Machine learning-driven assessment of biochemical qualities in tomato and mandarin using RGB and hyperspectral sensors as nondestructive technologies

Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non–destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of frui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 19; H. 8; S. e0308826
Hauptverfasser: Elmetwalli, Adel H., Derbala, Asaad, Alsudays, Ibtisam Mohammed, Al-Shahari, Eman A., Elhosary, Mahmoud, Elsayed, Salah, Al-Shuraym, Laila A., Moghanm, Farahat S., Elsherbiny, Osama
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 26.08.2024
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non–destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R 2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R 2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R 2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710 , 600 , and R 730 , 650 showed the greatest R 2 values with respect to Chl a (R 2 = 0.80) for mandarin fruits while the GI had the greatest R 2 with Chl a (R 2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R 2 of 0.993 with an RMSE of 0.149 for the training set, and an R 2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R 2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R 2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.
AbstractList Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non–destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R 2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R 2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R 2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710 , 600 , and R 730 , 650 showed the greatest R 2 values with respect to Chl a (R 2 = 0.80) for mandarin fruits while the GI had the greatest R 2 with Chl a (R 2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R 2 of 0.993 with an RMSE of 0.149 for the training set, and an R 2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R 2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R 2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.
Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non–destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R 2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R 2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R 2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710 , 600 , and R 730 , 650 showed the greatest R 2 values with respect to Chl a (R 2 = 0.80) for mandarin fruits while the GI had the greatest R 2 with Chl a (R 2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R 2 of 0.993 with an RMSE of 0.149 for the training set, and an R 2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R 2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R 2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.
Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non-destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710,600, and R730,650 showed the greatest R2 values with respect to Chl a (R2 = 0.80) for mandarin fruits while the GI had the greatest R2 with Chl a (R2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R2 of 0.993 with an RMSE of 0.149 for the training set, and an R2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.
Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non-destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R.sup.2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R.sup.2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R.sup.2 = 0.84 with car of tomato fruits. The SRIs such as RSI .sub.710,.sub.600, and R.sub.730,.sub.650 showed the greatest R.sup.2 values with respect to Chl a (R.sup.2 = 0.80) for mandarin fruits while the GI had the greatest R.sup.2 with Chl a (R.sup.2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R.sup.2 of 0.993 with an RMSE of 0.149 for the training set, and an R.sup.2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R.sup.2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R.sup.2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.
Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non-destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710,600, and R730,650 showed the greatest R2 values with respect to Chl a (R2 = 0.80) for mandarin fruits while the GI had the greatest R2 with Chl a (R2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R2 of 0.993 with an RMSE of 0.149 for the training set, and an R2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of fruits. Alternatively, non-destructive techniques such as image processing and spectral reflectance would be useful in rapid detection of fruit quality parameters. This research study aimed to assess the potential of image processing, spectral reflectance indices (SRIs), and machine learning models such as decision tree (DT) and random forest (RF) to qualitatively estimate characteristics of mandarin and tomato fruits at different ripening stages. Quality parameters such as chlorophyll a (Chl a), chlorophyll b (Chl b), total soluble solids (TSS), titratable acidity (TA), TSS/TA, carotenoids (car), lycopene and firmness were measured. The results showed that Red-Blue-Green (RGB) indices and newly developed SRIs demonstrated high efficiency for quantifying different fruit properties. For example, the R2 of the relationships between all RGB indices (RGBI) and measured parameters varied between 0.62 and 0.96 for mandarin and varied between 0.29 and 0.90 for tomato. The RGBI such as visible atmospheric resistant index (VARI) and normalized red (Rn) presented the highest R2 = 0.96 with car of mandarin fruits. While excess red vegetation index (ExR) presented the highest R2 = 0.84 with car of tomato fruits. The SRIs such as RSI 710,600, and R730,650 showed the greatest R2 values with respect to Chl a (R2 = 0.80) for mandarin fruits while the GI had the greatest R2 with Chl a (R2 = 0.68) for tomato fruits. Combining RGB and SRIs with DT and RF models would be a robust strategy for estimating eight observed variables associated with reasonable accuracy. Regarding mandarin fruits, in the task of predicting Chl a, the DT-2HV model delivered exceptional results, registering an R2 of 0.993 with an RMSE of 0.149 for the training set, and an R2 of 0.991 with an RMSE of 0.114 for the validation set. As well as for tomato fruits, the DT-5HV model demonstrated exemplary performance in the Chl a prediction, achieving an R2 of 0.905 and an RMSE of 0.077 for the training dataset, and an R2 of 0.785 with an RMSE of 0.077 for the validation dataset. The overall outcomes showed that the RGB, newly SRIs as well as DT and RF based RGBI, and SRIs could be used to evaluate the measured parameters of mandarin and tomato fruits.
Audience Academic
Author Alsudays, Ibtisam Mohammed
Al-Shuraym, Laila A.
Elsayed, Salah
Derbala, Asaad
Moghanm, Farahat S.
Al-Shahari, Eman A.
Elsherbiny, Osama
Elhosary, Mahmoud
Elmetwalli, Adel H.
AuthorAffiliation 1 Agricultural Engineering Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
5 New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
4 Evaluation of Natural Resources Department, Agricultural Engineering, Environmental Studies and Research Institute, University of Sadat City, Minufia, Egypt
6 Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
7 Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
Bahauddin Zakariya University, PAKISTAN
2 Department of Biology, College of Science, Qassim University, Unaizah, Saudi Arabia
3 Department of Biology, Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia
8 Department of Agricultural Engineering, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
AuthorAffiliation_xml – name: Bahauddin Zakariya University, PAKISTAN
– name: 8 Department of Agricultural Engineering, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
– name: 3 Department of Biology, Faculty of Science and Arts, King Khalid University, Abha, Saudi Arabia
– name: 5 New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
– name: 7 Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
– name: 2 Department of Biology, College of Science, Qassim University, Unaizah, Saudi Arabia
– name: 6 Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
– name: 4 Evaluation of Natural Resources Department, Agricultural Engineering, Environmental Studies and Research Institute, University of Sadat City, Minufia, Egypt
– name: 1 Agricultural Engineering Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
Author_xml – sequence: 1
  givenname: Adel H.
  surname: Elmetwalli
  fullname: Elmetwalli, Adel H.
– sequence: 2
  givenname: Asaad
  surname: Derbala
  fullname: Derbala, Asaad
– sequence: 3
  givenname: Ibtisam Mohammed
  orcidid: 0000-0002-0632-1281
  surname: Alsudays
  fullname: Alsudays, Ibtisam Mohammed
– sequence: 4
  givenname: Eman A.
  surname: Al-Shahari
  fullname: Al-Shahari, Eman A.
– sequence: 5
  givenname: Mahmoud
  surname: Elhosary
  fullname: Elhosary, Mahmoud
– sequence: 6
  givenname: Salah
  surname: Elsayed
  fullname: Elsayed, Salah
– sequence: 7
  givenname: Laila A.
  surname: Al-Shuraym
  fullname: Al-Shuraym, Laila A.
– sequence: 8
  givenname: Farahat S.
  surname: Moghanm
  fullname: Moghanm, Farahat S.
– sequence: 9
  givenname: Osama
  orcidid: 0000-0003-3031-7108
  surname: Elsherbiny
  fullname: Elsherbiny, Osama
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39186505$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW4lyytbuSlpaNNASiA93ApZktdaZGkjyaF5kL5vx4kTdkMoxWCL8Tf_aH5m9rMd553OspcYzTGp8IeVH4ITdr6G8BwRVNcFfZLtYUaKGS0Q2dk472b7Ma4QWpCa0mfZLmG4pgu02Mv-fBOyM07nVovgjFvOVDBX2uUiRh1jr13KfZs3xstO90YKm18OwppkdMyNy5PvRfK5cCrv4SUCxIYIOvnFyaebcHe91iGutUwBkqN20YcI8jn0o3RMYZAJKuZJy85565eg_Dx72gob9Yvpe5D9_PL5x_HX2dn5yenx0dlMUkbSTCFaalmgQkvcFkghVqsCS8wYLVmpSNNSpJjAdcMUpUiKtmoxkpVGrSpUVZOD7PWt7tr6yCdHIyeIVeWipLgA4vSWUF6s-DqYXoRr7oXhNwEfllyEZKTVnBS4wY0UbKFZSSvBiCrrtl3ALSkTzVjt41RtaHqtJHgLlmyJbv9xpuNLf8UxJiWlFIPCu0kh-MsBzOO9iVJbK5z2w3Rxhis2FnvzAH28vYlaCujAuNZDYTmK8qMaUQBhhICaP0LBo8aRgPlrDcS3Et5vJQCT9O-0FEOM_PT7xf-z57-22bcbbKeFTV30dkjGu7gNvtq0-t7ju8EHoLwFZPAxBt3eIxjxcb_u7OLjfvFpvyDt8EGaNEmM5cERY_-d_BcMoS7A
CitedBy_id crossref_primary_10_1007_s11119_025_10269_7
crossref_primary_10_3390_agriengineering7020039
crossref_primary_10_1016_j_jfca_2025_107974
crossref_primary_10_3390_agronomy15092229
crossref_primary_10_1016_j_jfca_2025_108086
crossref_primary_10_3390_f16030394
Cites_doi 10.1016/j.rse.2007.11.001
10.5958/2349-297X.2022.00045.9
10.3390/rs9030241
10.1016/j.scienta.2016.09.046
10.1016/j.fct.2011.02.002
10.3390/app11073209
10.1002/jsfa.2390
10.3390/horticulturae8050438
10.1080/87559129.2022.2097692
10.1016/0957-4174(95)00032-1
10.1016/j.scienta.2016.02.016
10.1186/1471-2105-9-307
10.1080/10408398.2011.623799
10.3390/rs14174202
10.1016/j.jfoodeng.2018.05.008
10.2166/wst.2005.0279
10.1016/S0034-4257(02)00010-X
10.1023/A:1010933404324
10.1007/s13197-018-3220-0
10.1016/j.postharvbio.2021.111750
10.1016/j.scienta.2018.08.004
10.1007/978-94-011-1584-1_8
10.35799/jis.13.1.2013.2057
10.1016/j.compag.2018.11.031
10.3390/w13192666
10.21273/HORTSCI.26.9.1186
10.1104/pp.24.1.1
10.1016/j.jfoodeng.2004.05.015
10.1007/s11119-005-6787-1
10.21608/mjae.2015.98713
10.1006/anbo.1997.0544
10.17660/ActaHortic.2016.1119.37
10.1079/IVP2006816
10.1088/1755-1315/686/1/012049
10.1016/j.geoderma.2016.12.008
10.1016/j.tox.2010.01.012
10.3390/agriculture12101558
10.1016/j.jfoodeng.2010.04.025
10.3390/agriculture11010051
10.3390/rs13091785
ContentType Journal Article
Copyright Copyright: © 2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Elmetwalli et al 2024 Elmetwalli et al
2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Elmetwalli et al 2024 Elmetwalli et al
– notice: 2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0308826
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
SciTech Premium Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE

Agricultural Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Machine learning in horticultural crop assessment: Nondestructive RGB and hyperspectral sensor analysis
EISSN 1932-6203
ExternalDocumentID 3097454612
oai_doaj_org_article_321b1bca95e9467a93d48ff5d0669ab8
PMC11346661
A806097932
39186505
10_1371_journal_pone_0308826
Genre Journal Article
GeographicLocations Egypt
GeographicLocations_xml – name: Egypt
GrantInformation_xml – fundername: ;
  grantid: R.G.P.2/60/45
– fundername: ;
  grantid: PNURSP2024R365
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c693t-d064ec202ec1f20d098d21c1996494d3bf60d9a18b9d660caf7f10c7e0fd2d783
IEDL.DBID FPL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304516700071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Thu Nov 28 02:59:07 EST 2024
Mon Nov 10 04:26:55 EST 2025
Tue Nov 04 02:05:52 EST 2025
Fri Sep 05 06:45:29 EDT 2025
Sat Nov 29 14:40:54 EST 2025
Sat Nov 29 13:56:05 EST 2025
Sat Nov 29 10:35:00 EST 2025
Wed Nov 26 11:13:13 EST 2025
Wed Nov 26 11:27:09 EST 2025
Thu May 22 21:24:15 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Sat Nov 29 03:53:46 EST 2025
Tue Nov 18 21:39:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright: © 2024 Elmetwalli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-d064ec202ec1f20d098d21c1996494d3bf60d9a18b9d660caf7f10c7e0fd2d783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-3031-7108
0000-0002-0632-1281
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0308826
PMID 39186505
PQID 3097454612
PQPubID 1436336
PageCount e0308826
ParticipantIDs plos_journals_3097454612
doaj_primary_oai_doaj_org_article_321b1bca95e9467a93d48ff5d0669ab8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11346661
proquest_miscellaneous_3097491798
proquest_journals_3097454612
gale_infotracmisc_A806097932
gale_infotracacademiconefile_A806097932
gale_incontextgauss_ISR_A806097932
gale_incontextgauss_IOV_A806097932
gale_healthsolutions_A806097932
pubmed_primary_39186505
crossref_primary_10_1371_journal_pone_0308826
crossref_citationtrail_10_1371_journal_pone_0308826
PublicationCentury 2000
PublicationDate 2024-08-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References KR Borba (pone.0308826.ref013) 2021; 11
UK Acharya (pone.0308826.ref038) 2016; 1119
J Wu (pone.0308826.ref022) 2019; 17
H Galal (pone.0308826.ref014) 2022; 8
C Strobl (pone.0308826.ref018) 2008; 9
pone.0308826.ref037
F Cheour (pone.0308826.ref025) 1991; 26
HM Aynalem (pone.0308826.ref030) 2006; 42
J Han (pone.0308826.ref040) 2001
A Nagy (pone.0308826.ref011) 2016; 201
M Viuda-Martos (pone.0308826.ref005) 2014; 54
DA Sims (pone.0308826.ref036) 2002; 81
DI Arnon (pone.0308826.ref023) 1949; 24
Y Huang (pone.0308826.ref052) 2018; 236
S Ranganna (pone.0308826.ref024) 1976; 30
RR Pires (pone.0308826.ref051) 2022; 183
KV Thimann (pone.0308826.ref047) 1980
S Elsayed (pone.0308826.ref035) 2019; 243
S Salah (pone.0308826.ref012) 2022; 13
T Hague (pone.0308826.ref029) 2006; 7
pone.0308826.ref001
FH Schuize (pone.0308826.ref017) 2005; 52
O Elsherbiny (pone.0308826.ref055) 2021; 13
J Zhu (pone.0308826.ref041) 2017; 9
R Shravan (pone.0308826.ref044) 2018; 7
S Elsayed (pone.0308826.ref010) 2021; 13
D Ramful (pone.0308826.ref002) 2010; 278
I Guyon (pone.0308826.ref016) 2003; 3
S Elsayed (pone.0308826.ref009) 2016; 212
MR Kumaseh (pone.0308826.ref027) 2013; 13
J Wanitchang (pone.0308826.ref007) 2010; 100
J Bergstra (pone.0308826.ref021) 2013; 2013
NH Beltrán (pone.0308826.ref015) 2005; 67
J Verrelst (pone.0308826.ref033) 2008; 112
S Rasool (pone.0308826.ref050) 2022; 24
pone.0308826.ref053
O Elsherbiny (pone.0308826.ref054) 2021; 11
AM Saad (pone.0308826.ref004) 2016; 18
L. Breiman (pone.0308826.ref039) 2001; 45
S Kawashima (pone.0308826.ref032) 1998; 81
H Galal (pone.0308826.ref008) 2022; 12
pone.0308826.ref028
MK Saggi (pone.0308826.ref043) 2019; 156
A Elmetwalli (pone.0308826.ref034) 2015; 32
pone.0308826.ref026
pone.0308826.ref020
H Kaur (pone.0308826.ref048) 2018; 55
C Wang (pone.0308826.ref006) 2022; 39
EA Ahmed (pone.0308826.ref003) 2011; 49
T Fouda (pone.0308826.ref031) 2013; 2
Lizada C Mango (pone.0308826.ref045) 1993
BP Malone (pone.0308826.ref042) 2017; 290
LW Glorfeld (pone.0308826.ref019) 1996; 10
S Brandt (pone.0308826.ref046) 2006; 86
V Psiroukis (pone.0308826.ref049) 2022; 14
References_xml – volume: 112
  start-page: 2341
  year: 2008
  ident: pone.0308826.ref033
  article-title: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2007.11.001
– volume: 24
  start-page: 215
  year: 2022
  ident: pone.0308826.ref050
  article-title: Development of colour sensor based low-cost hand-held device for crop nitrogen management
  publication-title: Skuast J Res
  doi: 10.5958/2349-297X.2022.00045.9
– ident: pone.0308826.ref020
– ident: pone.0308826.ref001
– ident: pone.0308826.ref037
– volume: 9
  start-page: 241
  year: 2017
  ident: pone.0308826.ref041
  article-title: Mapping forest ecosystem biomass density for Xiangjiang river basin by combining plot and remote sensing data and comparing spatial extrapolation methods
  publication-title: Remote Sens
  doi: 10.3390/rs9030241
– volume: 212
  start-page: 136
  year: 2016
  ident: pone.0308826.ref009
  article-title: Passive reflectance sensing and digital image analysis for assessing quality parameters of mango fruits
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2016.09.046
– volume: 49
  start-page: 1115
  year: 2011
  ident: pone.0308826.ref003
  article-title: The antioxidant activity of vitamin C, DPPD and L-cysteine against cisplatin-induced testicular oxidative damage in rats
  publication-title: Food Chem Toxicol
  doi: 10.1016/j.fct.2011.02.002
– volume: 30
  start-page: 44
  year: 1976
  ident: pone.0308826.ref024
  article-title: Manufacture and quality control of tomato products
  publication-title: Indian food packer
– volume: 11
  start-page: 3209
  year: 2021
  ident: pone.0308826.ref013
  article-title: Portable near infrared spectroscopy as a tool for fresh tomato quality control analysis in the field
  publication-title: Appl Sci
  doi: 10.3390/app11073209
– volume: 86
  start-page: 568
  year: 2006
  ident: pone.0308826.ref046
  article-title: Lycopene content and colour of ripening tomatoes as affected by environmental conditions
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.2390
– volume: 8
  start-page: 438
  year: 2022
  ident: pone.0308826.ref014
  article-title: Indirect Quantitative Analysis of Biochemical Parameters in Banana Using Spectral Reflectance Indices Combined with Machine Learning Modeling
  publication-title: Horticulturae
  doi: 10.3390/horticulturae8050438
– volume: 39
  start-page: 5986
  year: 2022
  ident: pone.0308826.ref006
  article-title: Phytochemical and nutritional profiling of tomatoes; impact of processing on bioavailability-a comprehensive review
  publication-title: Food Rev Int
  doi: 10.1080/87559129.2022.2097692
– volume: 10
  start-page: 37
  year: 1996
  ident: pone.0308826.ref019
  article-title: A methodology for simplification and interpretation of backpropagation-based neural network models
  publication-title: Expert Syst Appl
  doi: 10.1016/0957-4174(95)00032-1
– volume: 201
  start-page: 256
  year: 2016
  ident: pone.0308826.ref011
  article-title: Spectral evaluation of apple fruit ripening and pigment content alteration
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2016.02.016
– volume: 3
  start-page: 1157
  year: 2003
  ident: pone.0308826.ref016
  article-title: An Introduction to Variable and Feature Selection
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 307
  year: 2008
  ident: pone.0308826.ref018
  article-title: Conditional variable importance for random forests
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-307
– volume: 54
  start-page: 1032
  year: 2014
  ident: pone.0308826.ref005
  article-title: Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2011.623799
– volume: 14
  start-page: 4202
  year: 2022
  ident: pone.0308826.ref049
  article-title: Development of a multi-scale tomato yield prediction model in Azerbaijan using spectral indices from sentinel-2 imagery
  publication-title: Remote Sens
  doi: 10.3390/rs14174202
– volume: 236
  start-page: 19
  year: 2018
  ident: pone.0308826.ref052
  article-title: Assessment of tomato soluble solids content and pH by spatially-resolved and conventional Vis/NIR spectroscopy
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2018.05.008
– volume: 52
  start-page: 21
  year: 2005
  ident: pone.0308826.ref017
  article-title: Applications of artificial neural networks in integrated water management: Fiction or future?
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2005.0279
– ident: pone.0308826.ref026
– volume: 81
  start-page: 337
  year: 2002
  ident: pone.0308826.ref036
  article-title: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(02)00010-X
– volume-title: Data Mining: Concepts and Techniques
  year: 2001
  ident: pone.0308826.ref040
– volume: 7
  start-page: 1687
  year: 2018
  ident: pone.0308826.ref044
  article-title: Study of physico-chemical characteristics of sweet orange (Citrus sinensis) fruit
  publication-title: J Pharmacogn Phytochem
– volume: 45
  start-page: 5
  year: 2001
  ident: pone.0308826.ref039
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 55
  start-page: 3008
  year: 2018
  ident: pone.0308826.ref048
  article-title: Evaluation of plum fruit maturity by image processing techniques
  publication-title: J Food Sci Technol
  doi: 10.1007/s13197-018-3220-0
– volume: 183
  start-page: 111750
  year: 2022
  ident: pone.0308826.ref051
  article-title: Ripening assessment ‘Ortanique’(Citrus reticulata Blanco x Citrus sinensis (L) Osbeck) on tree by SW-NIR reflectance spectroscopy-based calibration models
  publication-title: Postharvest Biol Tec
  doi: 10.1016/j.postharvbio.2021.111750
– volume: 18
  start-page: 339
  year: 2016
  ident: pone.0308826.ref004
  article-title: Internal quality assessment of tomato fruits using image color analysis
  publication-title: Agric Eng Int CIGR J
– volume: 243
  start-page: 21
  year: 2019
  ident: pone.0308826.ref035
  article-title: Passive reflectance sensing using regression and multivariate analysis to estimate biochemical parameters of different fruits kinds
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2018.08.004
– start-page: 255
  volume-title: Biochemistry of fruit ripening
  year: 1993
  ident: pone.0308826.ref045
  doi: 10.1007/978-94-011-1584-1_8
– volume: 13
  start-page: 74
  year: 2013
  ident: pone.0308826.ref027
  article-title: Segmentasi citra digital ikan menggunakan metode thresholding
  publication-title: Jurnal Ilmiah Sains
  doi: 10.35799/jis.13.1.2013.2057
– volume: 17
  start-page: 26
  year: 2019
  ident: pone.0308826.ref022
  article-title: Hyperparameter optimization for machine learning models based on Bayesian optimization
  publication-title: J Electron Sci Technol
– volume: 13
  start-page: 241
  year: 2022
  ident: pone.0308826.ref012
  article-title: Hyperspectral Reflectance as a Tool to Measure Ripeness of Orange Fruits
  publication-title: J Soil Sci Agri Eng
– volume: 156
  start-page: 387
  year: 2019
  ident: pone.0308826.ref043
  article-title: Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.11.031
– volume: 13
  start-page: 2666
  year: 2021
  ident: pone.0308826.ref010
  article-title: Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two-and three-band hyperspectral indices and multivariate regression models
  publication-title: Water
  doi: 10.3390/w13192666
– volume: 26
  start-page: 1186
  year: 1991
  ident: pone.0308826.ref025
  article-title: Postharvest response of two strawberry cultivars to foliar application of CaCl2
  publication-title: HortScience
  doi: 10.21273/HORTSCI.26.9.1186
– volume: 24
  start-page: 1
  year: 1949
  ident: pone.0308826.ref023
  article-title: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris
  publication-title: Plant Physiol
  doi: 10.1104/pp.24.1.1
– volume: 67
  start-page: 483
  year: 2005
  ident: pone.0308826.ref015
  article-title: Feature selection algorithms using Chilean wine chromatograms as examples
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2004.05.015
– volume: 7
  start-page: 21
  year: 2006
  ident: pone.0308826.ref029
  article-title: Automated crop and weed monitoring in widely spaced cereals
  publication-title: Precis Agric
  doi: 10.1007/s11119-005-6787-1
– volume: 32
  start-page: 243
  year: 2015
  ident: pone.0308826.ref034
  article-title: Imaging analysis technique for assessing orange maturity
  publication-title: Misr J Agric Eng
  doi: 10.21608/mjae.2015.98713
– volume: 2013
  start-page: 115
  year: 2013
  ident: pone.0308826.ref021
  article-title: Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: 30th Int. Conf. Mach. Learn. ICML
– volume: 81
  start-page: 49
  year: 1998
  ident: pone.0308826.ref032
  article-title: An algorithm for estimating chlorophyll content in leaves using a video camera
  publication-title: Ann Bot
  doi: 10.1006/anbo.1997.0544
– volume: 1119
  start-page: 265
  year: 2016
  ident: pone.0308826.ref038
  article-title: Estimation of fruit maturation and ripening using spectral indices
  publication-title: Acta Hortic
  doi: 10.17660/ActaHortic.2016.1119.37
– volume: 42
  start-page: 562
  year: 2006
  ident: pone.0308826.ref030
  article-title: Non-destructive evaluation of in vitro-stored plants: a comparison of visual and image analysis
  publication-title: In Vitro Cell Dev Biol Plant
  doi: 10.1079/IVP2006816
– ident: pone.0308826.ref053
  doi: 10.1088/1755-1315/686/1/012049
– volume: 290
  start-page: 91
  year: 2017
  ident: pone.0308826.ref042
  article-title: Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.008
– volume: 2
  start-page: 181
  year: 2013
  ident: pone.0308826.ref031
  article-title: Detection of orange color using imaging analysis
  publication-title: AgroLife Sci J
– volume: 278
  start-page: 75
  year: 2010
  ident: pone.0308826.ref002
  article-title: Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application
  publication-title: Toxicology
  doi: 10.1016/j.tox.2010.01.012
– start-page: 85
  volume-title: Senescence in plants
  year: 1980
  ident: pone.0308826.ref047
– volume: 12
  start-page: 1558
  year: 2022
  ident: pone.0308826.ref008
  article-title: Using RGB imaging, optimized three-band spectral indices, and a decision tree model to assess Orange fruit quality
  publication-title: Agriculture
  doi: 10.3390/agriculture12101558
– ident: pone.0308826.ref028
– volume: 100
  start-page: 409
  year: 2010
  ident: pone.0308826.ref007
  article-title: Maturity sorting index of dragon fruit: Hylocereus polyrhizus
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2010.04.025
– volume: 11
  start-page: 51
  year: 2021
  ident: pone.0308826.ref054
  article-title: Fusion of feature selection methods and regression algorithms for predicting the canopy water content of rice based on hyperspectral data
  publication-title: Agriculture
  doi: 10.3390/agriculture11010051
– volume: 13
  start-page: 1785
  year: 2021
  ident: pone.0308826.ref055
  article-title: Integration of visible and thermal imagery with an artificial neural network approach for robust forecasting of canopy water content in rice
  publication-title: Remote Sens
  doi: 10.3390/rs13091785
SSID ssj0053866
Score 2.4895327
Snippet Estimation of fruit quality parameters are usually based on destructive techniques which are tedious, costly and unreliable when dealing with huge amounts of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0308826
SubjectTerms Acidity
Algorithms
Artificial intelligence
Biology and Life Sciences
Carotenoids
Carotenoids - analysis
Carotenoids - metabolism
Chlorophyll
Chlorophyll - analysis
Chlorophyll A - analysis
Citrus - growth & development
Citrus fruits
Computer and Information Sciences
Crop diseases
Crops
Datasets
Decision trees
Diseases and pests
Engineering and Technology
Feature selection
Food quality
Fruit - chemistry
Fruit - growth & development
Fruits
Genetic aspects
Growth
Hyperspectral Imaging - methods
Image processing
Image quality
Learning algorithms
Lycopene
Lycopene - analysis
Machine Learning
Mandarins
Methods
Nondestructive testing
Parameter estimation
Performance evaluation
Physical Sciences
Reflectance
Research and Analysis Methods
Ripening
Solanum lycopersicum - growth & development
Spectral reflectance
Spectrum analysis
Tangerine
Tomatoes
Vegetables
Vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELory6pYBBSMAhrR17k_jYIgocKKg81Fvk53alkqw22_4T_i8zjjfaoErlwNWeOMnMeDyTzHxDyCvPfA7BicvA9hkMUGSmpdSZsDbogO2OHYvNJsqTk-rsTH3daPWFOWE9PHDPuAORc8ON1WrqsRu8VsLJKoSpg7NSaRPLfFmp1sFUb4NhFxdFKpQTJT9IctlftI3fR4SWCsEUNg6iiNc_WOWtxUXbXedy_p05uXEUHd8jd5MPSQ_7Z98mt3xzn2ynXdrRNwlK-u0D8vtzzJX0NDWHmGVuieaN6gGQk7aBmjn2zYrAAbSvsoT4mc4bumrBoW2pbhz9FT85wBhmys_o6YejOHwOcWxfrgl3pB0Exe2yg-Vp0zbOJ3TaK09X60_4sPJD8uP4_fd3H7PUiCGzhRKrDHgtvc1Z7i0POXNMVS7nFhOYpZJOmFAwpzSvjHJFwawOZeDMlp4Fl7uyEo_IFtzV7xAqc2a45sHkzEog1MKo4KcF-IVOFMZMiFhLpbYJpRybZVzU8ddbCdFKz-QaZVknWU5INly16FE6bqA_QoEPtIixHQdA8-qkefVNmjchz1Fd6r5gdbAU9WHFCqbA7uUT8jJSIM5Gg4k8M33ZdfWnLz__gejb6YjodSIKLbDD6lQ8Ae-E-F0jyr0RJVgLO5reQeVec6WrBYzLqQRHF65cK_z10y-GaVwUk_Ma314mGoXIdxPyuN8fA2eF4hUEAdMJqUY7Z8T68UwzP48w55wLCcE13_0fwnpC7uRoiBicC8Ue2QL190_JbXu1mnfLZ9F4_AEvjnk7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Biological Science
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAClFcDBQxCAg5p7TibxCfUIgocKFV5qLfIz-1KJVk22_4T_i8zjjc0qAIkrvbEiScz4xl7_A0hzxxzGQQnNgXbpzFAyVOV5yoVxnjlsdyxZaHYRLm_Xx0dyYO44dbFtMqVTQyG2rYG98i3BQPPd5LDgvxq_j3FqlF4uhpLaFwmVxAlIQupewcrSwy6XBTxupwo-Xb8O1vztnFbiNNSIaTCueUooPYPtnltftJ2Fzmev-dPnluQ9m7871RukuvRFaU7veysk0uuuUXWo7J39EVEpH55m_z4EFIuHY01JqapXaCVpGrA9aStp3qG5bcC_gDtL2tCGE5nDV224Be3VDWWfgs7F9CGCfdTevh2NzQfQzjc3_qEN9IOYut20cHwtGkb6yLI7Zmjy9VJAIx8h3zZe_P59bs01nNITSHFMrXg_jiTscwZ7jNmmaxsxg3mQecyt0L7glmpeKWlLQpmlC89Z6Z0zNvMlpW4S9bgrW6D0DxjmivudcZMDoRKaOndpAD30opC64SI1W-tTQQ7x5obJ3U4wSsh6OmZXKMw1FEYEpIOT817sI-_0O-ixAy0CNUdGtrFtI6aX4uMa66NkhMnYVVSUti88n4C3Cik0lVCHqO81f2918Hg1DsVK0BQwL9OyNNAgXAdDeYDTdVp19XvP379B6JPhyOi55HIt8AOo-IdDJgTwoCNKDdHlGB0zKh7A7VjxZWu_iXT8ORK6i_ufjJ046CY49e49jTSSATQS8i9XsEGzgrJK4glJgmpRqo3Yv24p5kdB7R0zkUOMTq__-fvekCuZWipGCwcxSZZA8F2D8lVc7acdYtHwa78BCzqhxg
  priority: 102
  providerName: ProQuest
Title Machine learning-driven assessment of biochemical qualities in tomato and mandarin using RGB and hyperspectral sensors as nondestructive technologies
URI https://www.ncbi.nlm.nih.gov/pubmed/39186505
https://www.proquest.com/docview/3097454612
https://www.proquest.com/docview/3097491798
https://pubmed.ncbi.nlm.nih.gov/PMC11346661
https://doaj.org/article/321b1bca95e9467a93d48ff5d0669ab8
http://dx.doi.org/10.1371/journal.pone.0308826
Volume 19
WOSCitedRecordID wos001304516700071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (Open Access)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfYxgMvwPhaYRSDkICHFDtOk_hxnTaYRkvUwVR4iRx_dJVGMi3d_hP-X86OG8i0CXi5B_vsJGff-c6xf4fQa010CMGJCsD2FTZAiQIRRSJgUhphbLpjRVyyiWQySWcznv0OFK_8wWcJfe9lOjirSj2w6CrgEK-hjZDFsU3VsJ99Wlle0N049tfjbmrZWX4cSn9ri9fPTqv6Okfz6nnJPxag_Xv_--r30V3vauKdZm5solu6fIA2vTLX-K1HnH73EP0cuyOVGvscEvNAnVsriEWL24krg4uFTa_l8AVwcxkTwmy8KPGyAr-3wqJU-IfbmYAye6B-jqcfRq74BMLd5lYnPBHXEDtX5zV0j8uqVNqD2F5qvFzt9EPPj9DX_b0vux8Dn68hkDFny0CBe6NlSEItqQmJIjxVIZX2nHPEI8UKExPFBU0LrmDwpDCJoUQmmhgVqiRlj9E6PFVvIRyFpKCCmiIkMgJGwQpu9DAG91GxuCh6iK2GMZcezNzm1DjN3R-6BIKaRsi5lX3uZd9DQdvqrAHz-Av_yM6QltdCcbsCGOTca3bOQlrQQgo-1BxWHcGZilJjhiCNmIsi7aEXdn7lzb3W1qDkOymJCQfzGPbQK8dh4ThKe95nLi7qOj_4fPwPTEfTDtMbz2QqEIcU_o4FfJOF-epwbnc4wajITvWW1YaVVOqcQXk0jMAfhpYrDbm--mVbbTu1Z_hKXV14Hm4B8nroSaNQrWQZpynECsMeSjuq1hF9t6ZcnDg0dEpZBDE4fXrzKz9Dd0JrhQgsCvE2WodJrZ-j2_JyuajP-2gtmR5bOkscTYGmu7SPNkZ7k2zad9s0fWdpgB6OBkDH5NDSJHP0CGg2_A4tsoNx9u0XkYuB-A
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoLwaKHRBIODgdu11HO8BoRYojdIU1BbUm1nvI41U7BCnRfwQ_ga_kRl7bWpUAZceuHrH63gyT-_MN4Q8NswEkJxoD2xfiglK6MkwlB5XykqL4441K4dN9Hd24oMD8X6B_Kh7YbCssraJpaHWucJv5GucQeTbC8Ehv5x-8XBqFJ6u1iM0KrEYmm9fIWUrXgxew__7JAg23-y_2vLcVAFPRYLPPQ1O2CjI-Y3ybcA0E7EOfIXVuKEINU9txLSQfpwKHUVMSdu3PlN9w6wOdD_msO8FcjGE98ISshEb1pYfbEcUufY83vfXnDSsTvPMrCIuTIwQDqfcXzkloPEFnelRXpwV6P5er3nKAW5e-99Yd51cdaE2Xa90Y5EsmOwGWXTGrKDPHOL285vk-6gsKTXUzdAYe3qGXoDKBreU5pamExwvVuIr0KoZdQL7TDI6zyHuz6nMNP1cfpmBa9hQMKa7bzfKy4eQ7lddrfBEWpisyGcFbE-zPNPGgfieGDqvTzpg51vkw7mw5zbpwFPNEqFhwFJf-jYNmAqBUPJUWNOLIHzWPErTLuG1GCXKgbnjTJGjpDyh7ENSVzE5QeFLnPB1idfcNa3ATP5Cv4ES2tAiFHl5IZ-NE2fZEh74qZ8qKXpGgNeVguswtrYH3IiETOMuWUH5Tqq-3sagJusxi0AwIX_okkclBcKRZFjvNJbHRZEM3n38B6K93RbRU0dkc2CHkq7HBN4JYc5alMstSjCqqrW8hNpYc6VIfukQ3Flr2dnLD5tl3BRrGDOTHzsagQCBXXKnUuiGs1z4MeRKvS6JW6reYn17JZsclmjwvs_DCKLsu3_-XSvk8tb-aDvZHuwM75ErAVplBk4yWiYdEHJzn1xSJ_NJMXtQ2jRKPp23JfgJZPfkNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAXoLy6UKhBIOCQrhNnnfiAUEsprAqlKg_1Fhw_tiuVZNlsi_pD-DP8OsaOExpUAZceuMYTZzM7_sYTz3yD0ENNdATBiQoA-3IboMSBiGMRUCmNMLbdsSKu2USyvZ3u7fGdBfSjqYWxaZUNJjqgVqW038gHlMDOdxiDQx4Ynxaxs7H5fPo1sB2k7Elr006jNpEtffwNwrfq2WgD_utHUbT58sOL14HvMBBIxuk8UOCQtYT4X8vQREQRnqoolDYzN-axorlhRHERpjlXjBEpTGJCIhNNjIpUklKY9xw6n8SMRC5tcKfxAoAjjPlSPZqEA28Zq9Oy0KuWIya1dA4nXKHrGND6hd70oKxO2_T-nrt5whluXvmf1XgVXfZbcLxWr5lFtKCLa2jRg1yFn3gm7qfX0fe3LtVUY99bYxyomfUOWLR8prg0OJ_YtmOOdwHXRaoTmGdS4HkJ8UCJRaHwF_fFBq7ZQoMx3n217i7vH099tSs8EVe6qMpZBdPjoiyU9uS-RxrPmxMQmPkG-ngm6rmJevBUvYRwHJE8FKHJIyJjEBQ050YPGWyrFWV53ke0MalMepJ322vkIHMnlwkEe7WSM2uImTfEPgrau6Y1yclf5NettbaylqLcXShn48wjXkajMA9zKfhQc_DGglMVp8YMQRuMizztoxVr61ld79sCbbaWEgZGCnFFHz1wEpampLCWOhaHVZWN3n36B6H3ux2hx17IlKAOKXztCbyTpT_rSC53JAFsZWd4ya7MRitV9ms9wZ3Nijt9-H47bCe1uY2FLg-9DLfEgX10q17crWYpD1OIoYZ9lHaWfUf13ZFisu9Y4sOQxgx237f__LtW0EUAgOzNaHvrDroUWbAm4DvZMuqBjeu76II8mk-q2T0Hbxh9Pmsg-Anyfe0N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-driven+assessment+of+biochemical+qualities+in+tomato+and+mandarin+using+RGB+and+hyperspectral+sensors+as+nondestructive+technologies&rft.jtitle=PloS+one&rft.au=Elmetwalli%2C+Adel+H&rft.au=Derbala%2C+Asaad&rft.au=Alsudays%2C+Ibtisam+Mohammed&rft.au=Al-Shahari%2C+Eman+A&rft.date=2024-08-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=8&rft.spage=e0308826&rft_id=info:doi/10.1371%2Fjournal.pone.0308826&rft.externalDocID=A806097932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon