Machine learning based canine posture estimation using inertial data

The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units (IMUs) that are commercially available, and a supervised learning algorithm which was developed for different behaviours. Three IMUs, each c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:PloS one Ročník 18; číslo 6; s. e0286311
Hlavní autori: Marcato, Marinara, Tedesco, Salvatore, O’Mahony, Conor, O’Flynn, Brendan, Galvin, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Public Library of Science 21.06.2023
Public Library of Science (PLoS)
Predmet:
ISSN:1932-6203, 1932-6203
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units (IMUs) that are commercially available, and a supervised learning algorithm which was developed for different behaviours. Three IMUs, each containing a 3-axis accelerometer, gyroscope, and magnetometer, were attached to the dogs’ chest, back, and neck. To build and test the model, data were collected during a video-recorded behaviour test where the trainee assistance dogs performed static postures (standing, sitting, lying down) and dynamic activities (walking, body shake). Advanced feature extraction techniques were employed for the first time in this field, including statistical, temporal, and spectral methods. The most important features for posture prediction were chosen using Select K Best with ANOVA F-value. The individual contributions of each IMU, sensor, and feature type were analysed using Select K Best scores and Random Forest feature importance. Results showed that the back and chest IMUs were more important than the neck IMU, and the accelerometers were more important than the gyroscopes. The addition of IMUs to the chest and back of dog harnesses is recommended to improve performance. Additionally, statistical and temporal feature domains were more important than spectral feature domains. Three novel cascade arrangements of Random Forest and Isolation Forest were fitted to the dataset. The best classifier achieved an f1-macro of 0.83 and an f1-weighted of 0.90 for the prediction of the five postures, demonstrating a better performance than previous studies. These results were attributed to the data collection methodology (number of subjects and observations, multiple IMUs, use of common working dog breeds) and novel machine learning techniques (advanced feature extraction, feature selection and modelling arrangements) employed. The dataset and code used are publicly available on Mendeley Data and GitHub , respectively.
AbstractList The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units (IMUs) that are commercially available, and a supervised learning algorithm which was developed for different behaviours. Three IMUs, each containing a 3-axis accelerometer, gyroscope, and magnetometer, were attached to the dogs’ chest, back, and neck. To build and test the model, data were collected during a video-recorded behaviour test where the trainee assistance dogs performed static postures (standing, sitting, lying down) and dynamic activities (walking, body shake). Advanced feature extraction techniques were employed for the first time in this field, including statistical, temporal, and spectral methods. The most important features for posture prediction were chosen using Select K Best with ANOVA F-value. The individual contributions of each IMU, sensor, and feature type were analysed using Select K Best scores and Random Forest feature importance. Results showed that the back and chest IMUs were more important than the neck IMU, and the accelerometers were more important than the gyroscopes. The addition of IMUs to the chest and back of dog harnesses is recommended to improve performance. Additionally, statistical and temporal feature domains were more important than spectral feature domains. Three novel cascade arrangements of Random Forest and Isolation Forest were fitted to the dataset. The best classifier achieved an f1-macro of 0.83 and an f1-weighted of 0.90 for the prediction of the five postures, demonstrating a better performance than previous studies. These results were attributed to the data collection methodology (number of subjects and observations, multiple IMUs, use of common working dog breeds) and novel machine learning techniques (advanced feature extraction, feature selection and modelling arrangements) employed. The dataset and code used are publicly available on Mendeley Data and GitHub, respectively.
The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units (IMUs) that are commercially available, and a supervised learning algorithm which was developed for different behaviours. Three IMUs, each containing a 3-axis accelerometer, gyroscope, and magnetometer, were attached to the dogs’ chest, back, and neck. To build and test the model, data were collected during a video-recorded behaviour test where the trainee assistance dogs performed static postures (standing, sitting, lying down) and dynamic activities (walking, body shake). Advanced feature extraction techniques were employed for the first time in this field, including statistical, temporal, and spectral methods. The most important features for posture prediction were chosen using Select K Best with ANOVA F-value. The individual contributions of each IMU, sensor, and feature type were analysed using Select K Best scores and Random Forest feature importance. Results showed that the back and chest IMUs were more important than the neck IMU, and the accelerometers were more important than the gyroscopes. The addition of IMUs to the chest and back of dog harnesses is recommended to improve performance. Additionally, statistical and temporal feature domains were more important than spectral feature domains. Three novel cascade arrangements of Random Forest and Isolation Forest were fitted to the dataset. The best classifier achieved an f1-macro of 0.83 and an f1-weighted of 0.90 for the prediction of the five postures, demonstrating a better performance than previous studies. These results were attributed to the data collection methodology (number of subjects and observations, multiple IMUs, use of common working dog breeds) and novel machine learning techniques (advanced feature extraction, feature selection and modelling arrangements) employed. The dataset and code used are publicly available on Mendeley Data and GitHub , respectively.
The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units (IMUs) that are commercially available, and a supervised learning algorithm which was developed for different behaviours. Three IMUs, each containing a 3-axis accelerometer, gyroscope, and magnetometer, were attached to the dogs' chest, back, and neck. To build and test the model, data were collected during a video-recorded behaviour test where the trainee assistance dogs performed static postures (standing, sitting, lying down) and dynamic activities (walking, body shake). Advanced feature extraction techniques were employed for the first time in this field, including statistical, temporal, and spectral methods. The most important features for posture prediction were chosen using Select K Best with ANOVA F-value. The individual contributions of each IMU, sensor, and feature type were analysed using Select K Best scores and Random Forest feature importance. Results showed that the back and chest IMUs were more important than the neck IMU, and the accelerometers were more important than the gyroscopes. The addition of IMUs to the chest and back of dog harnesses is recommended to improve performance. Additionally, statistical and temporal feature domains were more important than spectral feature domains. Three novel cascade arrangements of Random Forest and Isolation Forest were fitted to the dataset. The best classifier achieved an f1-macro of 0.83 and an f1-weighted of 0.90 for the prediction of the five postures, demonstrating a better performance than previous studies. These results were attributed to the data collection methodology (number of subjects and observations, multiple IMUs, use of common working dog breeds) and novel machine learning techniques (advanced feature extraction, feature selection and modelling arrangements) employed. The dataset and code used are publicly available on Mendeley Data and GitHub, respectively.The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units (IMUs) that are commercially available, and a supervised learning algorithm which was developed for different behaviours. Three IMUs, each containing a 3-axis accelerometer, gyroscope, and magnetometer, were attached to the dogs' chest, back, and neck. To build and test the model, data were collected during a video-recorded behaviour test where the trainee assistance dogs performed static postures (standing, sitting, lying down) and dynamic activities (walking, body shake). Advanced feature extraction techniques were employed for the first time in this field, including statistical, temporal, and spectral methods. The most important features for posture prediction were chosen using Select K Best with ANOVA F-value. The individual contributions of each IMU, sensor, and feature type were analysed using Select K Best scores and Random Forest feature importance. Results showed that the back and chest IMUs were more important than the neck IMU, and the accelerometers were more important than the gyroscopes. The addition of IMUs to the chest and back of dog harnesses is recommended to improve performance. Additionally, statistical and temporal feature domains were more important than spectral feature domains. Three novel cascade arrangements of Random Forest and Isolation Forest were fitted to the dataset. The best classifier achieved an f1-macro of 0.83 and an f1-weighted of 0.90 for the prediction of the five postures, demonstrating a better performance than previous studies. These results were attributed to the data collection methodology (number of subjects and observations, multiple IMUs, use of common working dog breeds) and novel machine learning techniques (advanced feature extraction, feature selection and modelling arrangements) employed. The dataset and code used are publicly available on Mendeley Data and GitHub, respectively.
Audience Academic
Author O’Mahony, Conor
Marcato, Marinara
O’Flynn, Brendan
Tedesco, Salvatore
Galvin, Paul
AuthorAffiliation Menoufia University, EGYPT
Tyndall National Institute, University College Cork, Cork, Ireland
AuthorAffiliation_xml – name: Tyndall National Institute, University College Cork, Cork, Ireland
– name: Menoufia University, EGYPT
Author_xml – sequence: 1
  givenname: Marinara
  orcidid: 0000-0002-7938-5227
  surname: Marcato
  fullname: Marcato, Marinara
– sequence: 2
  givenname: Salvatore
  orcidid: 0000-0002-7752-2240
  surname: Tedesco
  fullname: Tedesco, Salvatore
– sequence: 3
  givenname: Conor
  surname: O’Mahony
  fullname: O’Mahony, Conor
– sequence: 4
  givenname: Brendan
  surname: O’Flynn
  fullname: O’Flynn, Brendan
– sequence: 5
  givenname: Paul
  surname: Galvin
  fullname: Galvin, Paul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37342986$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW519KE3JaSnhZRAT7dCluRdLVppI9khffuOs05Yh1CKERajb36Nfo2OswMfvMmy5xjNMS3xu3Xoo5duvoXwHJGqoBg_yo5wTcmsIIge7M0Ps-OU1ghxWhXFk-yQlpSRuiqOso_fpFpZb3JnZPTWL_NGJqNzJf0Q3YbU9dHkJnV2IzsbfN6ngYLF2Fnpci07-TR73EqXzLPxf5L9-vzp59nX2fnFl8XZ6flMFTXtZi1iTQvTumKYK9waxBvFOSbMtEqSuiFcMdy2JVEN1rVuSqIrXqim5pWmSNKT7OVOd-tCEqMBSZCKVJRxxgkQix2hg1yLbYSi4x8RpBU3gRCXQkLdyhlB2qYmupEaqmKMsBpJhYzSWJW4IYqD1odxt77ZGK2M76J0E9HpircrsQxXAsNtMFohUHgzKsRw2YOHYmOTMs5Jb0K_K7wsGdwcoK_uoQ8fb6SWEk5gfRtgYzWIitOS07pAMICaP0DBp83GKmiX1kJ8kvB2kgBMZ667pexTEosf3_-fvfg9ZV_vsSsjXbdKwfVDH6Up-GLf6juPb_sUALYDVAwpRdPeIRiJ4Tnc2iWG5yDG5wBp7--lKdvdtDE4Yt2_k_8Cd3EQXg
CitedBy_id crossref_primary_10_3390_electronics14101924
crossref_primary_10_3390_ani15142025
crossref_primary_10_14474_ptrs_2025_14_2_242
crossref_primary_10_1016_j_applanim_2024_106287
crossref_primary_10_4018_IJITSA_366037
crossref_primary_10_1016_j_entcom_2025_100971
crossref_primary_10_1016_j_jveb_2025_07_001
crossref_primary_10_3390_ani13203276
crossref_primary_10_1016_j_jevs_2025_105568
crossref_primary_10_3390_ani15182639
crossref_primary_10_1016_j_applanim_2024_106212
crossref_primary_10_1016_j_applanim_2025_106769
Cites_doi 10.1109/MIS.2014.77
10.1145/3446002.3446064
10.1109/CRV.2009.38
10.1007/978-3-319-42417-0_15
10.1016/j.jveb.2006.06.004
10.1371/journal.pone.0188481
10.1016/B978-0-12-809633-8.90059-1
10.1145/3295598.3295602
10.1038/sdata.2016.18
10.1057/s41599-020-00649-x
10.1016/j.physbeh.2014.05.018
10.1016/S0168-1591(96)01131-8
10.1111/j.1365-3164.2006.00537.x
10.3389/fvets.2021.673407
10.2460/javma.237.1.66
10.1080/10888705.2014.856241
10.1007/s00779-010-0298-4
10.3390/ani11061549
10.1016/j.applanim.2005.04.008
10.1145/2995257.3012024
10.3390/s21196652
10.1145/2493432.2493519
10.1016/j.tvjl.2018.05.011
10.1016/j.applanim.2022.105691
10.1371/journal.pone.0236092
10.1016/j.applanim.2021.105393
10.3390/s22030706
10.1016/j.paid.2014.10.042
10.1109/SYSOSE.2008.4724172
10.1016/j.dib.2022.107822
10.1016/j.jveb.2011.03.001
10.1109/BioWireleSS.2013.6613658
10.2460/ajvr.68.5.468
10.1177/1359105320937053
10.1109/EMBC.2012.6346964
10.1111/jvim.15760
10.1016/j.ijhcs.2016.04.010
10.1016/j.jveb.2010.12.002
10.1371/journal.pone.0077814
10.1109/ACCESS.2020.3042539
10.3390/app10114028
10.1016/j.nmd.2009.07.014
10.1145/2487575.2487633
10.1016/j.jveb.2015.08.004
10.5220/0005212001000110
10.1007/978-3-319-63537-8_24
10.1016/j.softx.2020.100456
10.1109/BSN.2013.6575505
10.3389/fpubh.2023.1024195
10.1080/03772063.2020.1725663
10.3390/electronics12041020
ContentType Journal Article
Copyright Copyright: © 2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Marcato et al 2023 Marcato et al
2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Marcato et al 2023 Marcato et al
– notice: 2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0286311
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
CrossRef

MEDLINE




MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Statistics
DocumentTitleAlternate Machine learning based canine posture estimation using inertial data
EISSN 1932-6203
ExternalDocumentID 2828345452
oai_doaj_org_article_2fb92dbad04b442490ac0ecd1c71b2c5
PMC10284380
A753960396
37342986
10_1371_journal_pone_0286311
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Ireland
United Kingdom
GeographicLocations_xml – name: Ireland
– name: United Kingdom
GrantInformation_xml – fundername: ;
  grantid: 12/RC/2289-P2
– fundername: ;
  grantid: 16/RC/3835
– fundername: ;
  grantid: 80885
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c693t-f04bfc6998415c1fe05bc55124efca29b25c41ff72cb1d9db72d856cb958d30a3
IEDL.DBID FPL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001017401300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Sun Aug 06 00:15:56 EDT 2023
Tue Oct 14 19:07:48 EDT 2025
Tue Nov 04 02:06:46 EST 2025
Sun Nov 09 09:35:43 EST 2025
Tue Oct 07 07:45:46 EDT 2025
Sat Nov 29 13:01:08 EST 2025
Sat Nov 29 10:13:38 EST 2025
Wed Nov 26 11:22:34 EST 2025
Wed Nov 26 11:16:52 EST 2025
Thu May 22 21:22:25 EDT 2025
Wed Feb 19 02:22:57 EST 2025
Sat Nov 29 06:22:55 EST 2025
Tue Nov 18 21:53:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright: © 2023 Marcato et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-f04bfc6998415c1fe05bc55124efca29b25c41ff72cb1d9db72d856cb958d30a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: This research is related to the PhD of Marinara Marcato, which is part of collaborations with the Irish Guide Dogs for the Blind. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0002-7938-5227
0000-0002-7752-2240
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0286311
PMID 37342986
PQID 2828345452
PQPubID 1436336
PageCount e0286311
ParticipantIDs plos_journals_2828345452
doaj_primary_oai_doaj_org_article_2fb92dbad04b442490ac0ecd1c71b2c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10284380
proquest_miscellaneous_2828774631
proquest_journals_2828345452
gale_infotracmisc_A753960396
gale_infotracacademiconefile_A753960396
gale_incontextgauss_ISR_A753960396
gale_incontextgauss_IOV_A753960396
gale_healthsolutions_A753960396
pubmed_primary_37342986
crossref_primary_10_1371_journal_pone_0286311
crossref_citationtrail_10_1371_journal_pone_0286311
PublicationCentury 2000
PublicationDate 2023-06-21
PublicationDateYYYYMMDD 2023-06-21
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References A Bozkurt (pone.0286311.ref004) 2014; 29
T Nuttall (pone.0286311.ref030) 2006; 17
T Arora (pone.0286311.ref017) 2020; 25
pone.0286311.ref050
L Morgan (pone.0286311.ref018) 2020; 7
B Beerda (pone.0286311.ref042) 2000
pone.0286311.ref010
pone.0286311.ref052
pone.0286311.ref014
pone.0286311.ref013
pone.0286311.ref012
pone.0286311.ref011
B Ferdinandy (pone.0286311.ref037) 2020; 15
JP Sahoo (pone.0286311.ref053) 2022; 22
T Klishkovskaia (pone.0286311.ref015) 2020; 10
RD Chambers (pone.0286311.ref039) 2021; 11
MD Wilkinson (pone.0286311.ref046) 2016; 3
P Kumpulainen (pone.0286311.ref038) 2021; 241
CE Part (pone.0286311.ref033) 2014; 133
MF Tsai (pone.0286311.ref016) 2020; 8
KK Patro (pone.0286311.ref054) 2022; 68
KM Evans (pone.0286311.ref044) 2015; 10
L Gerencsér (pone.0286311.ref007) 2013; 8
pone.0286311.ref025
pone.0286311.ref024
pone.0286311.ref022
pone.0286311.ref026
S Jones (pone.0286311.ref020) 2014; 17
H Väätäjä (pone.0286311.ref019) 2021; 8
LM Tomkins (pone.0286311.ref034) 2011; 6
VK Sinha (pone.0286311.ref055) 2021; 21
M Barandas (pone.0286311.ref049) 2020; 11
AR Javed (pone.0286311.ref057) 2023; 11
BD Hansen (pone.0286311.ref028) 2007; 68
pone.0286311.ref036
MC Gartner (pone.0286311.ref002) 2015; 75
B Belda (pone.0286311.ref021) 2018; 237
M Marcato (pone.0286311.ref040) 2022; 254
AC Jones (pone.0286311.ref001) 2005; 95
I Barthélémy (pone.0286311.ref027) 2009; 19
WR Britt (pone.0286311.ref023) 2011; 15
AR Javed (pone.0286311.ref056) 2023; 12
KR Muñana (pone.0286311.ref031) 2020; 34
DC Brown (pone.0286311.ref029) 2010; 237
pone.0286311.ref041
pone.0286311.ref003
A Vehkaoja (pone.0286311.ref047) 2022; 40
pone.0286311.ref045
pone.0286311.ref006
B Beerda (pone.0286311.ref032) 1997; 52
EK Stiles (pone.0286311.ref051) 2011; 6
pone.0286311.ref005
pone.0286311.ref048
I Ennik (pone.0286311.ref043) 2006; 1
pone.0286311.ref009
pone.0286311.ref008
I den Uijl (pone.0286311.ref035) 2017; 12
References_xml – volume: 29
  start-page: 32
  issue: 6
  year: 2014
  ident: pone.0286311.ref004
  article-title: Toward Cyber-Enhanced Working Dogs for Search and Rescue
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2014.77
– ident: pone.0286311.ref024
  doi: 10.1145/3446002.3446064
– ident: pone.0286311.ref011
  doi: 10.1109/CRV.2009.38
– ident: pone.0286311.ref052
– ident: pone.0286311.ref036
  doi: 10.1007/978-3-319-42417-0_15
– volume: 1
  start-page: 67
  issue: 2
  year: 2006
  ident: pone.0286311.ref043
  article-title: Suitability for Field Service in 4 Breeds of Guide Dogs
  publication-title: Journal of Veterinary Behavior
  doi: 10.1016/j.jveb.2006.06.004
– volume: 12
  start-page: e0188481
  issue: 11
  year: 2017
  ident: pone.0286311.ref035
  article-title: External Validation of a Collar-Mounted Triaxial Accelerometer for Second-by-Second Monitoring of Eight Behavioural States in Dogs
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0188481
– ident: pone.0286311.ref045
  doi: 10.1016/B978-0-12-809633-8.90059-1
– ident: pone.0286311.ref008
  doi: 10.1145/3295598.3295602
– volume: 3
  start-page: 160018
  issue: 1
  year: 2016
  ident: pone.0286311.ref046
  article-title: The FAIR Guiding Principles for Scientific Data Management and Stewardship
  publication-title: Scientific Data
  doi: 10.1038/sdata.2016.18
– volume: 7
  start-page: 155
  issue: 1
  year: 2020
  ident: pone.0286311.ref018
  article-title: Human–Dog Relationships during the COVID-19 Pandemic: Booming Dog Adoption during Social Isolation
  publication-title: Humanities and Social Sciences Communications
  doi: 10.1057/s41599-020-00649-x
– volume: 133
  start-page: 260
  year: 2014
  ident: pone.0286311.ref033
  article-title: Physiological, Physical and Behavioural Changes in Dogs (Canis Familiaris) When Kennelled: Testing the Validity of Stress Parameters
  publication-title: Physiology & Behavior
  doi: 10.1016/j.physbeh.2014.05.018
– volume: 52
  start-page: 307
  issue: 3-4
  year: 1997
  ident: pone.0286311.ref032
  article-title: Manifestations of Chronic and Acute Stress in Dogs
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/S0168-1591(96)01131-8
– volume: 17
  start-page: 348
  issue: 5
  year: 2006
  ident: pone.0286311.ref030
  article-title: Objective Measurement of Pruritus in Dogs: A Preliminary Study Using Activity Monitors
  publication-title: Veterinary Dermatology
  doi: 10.1111/j.1365-3164.2006.00537.x
– volume: 8
  start-page: 673407
  year: 2021
  ident: pone.0286311.ref019
  article-title: The Interplay Between Affect, Dog’s Physical Activity and Dog–Owner Relationship
  publication-title: Frontiers in Veterinary Science
  doi: 10.3389/fvets.2021.673407
– volume: 237
  start-page: 66
  issue: 1
  year: 2010
  ident: pone.0286311.ref029
  article-title: Use of an Activity Monitor to Detect Response to Treatment in Dogs with Osteoarthritis
  publication-title: Journal of the American Veterinary Medical Association
  doi: 10.2460/javma.237.1.66
– ident: pone.0286311.ref003
– volume: 17
  start-page: 18
  issue: 1
  year: 2014
  ident: pone.0286311.ref020
  article-title: Use of Accelerometers to Measure Stress Levels in Shelter Dogs
  publication-title: Journal of Applied Animal Welfare Science
  doi: 10.1080/10888705.2014.856241
– volume: 15
  start-page: 61
  issue: 1
  year: 2011
  ident: pone.0286311.ref023
  article-title: An Embedded System for Real-Time Navigation and Remote Command of a Trained Canine
  publication-title: Personal and Ubiquitous Computing
  doi: 10.1007/s00779-010-0298-4
– volume: 11
  start-page: 1549
  issue: 6
  year: 2021
  ident: pone.0286311.ref039
  article-title: Deep Learning Classification of Canine Behavior Using a Single Collar-Mounted Accelerometer: Real-World Validation
  publication-title: Animals
  doi: 10.3390/ani11061549
– volume: 95
  start-page: 1
  issue: 1-2
  year: 2005
  ident: pone.0286311.ref001
  article-title: Temperament and Personality in Dogs (Canis Familiaris): A Review and Evaluation of Past Research
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2005.04.008
– ident: pone.0286311.ref013
– ident: pone.0286311.ref014
  doi: 10.1145/2995257.3012024
– volume: 21
  start-page: 6652
  issue: 19
  year: 2021
  ident: pone.0286311.ref055
  article-title: Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor
  publication-title: Sensors
  doi: 10.3390/s21196652
– ident: pone.0286311.ref009
  doi: 10.1145/2493432.2493519
– volume: 237
  start-page: 63
  year: 2018
  ident: pone.0286311.ref021
  article-title: Initial Evaluation of PetPace Activity Monitor
  publication-title: The Veterinary Journal
  doi: 10.1016/j.tvjl.2018.05.011
– volume: 254
  start-page: 105691
  year: 2022
  ident: pone.0286311.ref040
  article-title: Assistance Dog Selection and Performance Assessment Methods Using Behavioural and Physiological Tools and Devices
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2022.105691
– volume: 15
  start-page: e0236092
  issue: 7
  year: 2020
  ident: pone.0286311.ref037
  article-title: Challenges of Machine Learning Model Validation Using Correlated Behaviour Data: Evaluation of Cross-Validation Strategies and Accuracy Measures
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0236092
– ident: pone.0286311.ref048
– volume: 241
  start-page: 105393
  year: 2021
  ident: pone.0286311.ref038
  article-title: Dog Behaviour Classification with Movement Sensors Placed on the Harness and the Collar
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2021.105393
– volume: 22
  start-page: 706
  issue: 3
  year: 2022
  ident: pone.0286311.ref053
  article-title: Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network
  publication-title: Sensors
  doi: 10.3390/s22030706
– volume: 75
  start-page: 102
  year: 2015
  ident: pone.0286311.ref002
  article-title: Pet Personality: A Review
  publication-title: Personality and Individual Differences
  doi: 10.1016/j.paid.2014.10.042
– ident: pone.0286311.ref022
  doi: 10.1109/SYSOSE.2008.4724172
– volume: 40
  start-page: 107822
  year: 2022
  ident: pone.0286311.ref047
  article-title: Description of Movement Sensor Dataset for Dog Behavior Classification
  publication-title: Data in Brief
  doi: 10.1016/j.dib.2022.107822
– volume: 6
  start-page: 328
  issue: 6
  year: 2011
  ident: pone.0286311.ref051
  article-title: Physiological and Behavioral Effects of Dextroamphetamine on Beagle Dogs
  publication-title: Journal of Veterinary Behavior
  doi: 10.1016/j.jveb.2011.03.001
– ident: pone.0286311.ref006
  doi: 10.1109/BioWireleSS.2013.6613658
– volume: 68
  start-page: 468
  issue: 5
  year: 2007
  ident: pone.0286311.ref028
  article-title: Evaluation of an Accelerometer for At-Home Monitoring of Spontaneous Activity in Dogs
  publication-title: American Journal of Veterinary Research
  doi: 10.2460/ajvr.68.5.468
– ident: pone.0286311.ref050
– volume: 25
  start-page: 1155
  issue: 9
  year: 2020
  ident: pone.0286311.ref017
  article-title: Health Behaviour Changes during COVID-19 and the Potential Consequences: A Mini-Review
  publication-title: Journal of Health Psychology
  doi: 10.1177/1359105320937053
– ident: pone.0286311.ref025
  doi: 10.1109/EMBC.2012.6346964
– volume: 34
  start-page: 1239
  issue: 3
  year: 2020
  ident: pone.0286311.ref031
  article-title: Evaluation of a Collar-mounted Accelerometer for Detecting Seizure Activity in Dogs
  publication-title: Journal of Veterinary Internal Medicine
  doi: 10.1111/jvim.15760
– ident: pone.0286311.ref010
  doi: 10.1016/j.ijhcs.2016.04.010
– volume: 6
  start-page: 178
  issue: 3
  year: 2011
  ident: pone.0286311.ref034
  article-title: Behavioral and Physiological Predictors of Guide Dog Success
  publication-title: Journal of Veterinary Behavior: Clinical Applications and Research
  doi: 10.1016/j.jveb.2010.12.002
– volume: 8
  start-page: e77814
  issue: 10
  year: 2013
  ident: pone.0286311.ref007
  article-title: Identification of Behaviour in Freely Moving Dogs (Canis Familiaris) Using Inertial Sensors
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0077814
– volume: 8
  start-page: 220848
  year: 2020
  ident: pone.0286311.ref016
  article-title: Predicting Canine Posture With Smart Camera Networks Powered by the Artificial Intelligence of Things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3042539
– volume: 10
  start-page: 4028
  issue: 11
  year: 2020
  ident: pone.0286311.ref015
  article-title: Development of Classification Algorithms for the Detection of Postures Using Non-Marker-Based Motion Capture Systems
  publication-title: Applied Sciences
  doi: 10.3390/app10114028
– volume: 19
  start-page: 788
  issue: 11
  year: 2009
  ident: pone.0286311.ref027
  article-title: Gait Analysis Using Accelerometry in Dystrophin-Deficient Dogs
  publication-title: Neuromuscular Disorders
  doi: 10.1016/j.nmd.2009.07.014
– ident: pone.0286311.ref041
  doi: 10.1145/2487575.2487633
– volume: 10
  start-page: 459
  issue: 6
  year: 2015
  ident: pone.0286311.ref044
  article-title: Genetic Evaluation of Traits in a Standardized Behavioral Test for Potential Guide Dog Puppies Using Crossbreed Models
  publication-title: Journal of Veterinary Behavior
  doi: 10.1016/j.jveb.2015.08.004
– ident: pone.0286311.ref012
  doi: 10.5220/0005212001000110
– ident: pone.0286311.ref026
  doi: 10.1007/978-3-319-63537-8_24
– start-page: 15
  year: 2000
  ident: pone.0286311.ref042
  article-title: Behavioural and Hormonal Indicators of Enduring Environmental Stress in Dogs
  publication-title: Animal Welfare
– volume: 11
  start-page: 100456
  year: 2020
  ident: pone.0286311.ref049
  article-title: TSFEL: Time Series Feature Extraction Library
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100456
– ident: pone.0286311.ref005
  doi: 10.1109/BSN.2013.6575505
– volume: 11
  start-page: 1024195
  year: 2023
  ident: pone.0286311.ref057
  article-title: Toward Explainable AI-empowered Cognitive Health Assessment
  publication-title: Frontiers in Public Health
  doi: 10.3389/fpubh.2023.1024195
– volume: 68
  start-page: 2743
  issue: 4
  year: 2022
  ident: pone.0286311.ref054
  article-title: An Efficient Optimized Feature Selection with Machine Learning Approach for ECG Biometric Recognition
  publication-title: IETE Journal of Research
  doi: 10.1080/03772063.2020.1725663
– volume: 12
  start-page: 1020
  issue: 4
  year: 2023
  ident: pone.0286311.ref056
  article-title: A Survey of Explainable Artificial Intelligence for Smart Cities
  publication-title: Electronics
  doi: 10.3390/electronics12041020
SSID ssj0053866
Score 2.509096
Snippet The aim of this study was to design a new canine posture estimation system specifically for working dogs. The system was composed of Inertial Measurement Units...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0286311
SubjectTerms Accelerometers
Accuracy
Algorithms
Analysis
Animal training
Animals
Arthritis
Artificial intelligence
Behavior
Biology and Life Sciences
Cameras
Chest
Classification
Computer and Information Sciences
Data collection
Data mining
Datasets
Design
Dogs
Domains
Engineering and Technology
Evacuations & rescues
Feature extraction
Guide dogs
Gyroscopes
Harnesses
Inertial platforms
Learning algorithms
Machine Learning
Model testing
Osteoarthritis
Performance enhancement
Physical Sciences
Physiological aspects
Police dogs
Posture
Random Forest
Recovery (Medical)
Research and Analysis Methods
Sensors
Service animals
Service dogs
Social Sciences
Spectral methods
Statistics
Supervised learning
Variance analysis
Walking
Zoological research
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHl1SwsGIQGHtLHjxPGxPCo4UBAv9Wb5ES-VVsmq2eX3dyb2Rg2qVA4cVoriye7m80xmRpn5hpCXzPvKWKEy6bzPhAxVppQTmbRSlNKUdV76YdiEPD2tz87U1yujvrAmLNIDR-COeLCKe2t8LqwQkCzkxuWN88xJZrkb2EtzqbbJVHwGgxVXVWqUKyQ7SvtyuOra5hA8alUwNnFEA1__-FSerZZdf13I-Xfl5BVXdHKP3E0xJD2O_32H3Gra-2QnWWlPXycq6TcPyPvPQ61kQ9NwiAVFr-Up4IlnV12PLxAoMm3EFkaKdfALih2BYPpLigWkD8nPkw8_3n3M0tyEzFWqWGcBoApwqGrwzo6FJi-tg8iIiyY4w5XlpRMsBMmdZV55K7mvy8pZVda-yE3xiMxaQGqX0CrkAVI2Uzc8CJkbJSpw6rJRRW2ctWFOii2I2iVScZxtsdTDmzIJyUXERCP0OkE_J9l41SqSatwg_xb3Z5RFSuzhBCiKToqib1KUOXmGu6tjf-lo2PoYEjZI4-AzJy8GCaTFaLHuZmE2fa8_ffn1D0Lfv02EXiWh0AEczqReB7gnpNuaSO5PJMG43WR5F3Vxi0qvMUMuBA6Ghyu3-nn98vNxGb8Ua-napttEGQj6Adg5eRzVeUS2kAUEKDX8bj1R9An005X2_PfASo6RKo4v2Psfm_WE3OEQTWJNHmf7ZLa-2DQH5Lb7sz7vL54Otn4JLZJbTw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IKFQy9AC7SBAgEhAYe0sePE8QmVRwUHCipQ9Rb5uVRaJemmy_czk3gDQRUgcVhpFU8263lPPA9CnlJrC6W5TISxNuHCF4mUhidCC54LlZdpbvthE-LoqDw9lZ_CC7cupFWudWKvqG1j8B35PoYGGceJ2C_b8wSnRuHpahihcZVco-gbAz-L45O1JgZZLopQLpcJuh-os9c2tdsDu1pklE7MUd-1f9TNs3bRdJc5nr_nT_5ikA5v_u9WbpEbwRWNDwbe2SRXXL1FNoOwd_Hz0JH6xRbZQJd06Oh8m7z50OdfujgMnJjHaAltDDTCq23T4aFEjN07hrLIGHPr5zFWGYI6WcSYlHqHfD18--X1uyTMYkhMIbOLxKdce_gqS7D4hnqX5tqAt8W480YxqVluOPVeMKOplVYLZsu8MFrmpc1Sld0lsxrwvkPiwqcewkBVOua5SJXkBTgKwsmsVEZrH5FsTZLKhEblOC9jUfWnbwIClgFBFRKyCoSMSDLe1Q6NOv4C_wqpPcJim-3-QrOcV0FqK-a1ZFYrC7vnHCLVVJnUGUuNoJqZPCKPkFeqoWZ1VBbVAQSBEBrCJyJPeghstVFjLs9crbquev_x5B-APh9PgJ4FIN8AOowK9ROwJ2zhNYHcnUCCwjCT5R3k7DVWuuonP8Kda469fPnxuIw_ivl5tWtWAwwEEoDYiGwPwjFiNhMZOD0lPLeciM0E9dOV-uxb3-kcvV8ciXDvz__rPtlg4HtiBh-ju2R2sVy5B-S6-Q6isXzY64QfrFFszQ
  priority: 102
  providerName: ProQuest
Title Machine learning based canine posture estimation using inertial data
URI https://www.ncbi.nlm.nih.gov/pubmed/37342986
https://www.proquest.com/docview/2828345452
https://www.proquest.com/docview/2828774631
https://pubmed.ncbi.nlm.nih.gov/PMC10284380
https://doaj.org/article/2fb92dbad04b442490ac0ecd1c71b2c5
http://dx.doi.org/10.1371/journal.pone.0286311
Volume 18
WOSCitedRecordID wos001017401300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw0IKOh70AGx8rjBIQEvCQkjhOHD-uYxPTaIk6mAovkT_iglSl1bLy-7lL3ECmTcBDTlF8TuOz73xX3wchr0JjEqmY8Lk2xmfcJr4QmvlccRZzGadBbOpiE3wySWczkf02FK-c4Ec8fOdoOlwty2IIu2ESYSjvFo2SBI2t4-zjRvIC7yaJC4-7qWdn-6mz9LeyuLdaLKvrFM2r_pJ_bEDH9_730--Tu07V9A6atbFDbhXlLtlxzFx5b1zG6be7ZBtVziZj8wPyflz7VxaeKygx93CnMx7MAT5dLSs8dPAwO0cT9uih7_zcwyhCEBcLD51OH5Ivx0efDz_4rtaCrxMRXfo2YMrCrUhhR9ehLYJYadCmKCusllQoGmsWWsupVqERRnFq0jjRSsSpiQIZPSK9Eoa5R7zEBhbMPJkW1DIeSMESUAR4IaJUaqVsn0SbKci1S0SO9TAWeX26xsEgaQiUI91yR7c-8dteqyYRx1_wRzi7LS6m0a4fwATljitzapWgRkkDo2cMLNFA6qDQJtQ8VFTHffIc10bexKS2wiA_ACMPTD-4-uRljYGpNEr01ZnLdVXlJ5_O_wHpbNpBeu2Q7BLIoaWLj4AxYYquDuZ-BxMEgu407-FK3lClytGqjhgWk4eem9V9ffOLthlfiv53ZbFcNzhgKABh--RxwwwtZSMegVKTwu-mHTbpkL7bUv74XmcyR-0WSx48ufmTn5JtCnoleufRcJ_0Li_WxTNyR_8EtrgYkNt8eo5wxmuYAkwPwwHZGh1Nsumg_otlUEsJgKejIcBxcIqQZzU8A5jF36BHdjLOvv4CXkVngw
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgEQvQMujgUINAgEHt_Z67fUeECqUqlEfVLSgiovxvgJSZIe4AfGn-I3M2GuDUQVceuAQKfKO7Xj8zSs7D0IehlonuWTC50prn3Gb-EIo5nPJWczzOA1iXQ-b4AcH6cmJOFwg39taGEyrbHVirah1qfA_8g0MDSKGE7GfTz_7ODUKd1fbERoNLHbNt68QslXPRlvwfh9Ruv3q-OWO76YK-CoR0alvAyYtfBUp2C4VWhPEUoHfQJmxKqdC0lix0FpOlQy10JJTncaJkiJOdRTkEVz3ArnIGA1Qig7j963mB92RJK48L-LhhkPD-rQszDrY8SQKw575q6cEdLZgMJ2U1VmO7u_5mr8YwO2r_xvrrpErztX2NhvZWCILplgmS06ZVd4T13H76TJZRJe76Vh9nWzt1_mlxnMDNcYeWnrtAQbx6LSscNPFw-4kTdmnh7UDYw-rKEFdTjxMur1B3p7Lo90kgwLe8wrxEhtYCHPz1FDLeJALloAjxI2I0lxJaYckaiGQKdeIHeeBTLJ6d5FDQNYwKEPgZA44Q-J3Z02bRiR_oX-B6OposY14faCcjTOnlTJqpaBa5hqeHgDNRJCrwCgdKh5KquIhWUNsZk1NbqcMs00IciH0hc-QPKgpsJVIgblK43xeVdno9bt_IDp60yN67IhsCexQuasPgWfCFmU9ytUeJShE1VteQUlquVJlP_EPZ7YScvby_W4ZL4r5h4Up5w0NBErA2CG51Qhjx9mIR-DUpXDftCemPdb3V4pPH-tO7ujd48iH23_-XWvk8s7x_l62NzrYvUMWKfjZmK1Iw1UyOJ3NzV1ySX0BMZndq_WRRz6ctxT_AFsLyyU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R1Nb9Mw1BoFoV2AjY8VBgsIBByyJo4TxweEBqWiGpSKAZp2yWI7LkhVUpoVxF_j1_Fe4gSCJuCyA4dIUfzy4ef3Gb8PQu77WkepZMLlSmuXcRO5QijmcslZyNMw9kJdNZvgk0l8eCima-R7kwuDYZWNTKwEtS4U_iMfoGsQMOyIPTA2LGI6HD1dfHaxgxTutDbtNGoS2c--fQX3rXwyHsJaP6B09OLd85eu7TDgqkgEJ67xmDRwKmLQY8o3mRdKBTYEZZlRKRWShor5xnCqpK-FlpzqOIyUFGGsAy8N4LnnyHkOPiaGE07Do0YLgByJIpuqF3B_YCljd1Hk2S7o9Cjw_Y4qrDoGtHqht5gX5WlG7--xm78ow9Hl_xmNV8gla4I7ezXPbJC1LN8kG1bIlc4jW4n78SZZR1O8rmR9lQxfV3GnmWMbbcwctAC0A7SJVxdFiZsxDlYtqdNBHcwpmDmYXQlidO5gMO418v5Mpnad9HJY8y3iRMYz4P6mcUYN414qWAQGEs9EEKdKStMnQUMOibIF2rFPyDypdh05OGo1ghIkosQSUZ-47V2LukDJX-CfIaW1sFhevLpQLGeJlVYJNVJQLVMNs2cMPHQvVV6mtK-4L6kK-2QH6TSpc3VbIZnsgfMLLjEcfXKvgsASIzlS2SxdlWUyfvPhH4AO3naAHlogUwA6VGrzRmBOWLqsA7ndgQRBqTrDW8hVDVbK5CcvwJ0Nt5w-fLcdxodiXGKeFasaBhwoQGyf3KgZs8VswAMw9mJ4b9xh2Q7quyP5p49VhXe0-rEVxM0_f9cOuQjMm7waT_ZvkXUK5jcGMVJ_m_ROlqvsNrmgvgCXLO9Uoskhx2fNxD8Ak-fT7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+canine+posture+estimation+using+inertial+data&rft.jtitle=PloS+one&rft.au=Marcato%2C+Marinara&rft.au=Tedesco%2C+Salvatore&rft.au=O%E2%80%99Mahony%2C+Conor&rft.au=O%E2%80%99Flynn%2C+Brendan&rft.date=2023-06-21&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=18&rft.issue=6&rft.spage=e0286311&rft_id=info:doi/10.1371%2Fjournal.pone.0286311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0286311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon