Adjusting for principal components can induce collider bias in genome-wide association studies
Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other...
Saved in:
| Published in: | PLoS genetics Vol. 20; no. 12; p. e1011242 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
16.12.2024
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1553-7404, 1553-7390, 1553-7404 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women’s Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models. |
|---|---|
| AbstractList | Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women's Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models.Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women's Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models. Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women’s Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models. Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women’s Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models. Principal component analysis (PCA) is a widely used technique in human genetics research. One of its most frequent applications is in the context of genetic association studies, wherein researchers use PCA to infer, and then adjust for, the genetic ancestry of study participants. Although a powerful approach, prior work has shown that PCA sometimes captures other features or data quality issues, and pre-processing steps have been suggested to address these concerns. However, the utility and downstream implications of this recommended pre-processing are not fully understood, nor are these steps universally implemented. Moreover, the vast majority of prior work in this area was conducted in studies that exclusively included individuals of European ancestry. Here, we revisit this work in the context of admixed populations—populations with diverse, mixed ancestry that have been largely underrepresented in genetics research to date. We demonstrate the unique concerns that can arise in this context and illustrate the detrimental effects that including principal components in genetic association study models can have when not implemented carefully. Altogether, we hope our work serves as a reminder of the care that must be taken—including careful pre-processing, diagnostics, and modeling choices—when implementing PCA in admixed populations and beyond. |
| Audience | Academic |
| Author | Grinde, Kelsey E. Browning, Brian L. Thornton, Timothy A. Reiner, Alexander P. Browning, Sharon R. |
| AuthorAffiliation | 3 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America Vanderbilt University, UNITED STATES OF AMERICA 1 Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota, United States of America 6 Department of Biostatistics, University of Washington, Seattle, Washington, United States of America 2 Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America 5 Regeneron Genetics Center, Tarrytown, New York, United States of America 4 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America |
| AuthorAffiliation_xml | – name: 3 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America – name: 4 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America – name: 6 Department of Biostatistics, University of Washington, Seattle, Washington, United States of America – name: 2 Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America – name: Vanderbilt University, UNITED STATES OF AMERICA – name: 1 Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota, United States of America – name: 5 Regeneron Genetics Center, Tarrytown, New York, United States of America |
| Author_xml | – sequence: 1 givenname: Kelsey E. orcidid: 0000-0001-8306-9238 surname: Grinde fullname: Grinde, Kelsey E. – sequence: 2 givenname: Brian L. orcidid: 0000-0001-6454-6633 surname: Browning fullname: Browning, Brian L. – sequence: 3 givenname: Alexander P. orcidid: 0000-0002-1427-4470 surname: Reiner fullname: Reiner, Alexander P. – sequence: 4 givenname: Timothy A. surname: Thornton fullname: Thornton, Timothy A. – sequence: 5 givenname: Sharon R. orcidid: 0000-0001-7251-9715 surname: Browning fullname: Browning, Sharon R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39680601$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1mL2zAQx03Z0j3ab1BaQ6G0D0kl67L6UsLSI7Cw0OuxQtbhKChSatk9vn2VjVPiZSnFDzbj3_xH89fMeXESYjBF8RiCOUQMvlrHoQvSz7etCXMIIKxwda84g4SgGcMAnxx9nxbnKa0BQKTm7EFxijitAQXwrPi20Osh9S60pY1due1cUG4rfaniZpsLhj6VSobSBT0ok6PeO226snEy5WCZi8eNmf3MwVKmFJWTvYuhTP2gnUkPi_tW-mQeje-L4su7t58vP8yurt8vLxdXM0U56mfEQstYzRTWnBDVcE2VkchqpCoFbYU5RJpSS2rTGGmYBNRACTWjzEBOLLoonu51tz4mMVqTBKoYIDS7wDOx3BM6yrXIfW5k91tE6cRNIHatkF3vlDeixsjWRPK6JgpDQxtJG8A5Z9hUgCCYtd6M1YZmY7TKLnXST0Snf4JbiTb-EBDSGjOKs8KLUaGL3weTerFxSRnvZTBxyAeHmHKQb2lX7Nkt9O72RqqVuQMXbMyF1U5ULOoK0aomvMrU_A4qP9psnMrXbV2OTxJeThIy05tffSuHlMTy08f_Z6-_TtnnR-zKSN-vUvTDbnbSFHxybPVfjw8TnIHXe0B1MaXOWKFcfzODuTXnBQRity4H08RuXcS4LjkZ30o-6P8z7Q8RRhk9 |
| CitedBy_id | crossref_primary_10_1111_cts_70220 crossref_primary_10_1016_j_jbi_2025_104873 crossref_primary_10_1186_s12967_025_06535_x |
| Cites_doi | 10.1038/ng1702 10.1002/gepi.20398 10.1111/j.0006-341X.1999.00997.x 10.1016/j.ajhg.2008.06.005 10.1002/gepi.20516 10.1038/nature09298 10.1038/s41586-023-06595-3 10.1371/journal.pgen.1002453 10.1038/nature07331 10.1038/ng.1074 10.1016/S1047-2797(03)00042-5 10.1016/j.jaci.2021.02.035 10.1093/bioinformatics/bts606 10.1016/j.ajhg.2022.12.010 10.1371/journal.pone.0035235 10.1016/j.jclinepi.2015.01.001 10.1146/annurev-soc-071913-043455 10.1016/j.ebiom.2020.103157 10.1002/gepi.20303 10.1086/421051 10.1126/science.1172257 10.1093/bioinformatics/bty185 10.1038/ng1337 10.1093/hmg/ddr489 10.1016/j.ajhg.2014.12.021 10.1038/nature05911 10.1038/ng1847 10.1002/sim.6605 10.1101/gr.094052.109 10.1016/j.ajhg.2015.12.001 10.1073/pnas.0909559107 10.1086/512821 10.1038/ng.548 10.1038/nrg2813 10.1186/1753-6561-3-S7-S108 10.7554/eLife.79238 10.1093/gigascience/giab008 10.1002/gepi.21896 10.1038/nprot.2010.116 10.1038/538161a 10.1002/gepi.21847 10.1371/journal.pgen.0020190 10.1002/gepi.22032 10.1016/j.ajhg.2015.11.022 10.4310/SII.2011.v4.n3.a6 10.1016/j.tig.2009.09.012 10.1126/science.8091226 10.1159/000288706 10.1016/j.ajhg.2019.07.008 10.1038/s41588-020-00748-0 10.1016/j.ajhg.2015.12.022 10.1016/j.ajhg.2013.06.020 10.1086/519795 10.1016/j.ajhg.2019.01.008 10.1086/302148 10.1371/journal.pone.0002551 10.1016/j.ajhg.2008.08.005 10.1016/j.jaci.2014.10.033 10.1093/bioinformatics/btaa520 10.1002/gepi.21691 10.1038/ng.2876 10.1016/j.ajhg.2015.12.019 10.1038/s41598-022-14395-4 10.1534/genetics.118.301768 10.1086/302959 10.1073/pnas.0914618107 10.1002/gepi.20064 10.1093/bioinformatics/btac348 10.1093/genetics/164.4.1567 10.1002/gepi.22443 10.1016/j.ajhg.2012.07.023 10.1038/nrg.2017.89 10.1002/gepi.22455 10.1038/s41586-021-03205-y 10.1126/science.1124309 10.1534/genetics.119.302139 10.1038/475163a 10.1371/journal.pgen.1000686 10.1038/ejhg.2013.48 10.1093/bib/bby081 10.1126/science.1143767 10.1371/journal.pgen.0040004 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2024 Public Library of Science 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 Grinde et al 2024 Grinde et al 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2024 Public Library of Science – notice: 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 Grinde et al 2024 Grinde et al – notice: 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pgen.1011242 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Impact of PC selection and pre-processing on GWAS in admixed samples |
| EISSN | 1553-7404 |
| ExternalDocumentID | 3270565539 oai_doaj_org_article_843f85a9885c41e6ba6b099974e20531 PMC11684764 A823628592 39680601 10_1371_journal_pgen_1011242 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: U01 HL089856 – fundername: NHLBI NIH HHS grantid: 75N92021D00002 – fundername: NHLBI NIH HHS grantid: R01 HL120393 – fundername: NHLBI NIH HHS grantid: U01 HL089897 – fundername: NHLBI NIH HHS grantid: U01 HL120393 – fundername: NHLBI NIH HHS grantid: R01 HL117626 – fundername: WHI NIH HHS grantid: 75N92021D00003 – fundername: NHLBI NIH HHS grantid: 75N92021D00001 – fundername: NHGRI NIH HHS grantid: R01 HG010869 – fundername: WHI NIH HHS grantid: 75N92021D00005 – fundername: ; grantid: R01HL-120393; U01HL-120393; contract HHSN268201800001I – fundername: ; – fundername: ; grantid: HHSN268201300049C and HHSN268201300050C – fundername: ; grantid: 3R01HL-117626-02S1; contract HHSN268201800002I – fundername: ; grantid: HHSN268201100037C – fundername: ; grantid: HG010869 – fundername: ; grantid: 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005 – fundername: ; grantid: U01 HL089856 and U01 HL089897 – fundername: ; grantid: HHSN268201300046C and HHSN268201300047C – fundername: ; grantid: HHSN268201300048C |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFFHD AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM ADCSY AGGLG |
| ID | FETCH-LOGICAL-c693t-5f1f7787c4d955cb9d6cea3fd3c2c1f24913d66f58ebeae7a06e1a1d767e195f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001379153000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7404 1553-7390 |
| IngestDate | Wed Dec 10 15:00:28 EST 2025 Mon Nov 10 04:31:46 EST 2025 Tue Nov 04 02:03:29 EST 2025 Wed Oct 01 13:24:07 EDT 2025 Tue Nov 11 06:20:44 EST 2025 Tue Nov 11 10:51:28 EST 2025 Tue Nov 04 18:25:01 EST 2025 Thu Nov 13 15:57:56 EST 2025 Thu Nov 13 15:57:54 EST 2025 Mon Dec 01 06:31:59 EST 2025 Fri Feb 07 01:37:48 EST 2025 Sat Nov 29 02:37:29 EST 2025 Tue Nov 18 22:13:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Copyright: © 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-5f1f7787c4d955cb9d6cea3fd3c2c1f24913d66f58ebeae7a06e1a1d767e195f3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 I have read the journal’s policy and the authors of this manuscript have the following competing interests: T.A.T. is a current employee of Regeneron Genetics Center and stockholder of Regeneron Pharmaceuticals. The other authors have no competing interests to declare. |
| ORCID | 0000-0001-6454-6633 0000-0002-1427-4470 0000-0001-8306-9238 0000-0001-7251-9715 |
| OpenAccessLink | https://doaj.org/article/843f85a9885c41e6ba6b099974e20531 |
| PMID | 39680601 |
| PQID | 3270565539 |
| PQPubID | 1436339 |
| PageCount | e1011242 |
| ParticipantIDs | plos_journals_3270565539 doaj_primary_oai_doaj_org_article_843f85a9885c41e6ba6b099974e20531 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11684764 proquest_miscellaneous_3146909681 proquest_journals_3270565539 gale_infotracmisc_A823628592 gale_infotracacademiconefile_A823628592 gale_incontextgauss_ISR_A823628592 gale_incontextgauss_IOV_A823628592 gale_healthsolutions_A823628592 pubmed_primary_39680601 crossref_citationtrail_10_1371_journal_pgen_1011242 crossref_primary_10_1371_journal_pgen_1011242 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-16 |
| PublicationDateYYYYMMDD | 2024-12-16 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS genetics |
| PublicationTitleAlternate | PLoS Genet |
| PublicationYear | 2024 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | F Privé (pgen.1011242.ref055) 2020; 36 J Yu (pgen.1011242.ref017) 2006; 38 HM Kang (pgen.1011242.ref018) 2010; 42 K Yu (pgen.1011242.ref059) 2008; 3 E Elhaik (pgen.1011242.ref080) 2022; 12 MP Conomos (pgen.1011242.ref042) 2015; 39 MR Nelson (pgen.1011242.ref064) 2008; 83 CA Anderson (pgen.1011242.ref065) 2010; 5 A Ziyatdinov (pgen.1011242.ref079) 2023; 622 DV Conti (pgen.1011242.ref028) 2021; 53 C Tian (pgen.1011242.ref051) 2008; 4 MP Conomos (pgen.1011242.ref005) 2016; 98 PC Sabeti (pgen.1011242.ref057) 2006; 312 F Privé (pgen.1011242.ref060) 2018; 34 CL Carty (pgen.1011242.ref025) 2012; 21 D Taliun (pgen.1011242.ref084) 2021; 590 N Patterson (pgen.1011242.ref039) 2006; 2 ME Weale (pgen.1011242.ref050) 2010 S Cai (pgen.1011242.ref072) 2022; 46 AL Price (pgen.1011242.ref007) 2006; 38 N Liu (pgen.1011242.ref048) 2011; 4 JK Pritchard (pgen.1011242.ref020) 2000; 67 M Daya (pgen.1011242.ref045) 2019; 10 J Hays (pgen.1011242.ref081) 2003; 13 A Dahl (pgen.1011242.ref074) 2019; 211 CD Bustamante (pgen.1011242.ref011) 2011; 475 DJ Lawson (pgen.1011242.ref034) 2012; 8 J Yang (pgen.1011242.ref019) 2014; 46 X Zheng (pgen.1011242.ref087) 2012; 28 pgen.1011242.ref038 A Abdellaoui (pgen.1011242.ref049) 2013; 21 R Xiao (pgen.1011242.ref077) 2009; 33 AS Jannot (pgen.1011242.ref090) 2015; 68 RS Spielman (pgen.1011242.ref016) 1993; 52 J Novembre (pgen.1011242.ref023) 2008; 456 F Zou (pgen.1011242.ref053) 2010; 70 S Wacholder (pgen.1011242.ref067) 2002; 11 GM Peloso (pgen.1011242.ref061) 2009; 3 J Fellay (pgen.1011242.ref022) 2007; 317 E Reed (pgen.1011242.ref043) 2015; 34 FR Day (pgen.1011242.ref071) 2016; 98 CC Laurie (pgen.1011242.ref054) 2010; 34 SR Browning (pgen.1011242.ref033) 2023; 110 K Bryc (pgen.1011242.ref003) 2010; 107 WTCC Consortium (pgen.1011242.ref021) 2007; 447 D Falush (pgen.1011242.ref030) 2003; 164 I Mathieson (pgen.1011242.ref047) 2012; 44 BM Lin (pgen.1011242.ref078) 2021; 63 F Privé (pgen.1011242.ref037) 2022; 38 LA Hindorff (pgen.1011242.ref013) 2018; 19 EJ Parra (pgen.1011242.ref001) 1998; 63 K Bryc (pgen.1011242.ref004) 2010; 107 B Devlin (pgen.1011242.ref006) 1999; 55 Y Di (pgen.1011242.ref075) 2011; 5 AL Price (pgen.1011242.ref009) 2010; 11 S Zöllner (pgen.1011242.ref076) 2007; 80 Y Yao (pgen.1011242.ref069) 2023; 12 H Aschard (pgen.1011242.ref070) 2015; 96 MP Conomos (pgen.1011242.ref083) 2016; 98 S Purcell (pgen.1011242.ref063) 2007; 81 pgen.1011242.ref088 SA Tishkoff (pgen.1011242.ref002) 2009; 324 TA Manolio (pgen.1011242.ref014) 2019; 105 AB Popejoy (pgen.1011242.ref012) 2016; 538 P Danecek (pgen.1011242.ref085) 2021; 10 M Pino-Yanes (pgen.1011242.ref026) 2015; 135 X Zheng (pgen.1011242.ref041) 2012; 28 T Bersaglieri (pgen.1011242.ref056) 2004; 74 J Marchini (pgen.1011242.ref008) 2004; 36 P Raska (pgen.1011242.ref044) 2012; 7 AL Price (pgen.1011242.ref052) 2008; 83 AP Reiner (pgen.1011242.ref024) 2012; 91 F Abegaz (pgen.1011242.ref046) 2019; 20 MM Parker (pgen.1011242.ref086) 2014; 38 DH Alexander (pgen.1011242.ref031) 2009; 19 G McVean (pgen.1011242.ref040) 2009; 5 SL Pulit (pgen.1011242.ref091) 2017; 41 BK Maples (pgen.1011242.ref032) 2013; 93 EY Durand (pgen.1011242.ref036) 2021 Y Zhang (pgen.1011242.ref062) 2013; 37 F Elwert (pgen.1011242.ref068) 2014; 40 KE Grinde (pgen.1011242.ref082) 2019; 104 G Hemani (pgen.1011242.ref073) 2022; 46 H Tang (pgen.1011242.ref029) 2005; 28 M Salter-Townshend (pgen.1011242.ref035) 2019; 212 ES Lander (pgen.1011242.ref015) 1994; 265 KJ Galinsky (pgen.1011242.ref058) 2016; 98 IH Consortium (pgen.1011242.ref066) 2010; 467 AC Need (pgen.1011242.ref010) 2009; 25 I Pe’er (pgen.1011242.ref089) 2008; 32 AT Akenroye (pgen.1011242.ref027) 2021; 148 38617337 - bioRxiv. 2024 Apr 03:2024.04.02.587682. doi: 10.1101/2024.04.02.587682. |
| References_xml | – volume: 38 start-page: 203 issue: 2 year: 2006 ident: pgen.1011242.ref017 article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness publication-title: Nature Genetics doi: 10.1038/ng1702 – volume: 33 start-page: 453 issue: 5 year: 2009 ident: pgen.1011242.ref077 article-title: Quantifying and correcting for the winner’s curse in genetic association studies publication-title: Genetic Epidemiology doi: 10.1002/gepi.20398 – volume: 55 start-page: 997 issue: 4 year: 1999 ident: pgen.1011242.ref006 article-title: Genomic control for association studies publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00997.x – volume: 83 start-page: 132 issue: 1 year: 2008 ident: pgen.1011242.ref052 article-title: Long-range LD can confound genome scans in admixed populations publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2008.06.005 – volume: 34 start-page: 591 issue: 6 year: 2010 ident: pgen.1011242.ref054 article-title: Quality control and quality assurance in genotypic data for genome-wide association studies publication-title: Genetic Epidemiology doi: 10.1002/gepi.20516 – volume: 467 start-page: 52 issue: 7311 year: 2010 ident: pgen.1011242.ref066 article-title: Integrating common and rare genetic variation in diverse human populations publication-title: Nature doi: 10.1038/nature09298 – volume: 622 start-page: 784 issue: 7984 year: 2023 ident: pgen.1011242.ref079 article-title: Genotyping, sequencing and analysis of 140,000 adults from Mexico City publication-title: Nature doi: 10.1038/s41586-023-06595-3 – volume: 8 start-page: e1002453 issue: 1 year: 2012 ident: pgen.1011242.ref034 article-title: Inference of population structure using dense haplotype data publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1002453 – volume: 456 start-page: 98 issue: 7218 year: 2008 ident: pgen.1011242.ref023 article-title: Genes mirror geography within Europe publication-title: Nature doi: 10.1038/nature07331 – volume: 44 start-page: 243 issue: 3 year: 2012 ident: pgen.1011242.ref047 article-title: Differential confounding of rare and common variants in spatially structured populations publication-title: Nature Genetics doi: 10.1038/ng.1074 – volume: 13 start-page: S18 issue: 9 year: 2003 ident: pgen.1011242.ref081 article-title: The Women’s Health Initiative recruitment methods and results publication-title: Annals of Epidemiology doi: 10.1016/S1047-2797(03)00042-5 – ident: pgen.1011242.ref088 – volume: 148 start-page: 1493 issue: 6 year: 2021 ident: pgen.1011242.ref027 article-title: Genome-wide association study of asthma, total IgE, and lung function in a cohort of Peruvian children publication-title: Journal of Allergy and Clinical Immunology doi: 10.1016/j.jaci.2021.02.035 – volume: 28 start-page: 3326 issue: 24 year: 2012 ident: pgen.1011242.ref041 article-title: A high-performance computing toolset for relatedness and principal component analysis of SNP data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts606 – start-page: 341 volume-title: Quality Control for Genome-Wide Association Studies year: 2010 ident: pgen.1011242.ref050 – volume: 110 start-page: 326 issue: 2 year: 2023 ident: pgen.1011242.ref033 article-title: Fast, accurate local ancestry inference with FLARE publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2022.12.010 – volume: 7 start-page: e35235 issue: 5 year: 2012 ident: pgen.1011242.ref044 article-title: European American stratification in ovarian cancer case control data: the utility of genome-wide data for inferring ancestry publication-title: Plos One doi: 10.1371/journal.pone.0035235 – volume: 68 start-page: 460 issue: 4 year: 2015 ident: pgen.1011242.ref090 article-title: P < 5 × 10−8 has emerged as a standard of statistical significance for genome-wide association studies publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2015.01.001 – volume: 40 start-page: 31 year: 2014 ident: pgen.1011242.ref068 article-title: Endogenous selection bias: The problem of conditioning on a collider variable publication-title: Annual Review of Sociology doi: 10.1146/annurev-soc-071913-043455 – volume: 63 start-page: 103157 year: 2021 ident: pgen.1011242.ref078 article-title: Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI Trans-Omics for Precision Medicine (TOPMed) consortium publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.103157 – volume: 32 start-page: 381 issue: 4 year: 2008 ident: pgen.1011242.ref089 article-title: Estimation of the multiple testing burden for genomewide association studies of nearly all common variants publication-title: Genetic Epidemiology doi: 10.1002/gepi.20303 – volume: 74 start-page: 1111 issue: 6 year: 2004 ident: pgen.1011242.ref056 article-title: Genetic signatures of strong recent positive selection at the lactase gene publication-title: The American Journal of Human Genetics doi: 10.1086/421051 – volume: 324 start-page: 1035 issue: 5930 year: 2009 ident: pgen.1011242.ref002 article-title: The genetic structure and history of Africans and African Americans publication-title: Science doi: 10.1126/science.1172257 – volume: 34 start-page: 2781 issue: 16 year: 2018 ident: pgen.1011242.ref060 article-title: Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty185 – volume: 36 start-page: 512 issue: 5 year: 2004 ident: pgen.1011242.ref008 article-title: The effects of human population structure on large genetic association studies publication-title: Nature Genetics doi: 10.1038/ng1337 – volume: 21 start-page: 711 issue: 3 year: 2012 ident: pgen.1011242.ref025 article-title: Genome-wide association study of body height in African Americans: The Women’s Health Initiative SNP Health Association Resource (SHARe) publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddr489 – volume: 96 start-page: 329 issue: 2 year: 2015 ident: pgen.1011242.ref070 article-title: Adjusting for heritable covariates can bias effect estimates in genome-wide association studies publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2014.12.021 – volume: 447 start-page: 661 issue: 7145 year: 2007 ident: pgen.1011242.ref021 article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls publication-title: Nature doi: 10.1038/nature05911 – volume: 38 start-page: 904 issue: 8 year: 2006 ident: pgen.1011242.ref007 article-title: Principal components analysis corrects for stratification in genome-wide association studies publication-title: Nature Genetics doi: 10.1038/ng1847 – volume: 34 start-page: 3769 issue: 28 year: 2015 ident: pgen.1011242.ref043 article-title: A guide to genome-wide association analysis and post-analytic interrogation publication-title: Statistics in Medicine doi: 10.1002/sim.6605 – volume: 19 start-page: 1655 issue: 9 year: 2009 ident: pgen.1011242.ref031 article-title: Fast model-based estimation of ancestry in unrelated individuals publication-title: Genome Research doi: 10.1101/gr.094052.109 – volume: 98 start-page: 165 issue: 1 year: 2016 ident: pgen.1011242.ref005 article-title: Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic Community Health Study/Study of Latinos publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2015.12.001 – volume: 107 start-page: 786 issue: 2 year: 2010 ident: pgen.1011242.ref003 article-title: Genome-wide patterns of population structure and admixture in West Africans and African Americans publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0909559107 – volume: 80 start-page: 605 issue: 4 year: 2007 ident: pgen.1011242.ref076 article-title: Overcoming the winner’s curse: estimating penetrance parameters from case-control data publication-title: The American Journal of Human Genetics doi: 10.1086/512821 – volume: 42 start-page: 348 issue: 4 year: 2010 ident: pgen.1011242.ref018 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nature Genetics doi: 10.1038/ng.548 – volume: 11 start-page: 459 issue: 7 year: 2010 ident: pgen.1011242.ref009 article-title: New approaches to population stratification in genome-wide association studies publication-title: Nature Reviews Genetics doi: 10.1038/nrg2813 – volume: 3 start-page: S108 issue: Suppl 7 year: 2009 ident: pgen.1011242.ref061 article-title: Principal-component-based population structure adjustment in the North American Rheumatoid Arthritis Consortium data: impact of single-nucleotide polymorphism set and analysis method publication-title: BMC Proceedings doi: 10.1186/1753-6561-3-S7-S108 – volume: 12 start-page: e79238 year: 2023 ident: pgen.1011242.ref069 article-title: Limitations of principal components in quantitative genetic association models for human studies publication-title: eLife doi: 10.7554/eLife.79238 – volume: 10 start-page: giab008 issue: 2 year: 2021 ident: pgen.1011242.ref085 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience doi: 10.1093/gigascience/giab008 – volume: 39 start-page: 276 issue: 4 year: 2015 ident: pgen.1011242.ref042 article-title: Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness publication-title: Genetic Epidemiology doi: 10.1002/gepi.21896 – volume: 5 start-page: 1564 issue: 9 year: 2010 ident: pgen.1011242.ref065 article-title: Data quality control in genetic case-control association studies publication-title: Nature Protocols doi: 10.1038/nprot.2010.116 – volume: 538 start-page: 161 issue: 7624 year: 2016 ident: pgen.1011242.ref012 article-title: Genomics is failing on diversity publication-title: Nature News doi: 10.1038/538161a – volume: 10 start-page: 1 issue: 1 year: 2019 ident: pgen.1011242.ref045 article-title: Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations publication-title: Nature Communications – volume: 38 start-page: 652 issue: 7 year: 2014 ident: pgen.1011242.ref086 article-title: Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study publication-title: Genetic Epidemiology doi: 10.1002/gepi.21847 – volume: 2 start-page: e190 issue: 12 year: 2006 ident: pgen.1011242.ref039 article-title: Population structure and eigenanalysis publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0020190 – volume: 41 start-page: 145 issue: 2 year: 2017 ident: pgen.1011242.ref091 article-title: Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations publication-title: Genetic Epidemiology doi: 10.1002/gepi.22032 – volume: 98 start-page: 127 issue: 1 year: 2016 ident: pgen.1011242.ref083 article-title: Model-free estimation of recent genetic relatedness publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2015.11.022 – volume: 4 start-page: 317 issue: 3 year: 2011 ident: pgen.1011242.ref048 article-title: Controlling population structure in human genetic association studies with samples of unrelated individuals publication-title: Statistics and Its Interface doi: 10.4310/SII.2011.v4.n3.a6 – volume: 25 start-page: 489 issue: 11 year: 2009 ident: pgen.1011242.ref010 article-title: Next generation disparities in human genomics: concerns and remedies publication-title: Trends in Genetics doi: 10.1016/j.tig.2009.09.012 – volume: 265 start-page: 2037 issue: 5181 year: 1994 ident: pgen.1011242.ref015 article-title: Genetic dissection of complex traits publication-title: Science doi: 10.1126/science.8091226 – year: 2021 ident: pgen.1011242.ref036 article-title: A scalable pipeline for local ancestry inference using tens of thousands of reference haplotypes publication-title: bioRxiv – volume: 70 start-page: 9 issue: 1 year: 2010 ident: pgen.1011242.ref053 article-title: Quantification of population structure using correlated SNPs by shrinkage principal components publication-title: Human Heredity doi: 10.1159/000288706 – volume: 105 start-page: 233 issue: 2 year: 2019 ident: pgen.1011242.ref014 article-title: Using the data we have: improving diversity in genomic research publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2019.07.008 – volume: 53 start-page: 65 issue: 1 year: 2021 ident: pgen.1011242.ref028 article-title: Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction publication-title: Nature Genetics doi: 10.1038/s41588-020-00748-0 – volume: 98 start-page: 456 issue: 3 year: 2016 ident: pgen.1011242.ref058 article-title: Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2015.12.022 – volume: 93 start-page: 278 issue: 2 year: 2013 ident: pgen.1011242.ref032 article-title: RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2013.06.020 – volume: 81 start-page: 559 issue: 3 year: 2007 ident: pgen.1011242.ref063 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses publication-title: The American Journal of Human Genetics doi: 10.1086/519795 – volume: 11 start-page: 513 issue: 6 year: 2002 ident: pgen.1011242.ref067 article-title: Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer publication-title: Cancer Epidemiology Biomarkers & Prevention – volume: 104 start-page: 454 issue: 3 year: 2019 ident: pgen.1011242.ref082 article-title: Genome-wide significance thresholds for admixture mapping studies publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2019.01.008 – volume: 63 start-page: 1839 issue: 6 year: 1998 ident: pgen.1011242.ref001 article-title: Estimating African American admixture proportions by use of population-specific alleles publication-title: The American Journal of Human Genetics doi: 10.1086/302148 – volume: 3 start-page: e2551 issue: 7 year: 2008 ident: pgen.1011242.ref059 article-title: Population substructure and control selection in genome-wide association studies publication-title: PloS One doi: 10.1371/journal.pone.0002551 – volume: 83 start-page: 347 issue: 3 year: 2008 ident: pgen.1011242.ref064 article-title: The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2008.08.005 – volume: 135 start-page: 1502 issue: 6 year: 2015 ident: pgen.1011242.ref026 article-title: Genome-wide association study and admixture mapping reveal new loci associated with total IgE levels in Latinos publication-title: Journal of Allergy and Clinical Immunology doi: 10.1016/j.jaci.2014.10.033 – volume: 36 start-page: 4449 issue: 16 year: 2020 ident: pgen.1011242.ref055 article-title: Efficient toolkit implementing best practices for principal component analysis of population genetic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa520 – volume: 37 start-page: 99 issue: 1 year: 2013 ident: pgen.1011242.ref062 article-title: Adjustment for population stratification via principal components in association analysis of rare variants publication-title: Genetic Epidemiology doi: 10.1002/gepi.21691 – volume: 46 start-page: 100 issue: 2 year: 2014 ident: pgen.1011242.ref019 article-title: Advantages and pitfalls in the application of mixed-model association methods publication-title: Nature Genetics doi: 10.1038/ng.2876 – volume: 98 start-page: 392 issue: 2 year: 2016 ident: pgen.1011242.ref071 article-title: A robust example of collider bias in a genetic association study publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2015.12.019 – volume: 12 start-page: 14683 issue: 1 year: 2022 ident: pgen.1011242.ref080 article-title: Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated publication-title: Scientific Reports doi: 10.1038/s41598-022-14395-4 – volume: 211 start-page: 1179 issue: 4 year: 2019 ident: pgen.1011242.ref074 article-title: Adjusting for principal components of molecular phenotypes induces replicating false positives publication-title: Genetics doi: 10.1534/genetics.118.301768 – volume: 67 start-page: 170 issue: 1 year: 2000 ident: pgen.1011242.ref020 article-title: Association mapping in structured populations publication-title: The American Journal of Human Genetics doi: 10.1086/302959 – volume: 107 start-page: 8954 issue: Supplement 2 year: 2010 ident: pgen.1011242.ref004 article-title: Genome-wide patterns of population structure and admixture among Hispanic/Latino populations publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0914618107 – volume: 5 start-page: 1 issue: 9 year: 2011 ident: pgen.1011242.ref075 article-title: Power of association tests in the presence of multiple causal variants publication-title: BMC Proceedings – volume: 28 start-page: 289 issue: 4 year: 2005 ident: pgen.1011242.ref029 article-title: Estimation of individual admixture: analytical and study design considerations publication-title: Genetic Epidemiology doi: 10.1002/gepi.20064 – volume: 38 start-page: 3477 issue: 13 year: 2022 ident: pgen.1011242.ref037 article-title: Using the UK Biobank as a global reference of worldwide populations: application to measuring ancestry diversity from GWAS summary statistics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac348 – volume: 164 start-page: 1567 issue: 4 year: 2003 ident: pgen.1011242.ref030 article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies publication-title: Genetics doi: 10.1093/genetics/164.4.1567 – volume: 46 start-page: 213 issue: 3–4 year: 2022 ident: pgen.1011242.ref073 article-title: Collider bias from selecting disease samples distorts causal inferences publication-title: Genetic Epidemiology doi: 10.1002/gepi.22443 – volume: 91 start-page: 502 issue: 3 year: 2012 ident: pgen.1011242.ref024 article-title: Genome-wide association and population genetic analysis of C-reactive protein in African American and Hispanic American women publication-title: The American Journal of Human Genetics doi: 10.1016/j.ajhg.2012.07.023 – volume: 52 start-page: 506 issue: 3 year: 1993 ident: pgen.1011242.ref016 article-title: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM) publication-title: American Journal of Human Genetics – volume: 19 start-page: 175 issue: 3 year: 2018 ident: pgen.1011242.ref013 article-title: Prioritizing diversity in human genomics research publication-title: Nature Reviews Genetics doi: 10.1038/nrg.2017.89 – volume: 46 start-page: 303 issue: 5-6 year: 2022 ident: pgen.1011242.ref072 article-title: Adjusting for collider bias in genetic association studies using instrumental variable methods publication-title: Genetic Epidemiology doi: 10.1002/gepi.22455 – volume: 590 start-page: 290 issue: 7845 year: 2021 ident: pgen.1011242.ref084 article-title: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program publication-title: Nature doi: 10.1038/s41586-021-03205-y – volume: 312 start-page: 1614 issue: 5780 year: 2006 ident: pgen.1011242.ref057 article-title: Positive natural selection in the human lineage publication-title: Science doi: 10.1126/science.1124309 – volume: 212 start-page: 869 issue: 3 year: 2019 ident: pgen.1011242.ref035 article-title: Fine-scale inference of ancestry segments without prior knowledge of admixing groups publication-title: Genetics doi: 10.1534/genetics.119.302139 – volume: 475 start-page: 163 issue: 7355 year: 2011 ident: pgen.1011242.ref011 article-title: Genomics for the world publication-title: Nature doi: 10.1038/475163a – ident: pgen.1011242.ref038 – volume: 5 start-page: e1000686 issue: 10 year: 2009 ident: pgen.1011242.ref040 article-title: A genealogical interpretation of principal components analysis publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1000686 – volume: 21 start-page: 1277 issue: 11 year: 2013 ident: pgen.1011242.ref049 article-title: Population structure, migration, and diversifying selection in the Netherlands publication-title: European Journal of Human Genetics doi: 10.1038/ejhg.2013.48 – volume: 20 start-page: 2200 issue: 6 year: 2019 ident: pgen.1011242.ref046 article-title: Principals about principal components in statistical genetics publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bby081 – volume: 28 start-page: 3326 issue: 24 year: 2012 ident: pgen.1011242.ref087 article-title: A high-performance computing toolset for relatedness and principal component analysis of SNP data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts606 – volume: 317 start-page: 944 issue: 5840 year: 2007 ident: pgen.1011242.ref022 article-title: A whole-genome association study of major determinants for host control of HIV-1 publication-title: Science doi: 10.1126/science.1143767 – volume: 4 start-page: e4 issue: 1 year: 2008 ident: pgen.1011242.ref051 article-title: Analysis and application of European genetic substructure using 300 K SNP information publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0040004 – reference: 38617337 - bioRxiv. 2024 Apr 03:2024.04.02.587682. doi: 10.1101/2024.04.02.587682. |
| SSID | ssj0035897 |
| Score | 2.492438 |
| Snippet | Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs)... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1011242 |
| SubjectTerms | Bias Bias (Statistics) Biology and Life Sciences Black or African American - genetics Chronic obstructive pulmonary disease Data collection Epidemiology Female Genetic diversity Genetic research Genome, Human Genome-wide association studies Genome-Wide Association Study - methods Genomes Genomics Genotype & phenotype Heart Humans Linkage Disequilibrium Lung diseases Methods People and places Physical Sciences Polymorphism, Single Nucleotide Population structure Population studies Precision medicine Principal Component Analysis Principal components analysis Pruning Pulmonary Disease, Chronic Obstructive - genetics Research and Analysis Methods Scholarships & fellowships Single-nucleotide polymorphism Software packages Whole genome sequencing |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZgAYkXbuhCgYCQeEq7jq_4CS2ICiRUKi71icjxsWzVJstmF8S_ZybxpgRVgMSrPc4xMx7P2ONvCHnCJ6WUNnMpLGYh5VxlqeG8xDN470snnDEtZP4btb-fHx7qg7jh1sS0yo1NbA21qy3uke-yTMFaLQTTzxZfU6wahaersYTGeXIBURKyNnXvYGOJmci74iowKlUQ3Merc0zR3SipnQWICSNYWOaywdLUIvj3dnq0OK6bs5zQ33Mpf1mc9q7-729dI1eiW5pMOz26Ts756ga51BWq_HGTfJ66Iyz7Vc0ScHKTRbdDDwMwI72uMBkjARklEOCDqiSoXHi9LynnpoHGBJFgT3z6HRoTc6oQSdNlMd4iH_defnjxKo2VGVIrNVulItCgYKpb7rQQttROWm9YcMxmlgYI6ShzUgaRg44Yr8xEemqoU1J5qkVgt8mogq_bIokMYRJKbbPAIbJhTJcQw4Uy6AlzgRkzJmwjlMJG2HKsnnFctGdxCsKXjkUFirKIohyTtB-16GA7_kL_HOXd0yLodttQL2dFnMNFzlnIhdF5LiynXpZGluhgK-4ztGVj8hC1pehusPamo5hiUXkECoTXPG4pEHijwsyemVk3TfH67ad_IHr_bkD0NBKFGthhTbxNAUxFQK8B5faAEsyHHXRvoW5vuNIUpxoJIzc6e3b3o74bH4rZepWv10BDcdNFyxxYcqebHj1nGTQjBtCY5IOJM2D9sKeaf2lxzymV4EtJfvfP33WPXM7A88ScIyq3yWi1XPv75KL9tpo3ywethfgJqStwEA priority: 102 providerName: ProQuest – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQAIlLedNAAYOQOC3E69f6GBARSFWpeKknLK8fJajdRN0ExL9nZnezZatWwNUeJ9Y39nhmPf6GkGdiUirl85DBYZYyIXSeOSFKvIOPsQwyONdQ5u_qvb3i4MDsnwaKZ27wuWYvO0xfLAFQjDXhQAKTeznnSmGwNdvf3VheLguju-dxF40cHD8NS39vi0fLo0V9nqN5Nl_yjwNodv1_p36DbHWuJp22a-MmuRSrW-RqW3zy123ydRq-Yymv6pCC40qX7Vd3GIBZ5osKEywo4E4haAf1U1ww-GSPlnNXQyNFdtfjmP2ERupOlUzrNjPxDvk8e_Pp9dusq7aQeWX4KpOJJQ3b14tgpPSlCcpHx1PgPvcsQZjGeFAqyQL07qJ2ExWZY0ErHZmRid8lowpmt02oSmmSSuPzJCBa4dyUEJelMpkJD4k7NyZ8owTrOypyrIhxZJv7NQ0hSQuRReRsh9yYZP2oZUvF8Rf5V6jfXhaJtJsGUJHt9qUtBE-FdKYopBcsqtKpEp1mLWKO9mlMHuPqsO2r1N4c2CkWikfyP_ibp40EkmlUmK1z6NZ1bd-9__IPQh8_DISed0JpAXB4172QAFCRpGsguTOQBJPgB93buJY3qNSW5xocXSm5gZGb9X1-95O-G38UM_CquFiDDMMPKUYVAMm9djv0yHJoRl6fMSkGG2UA_bCnmn9ruMwZU-AfKXH_4ik_INdy8CQxh4ipHTJanazjQ3LF_1jN65NHjQX4DcT4XFM priority: 102 providerName: Public Library of Science |
| Title | Adjusting for principal components can induce collider bias in genome-wide association studies |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39680601 https://www.proquest.com/docview/3270565539 https://www.proquest.com/docview/3146909681 https://pubmed.ncbi.nlm.nih.gov/PMC11684764 https://doaj.org/article/843f85a9885c41e6ba6b099974e20531 http://dx.doi.org/10.1371/journal.pgen.1011242 |
| Volume | 20 |
| WOSCitedRecordID | wos001379153000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M7P dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: PIMPY dateStart: 20050701 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: FPL dateStart: 20050701 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeggMQL4nuFUQJC4imsjr_ixw6tYtIo0fhQeSFyHHsUjbRaWhD_PXdxGhY0aTzwkgf7nLR3P9t3yfl3hLzg40JKm5QxbGY-5lwlseG8wG_wzhWlKI1pKPOP1GyWzuc6O1fqC3PCAj1wUNxeyplPhdFpKiynThZGFujVKO4SBBCuvmOlt8FUWIOZSENZFSFYrCCsbw_NMUX3Whu9WoGBMHaFDS7pbUoNd3-3Qg9Wp8v6Ivfz7yzKc9vS9Da51fqT0ST8jzvkiqvukhuhwuSve-TLpPyG9bqqkwi802gVXq3DAEwlX1aYRRGBciOIzMHGEaICz-VFxcLU0Bghhet3F_-Exsj8sWRUh_TD--Tj9ODD6zdxW1IhtlKzdSw89QrmqOWlFsIWupTWGeZLZhNLPcRilJVSepGCcY1TZiwdNbRUUjmqhWcPyKCCX7dDIun92BfaJp5DSMKYLiD48oXXY1Z6ZsyQsK1Oc9vyjWPZi9O8-YimIO4IKsrREnlriSGJu1GrwLdxifw-mquTRbbspgEwlLcYyi_D0JA8RWPn4ehpN-fzCVaDR4Y_eMzzRgIZMypMyTkxm7rOD999-geh98c9oZetkF-COqxpj0GAUpGJqye525OEeW973TsIza1W6pwlCrxZQLyGkVu4Xtz9rOvGm2KaXeWWG5Ch-LZEyxRU8jCgu9Msg2Yk7xmStIf7nur7PdXia0NYTqkEJ0jyR__DWI_JzQQcS0wponKXDNZnG_eEXLc_1ov6bESuqrlqrumIXNs_mGXHo2ZpgOs0Oxphbm8GPdnh2-zzb-NcZ8g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUFAYuvKGBQgUDw8k0tmTZOjBMeHSaaRoy0DLlgpFlKYQpdogTOv1T_EZ2_SpmOsClB67SypE33-5qrX0Q8oj3YiG0lzhgzKzDeeA5ivMY7-CNiRM_UaoomT8MRqPw4ECOV8iPOhcGwyprnVgo6iTT-I18k3kB2GrfZ_L57JuDXaPwdrVuoVHCYsccH4HLlj8bvIL_97Hnbb3ee7ntVF0FHC0kWzi-dW0AMNU8kb6vY5kIbRSzCdOedi24Iy5LhLB-CO-nTKB6wrjKTQIRGFf6lsFzz5FVjmDvkNXxYHf8odb9zA_Ldi6wTydgslcl67HA3ayw8XQGwECfGQyr1zKGRc-AxjJ0ZodZftqx9_fozV_M4daV_42RV8nl6uBN-6WkXCMrJr1OLpStOI9vkI_95As2NksnFI7xdFbeQcACjLnPUgw3oYBCOk0TEAaK4oMJjDSeqhwGKda6_WqcIxik6gTyNC_jNG-S_TN5uVukk8Lu1ggV1vZsLLVnOfhujMkYvFQbW9ljiWVKdQmrQRDpqjA79gc5jIrbxgActJJFEUInqqDTJU6zalYWJvkL_QvEV0OLZcWLgWw-iSotFYWc2dBXMgx9zV0jYiVidCECbjzU1l2ygeiMyhzdRjlG_dBjmIsr4WceFhRYWiTF2KWJWuZ5NHjz_h-I3r1tET2piGwG7NCqyhcBpmLJshbleosSFKRuTa-hLNVcyaMTCYCVtYycPv2gmcaHYjxiarIl0Lj4WUmKEFhyuxTHhrMMhrHKUZeELUFtsb49k04_F5XdXVfAaVHwO3_e1wa5uL23O4yGg9HOXXLJg3M2Rli5Yp10FvOluUfO6--LaT6_X-knSj6dtST_BHQ60Mg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGB4gXvmGFwQwC8RTa2IkTPyBUGBXVRqlgoPFCcBy7FI2kNC3T_jX-Ou7yNYIm4GUPvNrn1Ln-7s4X3wchD7x-LIRmiQPGzDqeFzBHeV6Md_DGxImfKFWUzN8NxuNwf19O1siPOhcGwyprnVgo6iTT-I28x1kAttr3uezZKixisj18Ov_mYAcpvGmt22mUENkxR4fgvuVPRtvwXz9kbPhi7_lLp-ow4Ggh-dLxrWsDgKz2Eun7OpaJ0EZxm3DNtGvBNXF5IoT1Q3hXZQLVF8ZVbhKIwLjStxyee4asw5HcYx2yPhm9mnyo7QD3w7K1C-zZCbjsV4l7PHB7FU4ezwEk6D-DkWUtw1j0D2isRGd-kOUnHYF_j-T8xTQOL_3PTL1MLlYHcjooJegKWTPpVXKubNF5dI18HCRfsOFZOqVwvKfz8m4CFmAsfpZiGAoFdNJZmoCQUBQrTGyk8UzlMEixBu5X4xzCIFXHokDzMn7zOnl3Ki93g3RS2N0GocLavo2lZhbgE3AuY_BebWxlnyeWK9UlvAZEpKuC7dg35CAqbiEDcNxKFkUIo6iCUZc4zap5WbDkL_TPEGsNLZYbLwayxTSqtFcUetyGvpJh6GvPNSJWIkbXIvAMQy3eJVuI1KjM3W2UZjQIGcccXQk_c7-gwJIjKeJsqlZ5Ho1ev_8HordvWkSPKiKbATu0qvJIgKlYyqxFudmiBMWpW9MbKFc1V_LoWBpgZS0vJ0_fa6bxoRinmJpsBTQufm6SIgSW3CxFs-Esh2GsftQlYUtoW6xvz6Szz0XFd9cVcIoU3q0_72uLnAfxjXZH453b5AKD4zcGXrlik3SWi5W5Q87q78tZvrhbqSpKPp22IP8E_IfZiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjusting+for+principal+components+can+induce+collider+bias+in+genome-wide+association+studies&rft.jtitle=PLoS+genetics&rft.au=Grinde%2C+Kelsey+E.&rft.au=Browning%2C+Brian+L.&rft.au=Reiner%2C+Alexander+P.&rft.au=Thornton%2C+Timothy+A.&rft.date=2024-12-16&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=20&rft.issue=12&rft.spage=e1011242&rft_id=info:doi/10.1371%2Fjournal.pgen.1011242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1011242 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |