder, Stockwell (CR17) 2010; 14
Lipinski, Lombardo, Dominy, Feeney (CR56) 1997; 23
Kelley, Brown, Warren, Muchmore (CR43) 2015; 55
Argiriadi, Ericsson, Harris, Banach, Borhani, Calderwood, Demers, DiMauro, Dixon, Hardman, Kwak, Li, Mankovich, Marcotte, Mullen, Ni, Pietras, Sadhukhan, Sousa, Tomlinson, Wang, Xiang, Talanian (CR63) 2010; 20
Wang, Jiang, Duan, Zeng, Chen, Dai, Chen, Liu, Liu, Zhou, Chen, Zeng, Su, Yao, Zhang (CR66) 2013; 73
X Du (563_CR24) 2016
P Schneider (563_CR1) 2020; 19
S Kausar (563_CR11) 2018; 10
M Thomas (563_CR18) 2021; 13
JC Bressi (563_CR64) 2010; 20
563_CR80
ME Welsch (563_CR17) 2010; 14
563_CR82
S Ruiz-Carmona (563_CR41) 2014; 10
K Roos (563_CR77) 2019; 15
RA Friesner (563_CR34) 2004; 47
PK Deb (563_CR61) 2017; 23
JD Durrant (563_CR70) 2011; 9
MR Bauer (563_CR26) 2013; 53
563_CR45
563_CR37
563_CR39
L Pinzi (563_CR13) 2019; 20
X Li (563_CR22) 2010; 31
ST Kurkinen (563_CR71) 2019; 59
PCD Hawkins (563_CR31) 2010; 50
NM O’Boyle (563_CR79) 2011; 3
563_CR51
A Gaulton (563_CR50) 2017; 45
563_CR54
563_CR55
L Zhao (563_CR12) 2017; 2
563_CR58
M Popova (563_CR8) 2018; 4
563_CR49
G-H Wang (563_CR66) 2013; 73
S Gu (563_CR72) 2021
MA Argiriadi (563_CR63) 2010; 20
GR Bickerton (563_CR57) 2012; 4
G Madhavi Sastry (563_CR75) 2013; 27
TA Halgren (563_CR35) 2004; 47
J Arús-Pous (563_CR48) 2019; 11
RD Clark (563_CR44) 2008; 22
MG Kendall (563_CR46) 1945; 33
M McGann (563_CR40) 2012; 26
JA Arnott (563_CR52) 2012; 7
V Nahoum (563_CR65) 2007; 104
P Eastman (563_CR78) 2013; 9
BP Kelley (563_CR43) 2015; 55
J Lim (563_CR5) 2018; 10
J Sadowski (563_CR27) 1994; 34
563_CR68
Ł Maziarka (563_CR6) 2020; 12
JB Baell (563_CR53) 2010; 53
563_CR69
R Mercado (563_CR7) 2021; 2
563_CR59
CR Groom (563_CR81) 2016; 72
563_CR4
O Trott (563_CR33) 2010; 31
B Ma (563_CR19) 2021
N Kudo (563_CR74) 2018
Q Bai (563_CR20) 2021
CA Lipinski (563_CR56) 1997; 23
J Lyu (563_CR16) 2019; 566
W Zhao (563_CR15) 2020; 60
Z Wang (563_CR23) 2016; 18
JD Chodera (563_CR25) 2013; 42
563_CR73
563_CR30
L Ferreira (563_CR62) 2009; 38
G Jones (563_CR38) 1997; 267
563_CR32
563_CR76
PG Polishchuk (563_CR3) 2013; 27
AC Anderson (563_CR42) 2012; 823
J Jiménez-Luna (563_CR2) 2021
T Blaschke (563_CR47) 2020; 12
T Pereira (563_CR9) 2021; 13
DB Kell (563_CR10) 2020; 477
RG Kurumbail (563_CR60) 1996; 384
563_CR29
R Almog (563_CR67) 2001; 10
AM El Kerdawy (563_CR14) 2019; 25
CH Schwab (563_CR28) 2010; 7
RA Friesner (563_CR36) 2006; 49
W Jeon (563_CR21) 2020; 10
References_xml – ident: CR45
– volume: 18
  start-page: 12964
  issue: 18
  year: 2016
  end-page: 12975
  ident: CR23
  article-title: Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP01555G
– volume: 49
  start-page: 6177
  issue: 21
  year: 2006
  end-page: 6196
  ident: CR36
  article-title: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
  publication-title: J Med Chem
  doi: 10.1021/jm051256o
– year: 2021
  ident: CR19
  article-title: Structure-based de novo molecular generator combined with artificial intelligence and docking simulations
  publication-title: J Chem Inf Model
  doi: 10.26434/chemrxiv.14371967.v1
– volume: 20
  start-page: 330
  issue: 1
  year: 2010
  end-page: 333
  ident: CR63
  article-title: 2,4-diaminopyrimidine MK2 inhibitors. Part I: observation of an unexpected inhibitor binding mode
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.10.102
– volume: 19
  start-page: 353
  issue: 5
  year: 2020
  end-page: 364
  ident: CR1
  article-title: Rethinking Drug design in the artificial intelligence era
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0050-3
– volume: 42
  start-page: 121
  year: 2013
  end-page: 142
  ident: CR25
  article-title: Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-083012-130318
– year: 2021
  ident: CR2
  article-title: Artificial intelligence in drug discovery: recent advances and future perspectives
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2021.1909567
– ident: CR49
– ident: CR68
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  end-page: 461
  ident: CR33
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– ident: CR4
– ident: CR39
– volume: 14
  start-page: 347
  issue: 3
  year: 2010
  end-page: 361
  ident: CR17
  article-title: Privileged scaffolds for library design and drug discovery
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2010.02.018
– ident: CR51
– volume: 31
  start-page: 2109
  issue: 11
  year: 2010
  end-page: 2125
  ident: CR22
  article-title: Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21498
– volume: 384
  start-page: 644
  issue: 6610
  year: 1996
  end-page: 648
  ident: CR60
  article-title: Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents
  publication-title: Nature
  doi: 10.1038/384644a0
– volume: 59
  start-page: 3584
  issue: 8
  year: 2019
  end-page: 3599
  ident: CR71
  article-title: Getting docking into shape using negative image-based rescoring
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00383
– ident: CR29
– ident: CR54
– volume: 566
  start-page: 224
  issue: 7743
  year: 2019
  end-page: 229
  ident: CR16
  article-title: Ultra-large library docking for discovering new chemotypes
  publication-title: Nature
  doi: 10.1038/s41586-019-0917-9
– volume: 12
  start-page: 68
  issue: 1
  year: 2020
  ident: CR47
  article-title: Memory-assisted reinforcement learning for diverse molecular de novo design
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-020-00473-0
– ident: CR80
– year: 2018
  ident: CR74
  article-title: Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2
  publication-title: Philos Trans R Soc B Biol Sci.
  doi: 10.1098/rstb.2017.0070
– ident: CR58
– volume: 27
  start-page: 675
  issue: 8
  year: 2013
  end-page: 679
  ident: CR3
  article-title: Estimation of the size of drug-like chemical space based on GDB-17 data
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9672-4
– volume: 4
  start-page: 90
  issue: 2
  year: 2012
  end-page: 98
  ident: CR57
  article-title: Quantifying the chemical beauty of drugs
  publication-title: Nat Chem
  doi: 10.1038/nchem.1243
– volume: 3
  start-page: 33
  issue: 1
  year: 2011
  ident: CR79
  article-title: Open babel: an open chemical toolbox
  publication-title: J Cheminformatics
  doi: 10.1186/1758-2946-3-33
– volume: 4
  start-page: eaap7885
  issue: 7
  year: 2018
  ident: CR8
  article-title: Deep reinforcement learning for de novo drug design
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aap7885
– volume: 7
  start-page: e245
  issue: 4
  year: 2010
  end-page: e253
  ident: CR28
  article-title: Conformations and 3D pharmacophore searching
  publication-title: Drug Discov Today Technol
  doi: 10.1016/j.ddtec.2010.10.003
– year: 2021
  ident: CR72
  article-title: Ligand Strain energy in large library docking
  publication-title: bioRxiv
  doi: 10.1101/2021.04.06.438722
– year: 2016
  ident: CR24
  article-title: Insights into protein-ligand interactions: mechanisms, models, and methods
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17020144
– volume: 2
  start-page: 2805
  issue: 6
  year: 2017
  end-page: 2812
  ident: CR12
  article-title: Experimental errors in QSAR modeling sets: what we can do and what we cannot do
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00274
– volume: 20
  start-page: 3142
  issue: 10
  year: 2010
  end-page: 3145
  ident: CR64
  article-title: Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.03.091
– volume: 13
  start-page: 39
  issue: 1
  year: 2021
  ident: CR18
  article-title: Comparison of structure- and ligand-based scoring functions for deep generative models: A GPCR case study
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-021-00516-0
– ident: CR32
– volume: 823
  start-page: 359
  year: 2012
  end-page: 366
  ident: CR42
  article-title: Structure-based functional design of drugs: from target to lead compound
  publication-title: Methods Mol Biol Clifton NJ
  doi: 10.1007/978-1-60327-216-2_23
– volume: 53
  start-page: 2719
  issue: 7
  year: 2010
  end-page: 2740
  ident: CR53
  article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
  publication-title: J Med Chem
  doi: 10.1021/jm901137j
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: CR11
  article-title: An automated framework for QSAR model building
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-017-0256-5
– volume: 477
  start-page: 4559
  issue: 23
  year: 2020
  end-page: 4580
  ident: CR10
  article-title: Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently
  publication-title: Biochem J
  doi: 10.1042/BCJ20200781
– volume: 9
  start-page: 461
  issue: 1
  year: 2013
  end-page: 469
  ident: CR78
  article-title: OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct300857j
– volume: 26
  start-page: 897
  issue: 8
  year: 2012
  end-page: 906
  ident: CR40
  article-title: FRED and HYBRID docking performance on standardized datasets
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9584-8
– volume: 23
  start-page: 3
  issue: 1
  year: 1997
  end-page: 25
  ident: CR56
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(96)00423-1
– volume: 7
  start-page: 863
  issue: 10
  year: 2012
  end-page: 875
  ident: CR52
  article-title: The influence of lipophilicity in drug discovery and design
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2012.714363
– volume: 47
  start-page: 1739
  issue: 7
  year: 2004
  end-page: 1749
  ident: CR34
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy
  publication-title: J Med Chem
  doi: 10.1021/jm0306430
– volume: 33
  start-page: 239
  issue: 3
  year: 1945
  end-page: 251
  ident: CR46
  article-title: The treatment of ties in ranking problems
  publication-title: Biometrika
  doi: 10.1093/biomet/33.3.239
– volume: 12
  start-page: 2
  issue: 1
  year: 2020
  ident: CR6
  article-title: Mol-CycleGAN: a generative model for molecular optimization
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-019-0404-1
– ident: CR37
– ident: CR30
– volume: 53
  start-page: 1447
  issue: 6
  year: 2013
  end-page: 1462
  ident: CR26
  article-title: Evaluation and optimization of virtual screening workflows with DEKOIS 2.0—a public library of challenging docking benchmark sets
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400115b
– volume: 267
  start-page: 727
  issue: 3
  year: 1997
  end-page: 748
  ident: CR38
  article-title: Development and validation of a genetic algorithm for flexible docking11edited by F. E. Cohen
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0897
– ident: CR82
– volume: 23
  start-page: 101
  issue: 6
  year: 2017
  end-page: 121
  ident: CR61
  article-title: Molecular basis of binding interactions of NSAIDs and computer-aided drug design approaches in the pursuit of the development of cyclooxygenase-2 (COX-2) selective inhibitors
  publication-title: Nonsteroidal Anti Inflamm Drugs.
  doi: 10.5772/intechopen.68318
– volume: 34
  start-page: 1000
  issue: 4
  year: 1994
  end-page: 1008
  ident: CR27
  article-title: Comparison of automatic three-dimensional model builders using 639 X-Ray structures
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00020a039
– volume: 47
  start-page: 1750
  issue: 7
  year: 2004
  end-page: 1759
  ident: CR35
  article-title: Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening
  publication-title: J Med Chem
  doi: 10.1021/jm030644s
– volume: 10
  start-page: 31
  issue: 1
  year: 2018
  ident: CR5
  article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-018-0286-7
– volume: 38
  start-page: 1925
  issue: 9
  year: 2009
  end-page: 1949
  ident: CR62
  article-title: A comparison of hierarchical methods for clustering functional data
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610910903168603
– volume: 73
  start-page: 307
  issue: 1
  year: 2013
  end-page: 318
  ident: CR66
  article-title: Targeting truncated retinoid X receptor-α by CF31 induces TNF-α–dependent apoptosis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2038
– volume: 20
  start-page: 4331
  issue: 18
  year: 2019
  ident: CR13
  article-title: Molecular docking: shifting paradigms in drug discovery
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20184331
– volume: 45
  start-page: D945
  issue: D1
  year: 2017
  end-page: D954
  ident: CR50
  article-title: The ChEMBL database in 2017
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 60
  start-page: 3265
  issue: 6
  year: 2020
  end-page: 3276
  ident: CR15
  article-title: In silico screening-based discovery of novel inhibitors of human cyclic GMP–AMP synthase: a cross-validation study of molecular docking and experimental testing
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00171
– ident: CR69
– volume: 72
  start-page: 171
  issue: 2
  year: 2016
  end-page: 179
  ident: CR81
  article-title: The Cambridge structural database
  publication-title: Acta Crystallogr Sect B Struct Sci Cryst Eng Mater.
  doi: 10.1107/S2052520616003954
– ident: CR73
– volume: 10
  issue: 4
  year: 2014
  ident: CR41
  article-title: RDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1003571
– volume: 27
  start-page: 221
  issue: 3
  year: 2013
  end-page: 234
  ident: CR75
  article-title: Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9644-8
– volume: 9
  start-page: 71
  issue: 1
  year: 2011
  ident: CR70
  article-title: Molecular dynamics simulations and drug discovery
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-9-71
– year: 2021
  ident: CR20
  article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa161
– volume: 11
  start-page: 71
  issue: 1
  year: 2019
  ident: CR48
  article-title: Randomized SMILES strings improve the quality of molecular generative models
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-019-0393-0
– volume: 104
  start-page: 17323
  issue: 44
  year: 2007
  end-page: 17328
  ident: CR65
  article-title: Modulators of the structural dynamics of the retinoid X receptor to reveal receptor function
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0705356104
– volume: 2
  issue: 2
  year: 2021
  ident: CR7
  article-title: Graph networks for molecular design
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/abcf91
– volume: 13
  start-page: 21
  issue: 1
  year: 2021
  ident: CR9
  article-title: Diversity oriented deep reinforcement learning for targeted molecule generation
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-021-00498-z
– volume: 55
  start-page: 1771
  issue: 8
  year: 2015
  end-page: 1780
  ident: CR43
  article-title: POSIT: flexible shape-guided docking for pose prediction
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00142
– volume: 15
  start-page: 1863
  issue: 3
  year: 2019
  end-page: 1874
  ident: CR77
  article-title: OPLS3e: extending force field coverage for drug-like small molecules
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.8b01026
– ident: CR55
– ident: CR59
– ident: CR76
– volume: 22
  start-page: 141
  issue: 3
  year: 2008
  end-page: 146
  ident: CR44
  article-title: Managing bias in ROC curves
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-008-9181-z
– volume: 10
  start-page: 988
  issue: 5
  year: 2001
  end-page: 996
  ident: CR67
  article-title: Crystal structure of a deletion mutant of human thymidylate synthase Δ (7–29) and its ternary complex with tomudex and DUMP
  publication-title: Protein Sci
  doi: 10.1110/ps.47601
– volume: 25
  start-page: 171
  issue: 6
  year: 2019
  ident: CR14
  article-title: Receptor-based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors
  publication-title: J Mol Model
  doi: 10.1007/s00894-019-4032-5
– volume: 50
  start-page: 572
  issue: 4
  year: 2010
  end-page: 584
  ident: CR31
  article-title: Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and cambridge structural database
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100031x
– volume: 10
  start-page: 22104
  issue: 1
  year: 2020
  ident: CR21
  article-title: Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78537-2
– year: 2021
  ident: 563_CR2
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2021.1909567
– ident: 563_CR39
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 563_CR11
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-017-0256-5
– volume: 13
  start-page: 21
  issue: 1
  year: 2021
  ident: 563_CR9
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-021-00498-z
– volume: 31
  start-page: 2109
  issue: 11
  year: 2010
  ident: 563_CR22
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21498
– ident: 563_CR58
– volume: 34
  start-page: 1000
  issue: 4
  year: 1994
  ident: 563_CR27
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00020a039
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  ident: 563_CR33
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21334
– volume: 55
  start-page: 1771
  issue: 8
  year: 2015
  ident: 563_CR43
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.5b00142
– volume: 4
  start-page: 90
  issue: 2
  year: 2012
  ident: 563_CR57
  publication-title: Nat Chem
  doi: 10.1038/nchem.1243
– volume: 60
  start-page: 3265
  issue: 6
  year: 2020
  ident: 563_CR15
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00171
– volume: 72
  start-page: 171
  issue: 2
  year: 2016
  ident: 563_CR81
  publication-title: Acta Crystallogr Sect B Struct Sci Cryst Eng Mater.
  doi: 10.1107/S2052520616003954
– volume: 10
  issue: 4
  year: 2014
  ident: 563_CR41
  publication-title: PLOS Comput Biol
  doi: 10.1371/journal.pcbi.1003571
– year: 2021
  ident: 563_CR72
  publication-title: bioRxiv
  doi: 10.1101/2021.04.06.438722
– volume: 38
  start-page: 1925
  issue: 9
  year: 2009
  ident: 563_CR62
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610910903168603
– volume: 73
  start-page: 307
  issue: 1
  year: 2013
  ident: 563_CR66
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2038
– volume: 42
  start-page: 121
  year: 2013
  ident: 563_CR25
  publication-title: Annu Rev Biophys
  doi: 10.1146/annurev-biophys-083012-130318
– ident: 563_CR68
– volume: 10
  start-page: 31
  issue: 1
  year: 2018
  ident: 563_CR5
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-018-0286-7
– volume: 7
  start-page: e245
  issue: 4
  year: 2010
  ident: 563_CR28
  publication-title: Drug Discov Today Technol
  doi: 10.1016/j.ddtec.2010.10.003
– volume: 104
  start-page: 17323
  issue: 44
  year: 2007
  ident: 563_CR65
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0705356104
– volume: 27
  start-page: 221
  issue: 3
  year: 2013
  ident: 563_CR75
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9644-8
– volume: 4
  start-page: eaap7885
  issue: 7
  year: 2018
  ident: 563_CR8
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aap7885
– year: 2018
  ident: 563_CR74
  publication-title: Philos Trans R Soc B Biol Sci.
  doi: 10.1098/rstb.2017.0070
– ident: 563_CR69
  doi: 10.1021/ci100050t
– volume: 26
  start-page: 897
  issue: 8
  year: 2012
  ident: 563_CR40
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-012-9584-8
– ident: 563_CR82
  doi: 10.1021/ja00051a040
– volume: 10
  start-page: 988
  issue: 5
  year: 2001
  ident: 563_CR67
  publication-title: Protein Sci
  doi: 10.1110/ps.47601
– volume: 10
  start-page: 22104
  issue: 1
  year: 2020
  ident: 563_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78537-2
– volume: 49
  start-page: 6177
  issue: 21
  year: 2006
  ident: 563_CR36
  publication-title: J Med Chem
  doi: 10.1021/jm051256o
– ident: 563_CR80
– volume: 19
  start-page: 353
  issue: 5
  year: 2020
  ident: 563_CR1
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-019-0050-3
– ident: 563_CR32
– ident: 563_CR51
  doi: 10.26434/chemrxiv.14045072.v1
– volume: 15
  start-page: 1863
  issue: 3
  year: 2019
  ident: 563_CR77
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.8b01026
– year: 2021
  ident: 563_CR20
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa161
– ident: 563_CR29
– volume: 384
  start-page: 644
  issue: 6610
  year: 1996
  ident: 563_CR60
  publication-title: Nature
  doi: 10.1038/384644a0
– ident: 563_CR45
  doi: 10.1201/9780367802417
– volume: 13
  start-page: 39
  issue: 1
  year: 2021
  ident: 563_CR18
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-021-00516-0
– volume: 12
  start-page: 68
  issue: 1
  year: 2020
  ident: 563_CR47
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-020-00473-0
– year: 2016
  ident: 563_CR24
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17020144
– ident: 563_CR54
  doi: 10.1002/3527603743.ch11
– ident: 563_CR4
  doi: 10.1021/acs.jcim.0c00915
– volume: 45
  start-page: D945
  issue: D1
  year: 2017
  ident: 563_CR50
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1074
– volume: 9
  start-page: 461
  issue: 1
  year: 2013
  ident: 563_CR78
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct300857j
– volume: 12
  start-page: 2
  issue: 1
  year: 2020
  ident: 563_CR6
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-019-0404-1
– volume: 11
  start-page: 71
  issue: 1
  year: 2019
  ident: 563_CR48
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-019-0393-0
– ident: 563_CR37
– volume: 18
  start-page: 12964
  issue: 18
  year: 2016
  ident: 563_CR23
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C6CP01555G
– volume: 14
  start-page: 347
  issue: 3
  year: 2010
  ident: 563_CR17
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2010.02.018
– volume: 59
  start-page: 3584
  issue: 8
  year: 2019
  ident: 563_CR71
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00383
– volume: 27
  start-page: 675
  issue: 8
  year: 2013
  ident: 563_CR3
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-013-9672-4
– volume: 53
  start-page: 1447
  issue: 6
  year: 2013
  ident: 563_CR26
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400115b
– volume: 53
  start-page: 2719
  issue: 7
  year: 2010
  ident: 563_CR53
  publication-title: J Med Chem
  doi: 10.1021/jm901137j
– volume: 23
  start-page: 101
  issue: 6
  year: 2017
  ident: 563_CR61
  publication-title: Nonsteroidal Anti Inflamm Drugs.
  doi: 10.5772/intechopen.68318
– volume: 33
  start-page: 239
  issue: 3
  year: 1945
  ident: 563_CR46
  publication-title: Biometrika
  doi: 10.1093/biomet/33.3.239
– volume: 7
  start-page: 863
  issue: 10
  year: 2012
  ident: 563_CR52
  publication-title: Expert Opin Drug Discov
  doi: 10.1517/17460441.2012.714363
– volume: 9
  start-page: 71
  issue: 1
  year: 2011
  ident: 563_CR70
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-9-71
– volume: 50
  start-page: 572
  issue: 4
  year: 2010
  ident: 563_CR31
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100031x
– volume: 3
  start-page: 33
  issue: 1
  year: 2011
  ident: 563_CR79
  publication-title: J Cheminformatics
  doi: 10.1186/1758-2946-3-33
– volume: 477
  start-page: 4559
  issue: 23
  year: 2020
  ident: 563_CR10
  publication-title: Biochem J
  doi: 10.1042/BCJ20200781
– volume: 20
  start-page: 3142
  issue: 10
  year: 2010
  ident: 563_CR64
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2010.03.091
– volume: 20
  start-page: 4331
  issue: 18
  year: 2019
  ident: 563_CR13
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20184331
– volume: 2
  issue: 2
  year: 2021
  ident: 563_CR7
  publication-title: Mach Learn Sci Technol
  doi: 10.1088/2632-2153/abcf91
– volume: 823
  start-page: 359
  year: 2012
  ident: 563_CR42
  publication-title: Methods Mol Biol Clifton NJ
  doi: 10.1007/978-1-60327-216-2_23
– volume: 22
  start-page: 141
  issue: 3
  year: 2008
  ident: 563_CR44
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-008-9181-z
– ident: 563_CR59
– volume: 566
  start-page: 224
  issue: 7743
  year: 2019
  ident: 563_CR16
  publication-title: Nature
  doi: 10.1038/s41586-019-0917-9
– volume: 267
  start-page: 727
  issue: 3
  year: 1997
  ident: 563_CR38
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1996.0897
– ident: 563_CR76
– volume: 25
  start-page: 171
  issue: 6
  year: 2019
  ident: 563_CR14
  publication-title: J Mol Model
  doi: 10.1007/s00894-019-4032-5
– volume: 47
  start-page: 1750
  issue: 7
  year: 2004
  ident: 563_CR35
  publication-title: J Med Chem
  doi: 10.1021/jm030644s
– volume: 20
  start-page: 330
  issue: 1
  year: 2010
  ident: 563_CR63
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2009.10.102
– ident: 563_CR30
– ident: 563_CR55
– ident: 563_CR73
  doi: 10.26434/chemrxiv.14774223.v1
– ident: 563_CR49
  doi: 10.3115/v1/D14-1179
– volume: 47
  start-page: 1739
  issue: 7
  year: 2004
  ident: 563_CR34
  publication-title: J Med Chem
  doi: 10.1021/jm0306430
– year: 2021
  ident: 563_CR19
  publication-title: J Chem Inf Model
  doi: 10.26434/chemrxiv.14371967.v1
– volume: 23
  start-page: 3
  issue: 1
  year: 1997
  ident: 563_CR56
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(96)00423-1
– volume: 2
  start-page: 2805
  issue: 6
  year: 2017
  ident: 563_CR12
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00274
SSID ssj0065707
Score 2.4873488
Snippet Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and scoring...
Abstract Recently, we have released the de novo design platform REINVENT in version 2.0. This improved and extended iteration supports far more features and...
SourceID doaj
swepub
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Algorithms
Analysis
Benchmarks
Binding sites
Chemistry
Chemistry and Materials Science
Computational Biology/Bioinformatics
Computer Applications in Chemistry
Configurations
De novo design
Documentation and Information in Chemistry
Drug discovery
Generative Models
Iterative methods
Molecular docking
Reinforcement Learning (RL)
Research Article
Structure-activity relationships
Structure-based drug discovery (SBDD)
Theoretical and Computational Chemistry
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQXVF4iUJBBSBwgauJ4_eC2VFQgVRXipd6s-NWtoMlqs9v-fWacZCFUKhcOPmw82WxmxvNYj78h5CUkVdqKqs6FK1TORfC5wkDOej2DEb1PxZjfj-TxsTo50Z_-aPWFNWE9PHDPuH1IlLiAJAACA8dhYWpde2s9Z6wUVod0jhyinjGZ6m0w1nPI8YiMEvsdZGIM0mYc4PGrXE7cUELrv2qTr9ZJbjdL_wIWTc7ocJfcGaJIOu9__V1yIzT3yK2DsXnbfTIH5_EDd5zr87e0ph4-wTfSy1W9XIYVXbc0NAsUOPWBNu1FS8_HPrlwBYs6HpBvh--_HnzIh24JuROar3MHTOHghyzulArw40EC66VVMc5mLDhZukrUVQH2zAsXFBg2L4LmUsuoQCbVQ7LTtE14RCikQAhsJiqmAy-9slwXvrQSOFGxyERGypF5xg1Q4tjR4qdJKYUSpme4KXAgw43MyOvtPcseSONa6ncoky0lgmCnC6AaZlAN8y_VyMgLlKhBmIsG62hO603XmY9fPpu5UIibr2c8I68GotjCO7h6OJYAnEBkrAnl3oQSJOqm06PimMEOdIYhPqIW4I0y8nw7jXdibVsT2k2i0fhvEiszIicKN3n96UxztkhY4ApkDUFdRt6Mqvn74dex96hX38kTBniphXGL1LunM10wsggx2qjNLOpgeKFroyFnMA4i44pr54uoH_8PaT0htxkuUCyxlHtkZ73ahKfkprtYn3WrZ2l5_wLMoE7c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFNyJQkEFIHCBq4jh-cEFLRQVSVVW8VHGxEj-6FW2y3eyWv89M1tkqVNoLB1_iSSLPjMcz9vgbQl5DUKVrUVSpsJlKufAuVejI1U6X0IJzfTLmz315cKCOjvRh3HDrYlrlYBN7Q-1ai3vkOwyR5rSAef1hdp5i1Sg8XY0lNK6TG4iSgBPzsPw1WGLM6pDDRRkldjqIxxgEz9hg3S9SOVqMesz-q5b5arbk-sj0H3jRfknau_u_g7lH7kRnlE5W2nOfXPPNA3Jrd6gB95BMYA36jQfX1dl7WlH4MO6s0z_zajbzc7poqW-mqDfUedq0Fy09G8rtwhPMDXlEfux9-r77OY1FF1IrNF-ktnbgIbGixgNXAe6AlyBBWasQypJ5K3NbiKrIwCw6Yb0C--iE11xqGRSItnhMtpq28U8IhUgK8dFEwbTnuVM115nLawmsLFhgIiH5wH1jIyI5FsY4NX1kooRZScxk2FBiRibk7fqd2QqPYyP1RxTqmhKxtPsH7fzYxKlpIBTnAsJMcD0tB9OvdeVq4AJjuai1h4-8QpUwiJbRYDrOcbXsOvPl21czEQrh93XJE_ImEoUWxmCreLsBOIEAWyPK7RElSNSOuweVMdGcdOZSXxLyct2Nb2KKXOPbZU-jcVOK5QmRI40dDX_c05xMe0hxBbIG3zAh7wbdvvz5Jvbur_R_9IeIUjU1dtqXAOpM543MfAh10KYM2hue6cpoCD2MBQe74Nq6LOinm4f-jNxmOHcxB1Nuk63FfOmfk5v2YnHSzV_0M_8vCqNexw
  priority: 102
  providerName: ProQuest
Title DockStream: a docking wrapper to enhance de novo molecular design
URI https://link.springer.com/article/10.1186/s13321-021-00563-7
https://www.proquest.com/docview/2598296467
https://www.proquest.com/docview/2599076121
https://pubmed.ncbi.nlm.nih.gov/PMC8596819
https://research.chalmers.se/publication/527226
https://doaj.org/article/52346401511c411199adbbd42216b9e7
Volume 13
WOSCitedRecordID wos000719901900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C24
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYhgQvfCMCowoIiQcI5NMfvLVVJyZGFY0PFV6sxB_rBEuqph1v_O3cuUlRGJoED7aU-BzL5_OdLz7_TMgzcKpESZMioCrkQUqNDjgu5EotMkhWaxeM-fmITad8NhN5eyis6aLduy1Jp6ndtOb0dQPeVAyuLyaw2knAdsheFnGBcj3GMw4b_YuxHKw7HvPXej0T5JD6L-rjizGS243SP0BFnSE6uPl_XbhFbrQLT3-4kZTb5Iqp7pBr4-6-t7tkCPbmG25SF2dv_MLX8ATf9n8si8XCLP1V7ZtqjjLia-NX9Xntn3VX68IbjAO5Rz4dTD6O3wbtBQuBoiJdBarUsBqKkxI3VymYfsNgtFjJrc2y2CgWqYQWSQgqUFNlOOhCTY1ImWCWwzAm98luVVfmAfHBa0IsNJrEwqSR5mUqQh2VDBiYxDamHok6nkvVoo_jJRjfpfNCOJUb5sgQEzJHMo-82NZZbLA3LqUe4VBuKRE3272olyeynYYS3O6UgksJy0yVgpoXotAlcCGOI1oKAx95ioIgERmjwtCbk2LdNPLww7EcUo5Q-yJLPfK8JbI19EEV7UkG4ASCafUo93uUMKKqX9zJm2xVRyNjhFQUFAyYR55si7EmhsNVpl47GoE_oOLII6wnp73u90uq07mDD-cw1rAO9MjLTkh_N34Ze482Ut9roUWkmks1d9f9NLIxkoXG2tIKmVlhZBqKQgpwM6SCxXSSCqVDKx7-W-uPyPUYpw3GX7J9srtars1jclWdr06b5YDssBlzOR-QvdFkmh8PnE4YuF8skL8bvRpgWG-O-c8J5Hn2FWjzw_f5l1-Zal3s
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFUKUnvhjTAUMAjEAazaa3sfSAiFQtWoIUJQUG6LvY-mKrVDnLTip_hGZhw7lamUWw8c9uIdP2Z3np7ZGUKeg1MlcxZnAdOhCBJmTSDQkMuNTGE4Y-pkzO8DPhyK0Uh-XiN_2rMwmFbZysRaUJtS4z_ybYqV5iQDvn43-RVg1yiMrrYtNBZksW9_n4HLVr3tf4D9fUHp7seDnb2g6SoQaCaTWaBzAyYAjXOMKDLQd5bDJ_JcOJem1Goe6ZhlcQh8b5i2AgSAYVYmXHIn4NtjeO4VchXkOMcUMj5aOniYRcLbgzmCbVfg_1Fw1nGAnREHvKP86h4BFzXBxezMZYj2n3KmtQrcvfG_Ld5Ncr0xtv3egjtukTVb3CYbO22PuzukBzr2GAPz2ckbP_MBEYwc-GfTbDKxU39W-rYYI1_4xvpFeVr6J207YbiCuS93ybdLweAeWS_Kwt4nPniKWP-NxVTaJDIiT2RoopzD1sXUUeaRqN1tpZuK69j446eqPS_B1IJCVIgDKURxj7xa3jNZ1BtZCf0eiWgJibXC6wvl9FA1okelNE4YuNFgWusEVJuUmclhFSiNWC4tPOQZkqDCaiAFphsdZvOqUv2vX1SPCWwvINPEIy8bIFcCDjprTm_ASmABsQ7kVgcSdlR3p1sSVY24rNQ5fXrk6XIa78QUwMKW8xpG4k83GnmEdzikg353pjga1yXTBew12L4eed3y0vnLVy3vYMFvnTc0VbjGSo_rFkeVqqzioXUud1KlTlqVhDJTElwrpcGBiBOpTejkg9WoPyEbewefBmrQH-4_JJsU5Qbmm_Itsj6bzu0jck2fzo6q6eNa6vjkx2Vz6l-3t73i
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtNAcFUKAi68EYYCBoE4gBV7be8DCaHQEhE1iiJeqrgs9j6aCmqHOGnFr_F1zDh2KlOptx447MU7a3t257k7O0PIM3CqZM7iLGA6FEHCrAkEGnK5kSk0Z0wdjPl1xMdjsbcnJxvkT3sXBsMqW5lYC2pTatwj71HMNCcZ8HXPNWERk53B29mvACtI4UlrW05jRSK79vcxuG_Vm-EOrPVzSgfvP29_CJoKA4FmMlkEOjdgDtA4x9NFBrrPcvhdngvn0pRazSMdsywOQQYYpq0AYWCYlQmX3AnAI4b3XiAXYZBEx2-Sfmu1AEaU8PaSjmC9CnxBCo47NrA54oB3FGFdL-C0Vjgdqbk-rv0ntWmtDgfX_-eJvEGuNUa4319xzU2yYYtb5Mp2W_vuNumD7v2BB_bZ4Ws_8wEpPFHwj-fZbGbn_qL0bTFFfvGN9YvyqPQP2zLD8ARjYu6QL-eCwV2yWZSFvUd88CAxLxyLqbRJZESeyNBEOYdljKmjzCNRu_JKN5nYsSDIT1V7ZIKpFbWoEBtSi-IeebkeM1vlITkT-h0S1BoSc4jXD8r5vmpEkkppnDBwr8Hk1gmoPCkzk8MsUBqxXFp4yVMkR4VZQgokk_1sWVVq-Omj6jOBZQdkmnjkRQPkSsBBZ82tDpgJTCzWgdzqQMKK6m53S66qEaOVOqFVjzxZd-NIDA0sbLmsYSRuxtHII7zDLR30uz3FwbROpS5grcEm9sirlq9OPn7W9I5WvNf5QpOda6r0tC59VKnKKh5a53InVeqkVUkoMyXB5VIaHIs4kdqETt4_G_XH5DIwqBoNx7sPyFWKIgTDUPkW2VzMl_YhuaSPFgfV_FEtgHzy_bwZ9S9aQcbV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DockStream%3A+a+docking+wrapper+to+enhance+de+novo+molecular+design&rft.jtitle=Journal+of+cheminformatics&rft.au=Guo%2C+Jeff&rft.au=Janet%2C+Jon+Paul&rft.au=Bauer%2C+Matthias+R.&rft.au=Nittinger%2C+Eva&rft.date=2021-11-17&rft.pub=Springer+International+Publishing&rft.eissn=1758-2946&rft.volume=13&rft_id=info:doi/10.1186%2Fs13321-021-00563-7&rft_id=info%3Apmid%2F34789335&rft.externalDocID=PMC8596819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon