Machine learning-driven assessment of biochemical qualities in tomato and mandarin using RGB and hyperspectral sensors as nondestructive technologies

Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non–destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of frui...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PloS one Ročník 19; číslo 8; s. e0308826
Hlavní autoři: Elmetwalli, Adel H., Derbala, Asaad, Alsudays, Ibtisam Mohammed, Al-Shahari, Eman A., Elhosary, Mahmoud, Elsayed, Salah, Al-Shuraym, Laila A., Moghanm, Farahat S., Elsherbiny, Osama
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Public Library of Science 26.08.2024
Public Library of Science (PLoS)
Témata:
ISSN:1932-6203, 1932-6203
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.