Adjusting for principal components can induce collider bias in genome-wide association studies

Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics Vol. 20; no. 12; p. e1011242
Main Authors: Grinde, Kelsey E., Browning, Brian L., Reiner, Alexander P., Thornton, Timothy A., Browning, Sharon R.
Format: Journal Article
Language:English
Published: United States Public Library of Science 16.12.2024
Public Library of Science (PLoS)
Subjects:
ISSN:1553-7404, 1553-7390, 1553-7404
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women’s Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models.
AbstractList Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women's Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models.Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women's Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models.
Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women’s Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models.
Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs) typically reflect population structure, but challenges arise in deciding how many PCs are needed and ensuring that PCs do not capture other artifacts such as regions with atypical linkage disequilibrium (LD). In response to the latter, many groups suggest performing LD pruning or excluding known high LD regions prior to PCA. However, these suggestions are not universally implemented and the implications for GWAS are not fully understood, especially in the context of admixed populations. In this paper, we investigate the impact of pre-processing and the number of PCs included in GWAS models in African American samples from the Women’s Health Initiative SNP Health Association Resource and two Trans-Omics for Precision Medicine Whole Genome Sequencing Project contributing studies (Jackson Heart Study and Genetic Epidemiology of Chronic Obstructive Pulmonary Disease Study). In all three samples, we find the first PC is highly correlated with genome-wide ancestry whereas later PCs often capture local genomic features. The pattern of which, and how many, genetic variants are highly correlated with individual PCs differs from what has been observed in prior studies focused on European populations and leads to distinct downstream consequences: adjusting for such PCs yields biased effect size estimates and elevated rates of spurious associations due to the phenomenon of collider bias. Excluding high LD regions identified in previous studies does not resolve these issues. LD pruning proves more effective, but the optimal choice of thresholds varies across datasets. Altogether, our work highlights unique issues that arise when using PCA to control for ancestral heterogeneity in admixed populations and demonstrates the importance of careful pre-processing and diagnostics to ensure that PCs capturing multiple local genomic features are not included in GWAS models. Principal component analysis (PCA) is a widely used technique in human genetics research. One of its most frequent applications is in the context of genetic association studies, wherein researchers use PCA to infer, and then adjust for, the genetic ancestry of study participants. Although a powerful approach, prior work has shown that PCA sometimes captures other features or data quality issues, and pre-processing steps have been suggested to address these concerns. However, the utility and downstream implications of this recommended pre-processing are not fully understood, nor are these steps universally implemented. Moreover, the vast majority of prior work in this area was conducted in studies that exclusively included individuals of European ancestry. Here, we revisit this work in the context of admixed populations—populations with diverse, mixed ancestry that have been largely underrepresented in genetics research to date. We demonstrate the unique concerns that can arise in this context and illustrate the detrimental effects that including principal components in genetic association study models can have when not implemented carefully. Altogether, we hope our work serves as a reminder of the care that must be taken—including careful pre-processing, diagnostics, and modeling choices—when implementing PCA in admixed populations and beyond.
Audience Academic
Author Grinde, Kelsey E.
Browning, Brian L.
Thornton, Timothy A.
Reiner, Alexander P.
Browning, Sharon R.
AuthorAffiliation 3 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
Vanderbilt University, UNITED STATES OF AMERICA
1 Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota, United States of America
6 Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
2 Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
5 Regeneron Genetics Center, Tarrytown, New York, United States of America
4 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
AuthorAffiliation_xml – name: 3 Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
– name: 4 Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
– name: 6 Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
– name: 2 Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
– name: Vanderbilt University, UNITED STATES OF AMERICA
– name: 1 Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota, United States of America
– name: 5 Regeneron Genetics Center, Tarrytown, New York, United States of America
Author_xml – sequence: 1
  givenname: Kelsey E.
  orcidid: 0000-0001-8306-9238
  surname: Grinde
  fullname: Grinde, Kelsey E.
– sequence: 2
  givenname: Brian L.
  orcidid: 0000-0001-6454-6633
  surname: Browning
  fullname: Browning, Brian L.
– sequence: 3
  givenname: Alexander P.
  orcidid: 0000-0002-1427-4470
  surname: Reiner
  fullname: Reiner, Alexander P.
– sequence: 4
  givenname: Timothy A.
  surname: Thornton
  fullname: Thornton, Timothy A.
– sequence: 5
  givenname: Sharon R.
  orcidid: 0000-0001-7251-9715
  surname: Browning
  fullname: Browning, Sharon R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39680601$$D View this record in MEDLINE/PubMed
BookMark eNqNk1mL2zAQx03Z0j3ab1BaQ6G0D0kl67L6UsLSI7Cw0OuxQtbhKChSatk9vn2VjVPiZSnFDzbj3_xH89fMeXESYjBF8RiCOUQMvlrHoQvSz7etCXMIIKxwda84g4SgGcMAnxx9nxbnKa0BQKTm7EFxijitAQXwrPi20Osh9S60pY1due1cUG4rfaniZpsLhj6VSobSBT0ok6PeO226snEy5WCZi8eNmf3MwVKmFJWTvYuhTP2gnUkPi_tW-mQeje-L4su7t58vP8yurt8vLxdXM0U56mfEQstYzRTWnBDVcE2VkchqpCoFbYU5RJpSS2rTGGmYBNRACTWjzEBOLLoonu51tz4mMVqTBKoYIDS7wDOx3BM6yrXIfW5k91tE6cRNIHatkF3vlDeixsjWRPK6JgpDQxtJG8A5Z9hUgCCYtd6M1YZmY7TKLnXST0Snf4JbiTb-EBDSGjOKs8KLUaGL3weTerFxSRnvZTBxyAeHmHKQb2lX7Nkt9O72RqqVuQMXbMyF1U5ULOoK0aomvMrU_A4qP9psnMrXbV2OTxJeThIy05tffSuHlMTy08f_Z6-_TtnnR-zKSN-vUvTDbnbSFHxybPVfjw8TnIHXe0B1MaXOWKFcfzODuTXnBQRity4H08RuXcS4LjkZ30o-6P8z7Q8RRhk9
CitedBy_id crossref_primary_10_1111_cts_70220
crossref_primary_10_1016_j_jbi_2025_104873
crossref_primary_10_1186_s12967_025_06535_x
Cites_doi 10.1038/ng1702
10.1002/gepi.20398
10.1111/j.0006-341X.1999.00997.x
10.1016/j.ajhg.2008.06.005
10.1002/gepi.20516
10.1038/nature09298
10.1038/s41586-023-06595-3
10.1371/journal.pgen.1002453
10.1038/nature07331
10.1038/ng.1074
10.1016/S1047-2797(03)00042-5
10.1016/j.jaci.2021.02.035
10.1093/bioinformatics/bts606
10.1016/j.ajhg.2022.12.010
10.1371/journal.pone.0035235
10.1016/j.jclinepi.2015.01.001
10.1146/annurev-soc-071913-043455
10.1016/j.ebiom.2020.103157
10.1002/gepi.20303
10.1086/421051
10.1126/science.1172257
10.1093/bioinformatics/bty185
10.1038/ng1337
10.1093/hmg/ddr489
10.1016/j.ajhg.2014.12.021
10.1038/nature05911
10.1038/ng1847
10.1002/sim.6605
10.1101/gr.094052.109
10.1016/j.ajhg.2015.12.001
10.1073/pnas.0909559107
10.1086/512821
10.1038/ng.548
10.1038/nrg2813
10.1186/1753-6561-3-S7-S108
10.7554/eLife.79238
10.1093/gigascience/giab008
10.1002/gepi.21896
10.1038/nprot.2010.116
10.1038/538161a
10.1002/gepi.21847
10.1371/journal.pgen.0020190
10.1002/gepi.22032
10.1016/j.ajhg.2015.11.022
10.4310/SII.2011.v4.n3.a6
10.1016/j.tig.2009.09.012
10.1126/science.8091226
10.1159/000288706
10.1016/j.ajhg.2019.07.008
10.1038/s41588-020-00748-0
10.1016/j.ajhg.2015.12.022
10.1016/j.ajhg.2013.06.020
10.1086/519795
10.1016/j.ajhg.2019.01.008
10.1086/302148
10.1371/journal.pone.0002551
10.1016/j.ajhg.2008.08.005
10.1016/j.jaci.2014.10.033
10.1093/bioinformatics/btaa520
10.1002/gepi.21691
10.1038/ng.2876
10.1016/j.ajhg.2015.12.019
10.1038/s41598-022-14395-4
10.1534/genetics.118.301768
10.1086/302959
10.1073/pnas.0914618107
10.1002/gepi.20064
10.1093/bioinformatics/btac348
10.1093/genetics/164.4.1567
10.1002/gepi.22443
10.1016/j.ajhg.2012.07.023
10.1038/nrg.2017.89
10.1002/gepi.22455
10.1038/s41586-021-03205-y
10.1126/science.1124309
10.1534/genetics.119.302139
10.1038/475163a
10.1371/journal.pgen.1000686
10.1038/ejhg.2013.48
10.1093/bib/bby081
10.1126/science.1143767
10.1371/journal.pgen.0040004
ContentType Journal Article
Copyright Copyright: © 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Grinde et al 2024 Grinde et al
2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Grinde et al 2024 Grinde et al
– notice: 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QP
7QR
7SS
7TK
7TM
7TO
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1011242
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE


Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Impact of PC selection and pre-processing on GWAS in admixed samples
EISSN 1553-7404
ExternalDocumentID 3270565539
oai_doaj_org_article_843f85a9885c41e6ba6b099974e20531
PMC11684764
A823628592
39680601
10_1371_journal_pgen_1011242
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: U01 HL089856
– fundername: NHLBI NIH HHS
  grantid: 75N92021D00002
– fundername: NHLBI NIH HHS
  grantid: R01 HL120393
– fundername: NHLBI NIH HHS
  grantid: U01 HL089897
– fundername: NHLBI NIH HHS
  grantid: U01 HL120393
– fundername: NHLBI NIH HHS
  grantid: R01 HL117626
– fundername: WHI NIH HHS
  grantid: 75N92021D00003
– fundername: NHLBI NIH HHS
  grantid: 75N92021D00001
– fundername: NHGRI NIH HHS
  grantid: R01 HG010869
– fundername: WHI NIH HHS
  grantid: 75N92021D00005
– fundername: ;
  grantid: R01HL-120393; U01HL-120393; contract HHSN268201800001I
– fundername: ;
– fundername: ;
  grantid: HHSN268201300049C and HHSN268201300050C
– fundername: ;
  grantid: 3R01HL-117626-02S1; contract HHSN268201800002I
– fundername: ;
  grantid: HHSN268201100037C
– fundername: ;
  grantid: HG010869
– fundername: ;
  grantid: 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005
– fundername: ;
  grantid: U01 HL089856 and U01 HL089897
– fundername: ;
  grantid: HHSN268201300046C and HHSN268201300047C
– fundername: ;
  grantid: HHSN268201300048C
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFFHD
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
7QP
7QR
7SS
7TK
7TM
7TO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ADCSY
AGGLG
ID FETCH-LOGICAL-c693t-5f1f7787c4d955cb9d6cea3fd3c2c1f24913d66f58ebeae7a06e1a1d767e195f3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001379153000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7404
1553-7390
IngestDate Wed Dec 10 15:00:28 EST 2025
Mon Nov 10 04:31:46 EST 2025
Tue Nov 04 02:03:29 EST 2025
Wed Oct 01 13:24:07 EDT 2025
Tue Nov 11 06:20:44 EST 2025
Tue Nov 11 10:51:28 EST 2025
Tue Nov 04 18:25:01 EST 2025
Thu Nov 13 15:57:56 EST 2025
Thu Nov 13 15:57:54 EST 2025
Mon Dec 01 06:31:59 EST 2025
Fri Feb 07 01:37:48 EST 2025
Sat Nov 29 02:37:29 EST 2025
Tue Nov 18 22:13:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2024 Grinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-5f1f7787c4d955cb9d6cea3fd3c2c1f24913d66f58ebeae7a06e1a1d767e195f3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have the following competing interests: T.A.T. is a current employee of Regeneron Genetics Center and stockholder of Regeneron Pharmaceuticals. The other authors have no competing interests to declare.
ORCID 0000-0001-6454-6633
0000-0002-1427-4470
0000-0001-8306-9238
0000-0001-7251-9715
OpenAccessLink https://doaj.org/article/843f85a9885c41e6ba6b099974e20531
PMID 39680601
PQID 3270565539
PQPubID 1436339
PageCount e1011242
ParticipantIDs plos_journals_3270565539
doaj_primary_oai_doaj_org_article_843f85a9885c41e6ba6b099974e20531
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11684764
proquest_miscellaneous_3146909681
proquest_journals_3270565539
gale_infotracmisc_A823628592
gale_infotracacademiconefile_A823628592
gale_incontextgauss_ISR_A823628592
gale_incontextgauss_IOV_A823628592
gale_healthsolutions_A823628592
pubmed_primary_39680601
crossref_citationtrail_10_1371_journal_pgen_1011242
crossref_primary_10_1371_journal_pgen_1011242
PublicationCentury 2000
PublicationDate 2024-12-16
PublicationDateYYYYMMDD 2024-12-16
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References F Privé (pgen.1011242.ref055) 2020; 36
J Yu (pgen.1011242.ref017) 2006; 38
HM Kang (pgen.1011242.ref018) 2010; 42
K Yu (pgen.1011242.ref059) 2008; 3
E Elhaik (pgen.1011242.ref080) 2022; 12
MP Conomos (pgen.1011242.ref042) 2015; 39
MR Nelson (pgen.1011242.ref064) 2008; 83
CA Anderson (pgen.1011242.ref065) 2010; 5
A Ziyatdinov (pgen.1011242.ref079) 2023; 622
DV Conti (pgen.1011242.ref028) 2021; 53
C Tian (pgen.1011242.ref051) 2008; 4
MP Conomos (pgen.1011242.ref005) 2016; 98
PC Sabeti (pgen.1011242.ref057) 2006; 312
F Privé (pgen.1011242.ref060) 2018; 34
CL Carty (pgen.1011242.ref025) 2012; 21
D Taliun (pgen.1011242.ref084) 2021; 590
N Patterson (pgen.1011242.ref039) 2006; 2
ME Weale (pgen.1011242.ref050) 2010
S Cai (pgen.1011242.ref072) 2022; 46
AL Price (pgen.1011242.ref007) 2006; 38
N Liu (pgen.1011242.ref048) 2011; 4
JK Pritchard (pgen.1011242.ref020) 2000; 67
M Daya (pgen.1011242.ref045) 2019; 10
J Hays (pgen.1011242.ref081) 2003; 13
A Dahl (pgen.1011242.ref074) 2019; 211
CD Bustamante (pgen.1011242.ref011) 2011; 475
DJ Lawson (pgen.1011242.ref034) 2012; 8
J Yang (pgen.1011242.ref019) 2014; 46
X Zheng (pgen.1011242.ref087) 2012; 28
pgen.1011242.ref038
A Abdellaoui (pgen.1011242.ref049) 2013; 21
R Xiao (pgen.1011242.ref077) 2009; 33
AS Jannot (pgen.1011242.ref090) 2015; 68
RS Spielman (pgen.1011242.ref016) 1993; 52
J Novembre (pgen.1011242.ref023) 2008; 456
F Zou (pgen.1011242.ref053) 2010; 70
S Wacholder (pgen.1011242.ref067) 2002; 11
GM Peloso (pgen.1011242.ref061) 2009; 3
J Fellay (pgen.1011242.ref022) 2007; 317
E Reed (pgen.1011242.ref043) 2015; 34
FR Day (pgen.1011242.ref071) 2016; 98
CC Laurie (pgen.1011242.ref054) 2010; 34
SR Browning (pgen.1011242.ref033) 2023; 110
K Bryc (pgen.1011242.ref003) 2010; 107
WTCC Consortium (pgen.1011242.ref021) 2007; 447
D Falush (pgen.1011242.ref030) 2003; 164
I Mathieson (pgen.1011242.ref047) 2012; 44
BM Lin (pgen.1011242.ref078) 2021; 63
F Privé (pgen.1011242.ref037) 2022; 38
LA Hindorff (pgen.1011242.ref013) 2018; 19
EJ Parra (pgen.1011242.ref001) 1998; 63
K Bryc (pgen.1011242.ref004) 2010; 107
B Devlin (pgen.1011242.ref006) 1999; 55
Y Di (pgen.1011242.ref075) 2011; 5
AL Price (pgen.1011242.ref009) 2010; 11
S Zöllner (pgen.1011242.ref076) 2007; 80
Y Yao (pgen.1011242.ref069) 2023; 12
H Aschard (pgen.1011242.ref070) 2015; 96
MP Conomos (pgen.1011242.ref083) 2016; 98
S Purcell (pgen.1011242.ref063) 2007; 81
pgen.1011242.ref088
SA Tishkoff (pgen.1011242.ref002) 2009; 324
TA Manolio (pgen.1011242.ref014) 2019; 105
AB Popejoy (pgen.1011242.ref012) 2016; 538
P Danecek (pgen.1011242.ref085) 2021; 10
M Pino-Yanes (pgen.1011242.ref026) 2015; 135
X Zheng (pgen.1011242.ref041) 2012; 28
T Bersaglieri (pgen.1011242.ref056) 2004; 74
J Marchini (pgen.1011242.ref008) 2004; 36
P Raska (pgen.1011242.ref044) 2012; 7
AL Price (pgen.1011242.ref052) 2008; 83
AP Reiner (pgen.1011242.ref024) 2012; 91
F Abegaz (pgen.1011242.ref046) 2019; 20
MM Parker (pgen.1011242.ref086) 2014; 38
DH Alexander (pgen.1011242.ref031) 2009; 19
G McVean (pgen.1011242.ref040) 2009; 5
SL Pulit (pgen.1011242.ref091) 2017; 41
BK Maples (pgen.1011242.ref032) 2013; 93
EY Durand (pgen.1011242.ref036) 2021
Y Zhang (pgen.1011242.ref062) 2013; 37
F Elwert (pgen.1011242.ref068) 2014; 40
KE Grinde (pgen.1011242.ref082) 2019; 104
G Hemani (pgen.1011242.ref073) 2022; 46
H Tang (pgen.1011242.ref029) 2005; 28
M Salter-Townshend (pgen.1011242.ref035) 2019; 212
ES Lander (pgen.1011242.ref015) 1994; 265
KJ Galinsky (pgen.1011242.ref058) 2016; 98
IH Consortium (pgen.1011242.ref066) 2010; 467
AC Need (pgen.1011242.ref010) 2009; 25
I Pe’er (pgen.1011242.ref089) 2008; 32
AT Akenroye (pgen.1011242.ref027) 2021; 148
38617337 - bioRxiv. 2024 Apr 03:2024.04.02.587682. doi: 10.1101/2024.04.02.587682.
References_xml – volume: 38
  start-page: 203
  issue: 2
  year: 2006
  ident: pgen.1011242.ref017
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness
  publication-title: Nature Genetics
  doi: 10.1038/ng1702
– volume: 33
  start-page: 453
  issue: 5
  year: 2009
  ident: pgen.1011242.ref077
  article-title: Quantifying and correcting for the winner’s curse in genetic association studies
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.20398
– volume: 55
  start-page: 997
  issue: 4
  year: 1999
  ident: pgen.1011242.ref006
  article-title: Genomic control for association studies
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00997.x
– volume: 83
  start-page: 132
  issue: 1
  year: 2008
  ident: pgen.1011242.ref052
  article-title: Long-range LD can confound genome scans in admixed populations
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2008.06.005
– volume: 34
  start-page: 591
  issue: 6
  year: 2010
  ident: pgen.1011242.ref054
  article-title: Quality control and quality assurance in genotypic data for genome-wide association studies
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.20516
– volume: 467
  start-page: 52
  issue: 7311
  year: 2010
  ident: pgen.1011242.ref066
  article-title: Integrating common and rare genetic variation in diverse human populations
  publication-title: Nature
  doi: 10.1038/nature09298
– volume: 622
  start-page: 784
  issue: 7984
  year: 2023
  ident: pgen.1011242.ref079
  article-title: Genotyping, sequencing and analysis of 140,000 adults from Mexico City
  publication-title: Nature
  doi: 10.1038/s41586-023-06595-3
– volume: 8
  start-page: e1002453
  issue: 1
  year: 2012
  ident: pgen.1011242.ref034
  article-title: Inference of population structure using dense haplotype data
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1002453
– volume: 456
  start-page: 98
  issue: 7218
  year: 2008
  ident: pgen.1011242.ref023
  article-title: Genes mirror geography within Europe
  publication-title: Nature
  doi: 10.1038/nature07331
– volume: 44
  start-page: 243
  issue: 3
  year: 2012
  ident: pgen.1011242.ref047
  article-title: Differential confounding of rare and common variants in spatially structured populations
  publication-title: Nature Genetics
  doi: 10.1038/ng.1074
– volume: 13
  start-page: S18
  issue: 9
  year: 2003
  ident: pgen.1011242.ref081
  article-title: The Women’s Health Initiative recruitment methods and results
  publication-title: Annals of Epidemiology
  doi: 10.1016/S1047-2797(03)00042-5
– ident: pgen.1011242.ref088
– volume: 148
  start-page: 1493
  issue: 6
  year: 2021
  ident: pgen.1011242.ref027
  article-title: Genome-wide association study of asthma, total IgE, and lung function in a cohort of Peruvian children
  publication-title: Journal of Allergy and Clinical Immunology
  doi: 10.1016/j.jaci.2021.02.035
– volume: 28
  start-page: 3326
  issue: 24
  year: 2012
  ident: pgen.1011242.ref041
  article-title: A high-performance computing toolset for relatedness and principal component analysis of SNP data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts606
– start-page: 341
  volume-title: Quality Control for Genome-Wide Association Studies
  year: 2010
  ident: pgen.1011242.ref050
– volume: 110
  start-page: 326
  issue: 2
  year: 2023
  ident: pgen.1011242.ref033
  article-title: Fast, accurate local ancestry inference with FLARE
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2022.12.010
– volume: 7
  start-page: e35235
  issue: 5
  year: 2012
  ident: pgen.1011242.ref044
  article-title: European American stratification in ovarian cancer case control data: the utility of genome-wide data for inferring ancestry
  publication-title: Plos One
  doi: 10.1371/journal.pone.0035235
– volume: 68
  start-page: 460
  issue: 4
  year: 2015
  ident: pgen.1011242.ref090
  article-title: P < 5 × 10−8 has emerged as a standard of statistical significance for genome-wide association studies
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2015.01.001
– volume: 40
  start-page: 31
  year: 2014
  ident: pgen.1011242.ref068
  article-title: Endogenous selection bias: The problem of conditioning on a collider variable
  publication-title: Annual Review of Sociology
  doi: 10.1146/annurev-soc-071913-043455
– volume: 63
  start-page: 103157
  year: 2021
  ident: pgen.1011242.ref078
  article-title: Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI Trans-Omics for Precision Medicine (TOPMed) consortium
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103157
– volume: 32
  start-page: 381
  issue: 4
  year: 2008
  ident: pgen.1011242.ref089
  article-title: Estimation of the multiple testing burden for genomewide association studies of nearly all common variants
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.20303
– volume: 74
  start-page: 1111
  issue: 6
  year: 2004
  ident: pgen.1011242.ref056
  article-title: Genetic signatures of strong recent positive selection at the lactase gene
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/421051
– volume: 324
  start-page: 1035
  issue: 5930
  year: 2009
  ident: pgen.1011242.ref002
  article-title: The genetic structure and history of Africans and African Americans
  publication-title: Science
  doi: 10.1126/science.1172257
– volume: 34
  start-page: 2781
  issue: 16
  year: 2018
  ident: pgen.1011242.ref060
  article-title: Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty185
– volume: 36
  start-page: 512
  issue: 5
  year: 2004
  ident: pgen.1011242.ref008
  article-title: The effects of human population structure on large genetic association studies
  publication-title: Nature Genetics
  doi: 10.1038/ng1337
– volume: 21
  start-page: 711
  issue: 3
  year: 2012
  ident: pgen.1011242.ref025
  article-title: Genome-wide association study of body height in African Americans: The Women’s Health Initiative SNP Health Association Resource (SHARe)
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddr489
– volume: 96
  start-page: 329
  issue: 2
  year: 2015
  ident: pgen.1011242.ref070
  article-title: Adjusting for heritable covariates can bias effect estimates in genome-wide association studies
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2014.12.021
– volume: 447
  start-page: 661
  issue: 7145
  year: 2007
  ident: pgen.1011242.ref021
  article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls
  publication-title: Nature
  doi: 10.1038/nature05911
– volume: 38
  start-page: 904
  issue: 8
  year: 2006
  ident: pgen.1011242.ref007
  article-title: Principal components analysis corrects for stratification in genome-wide association studies
  publication-title: Nature Genetics
  doi: 10.1038/ng1847
– volume: 34
  start-page: 3769
  issue: 28
  year: 2015
  ident: pgen.1011242.ref043
  article-title: A guide to genome-wide association analysis and post-analytic interrogation
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6605
– volume: 19
  start-page: 1655
  issue: 9
  year: 2009
  ident: pgen.1011242.ref031
  article-title: Fast model-based estimation of ancestry in unrelated individuals
  publication-title: Genome Research
  doi: 10.1101/gr.094052.109
– volume: 98
  start-page: 165
  issue: 1
  year: 2016
  ident: pgen.1011242.ref005
  article-title: Genetic diversity and association studies in US Hispanic/Latino populations: applications in the Hispanic Community Health Study/Study of Latinos
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2015.12.001
– volume: 107
  start-page: 786
  issue: 2
  year: 2010
  ident: pgen.1011242.ref003
  article-title: Genome-wide patterns of population structure and admixture in West Africans and African Americans
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0909559107
– volume: 80
  start-page: 605
  issue: 4
  year: 2007
  ident: pgen.1011242.ref076
  article-title: Overcoming the winner’s curse: estimating penetrance parameters from case-control data
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/512821
– volume: 42
  start-page: 348
  issue: 4
  year: 2010
  ident: pgen.1011242.ref018
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nature Genetics
  doi: 10.1038/ng.548
– volume: 11
  start-page: 459
  issue: 7
  year: 2010
  ident: pgen.1011242.ref009
  article-title: New approaches to population stratification in genome-wide association studies
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg2813
– volume: 3
  start-page: S108
  issue: Suppl 7
  year: 2009
  ident: pgen.1011242.ref061
  article-title: Principal-component-based population structure adjustment in the North American Rheumatoid Arthritis Consortium data: impact of single-nucleotide polymorphism set and analysis method
  publication-title: BMC Proceedings
  doi: 10.1186/1753-6561-3-S7-S108
– volume: 12
  start-page: e79238
  year: 2023
  ident: pgen.1011242.ref069
  article-title: Limitations of principal components in quantitative genetic association models for human studies
  publication-title: eLife
  doi: 10.7554/eLife.79238
– volume: 10
  start-page: giab008
  issue: 2
  year: 2021
  ident: pgen.1011242.ref085
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– volume: 39
  start-page: 276
  issue: 4
  year: 2015
  ident: pgen.1011242.ref042
  article-title: Robust inference of population structure for ancestry prediction and correction of stratification in the presence of relatedness
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.21896
– volume: 5
  start-page: 1564
  issue: 9
  year: 2010
  ident: pgen.1011242.ref065
  article-title: Data quality control in genetic case-control association studies
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2010.116
– volume: 538
  start-page: 161
  issue: 7624
  year: 2016
  ident: pgen.1011242.ref012
  article-title: Genomics is failing on diversity
  publication-title: Nature News
  doi: 10.1038/538161a
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: pgen.1011242.ref045
  article-title: Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations
  publication-title: Nature Communications
– volume: 38
  start-page: 652
  issue: 7
  year: 2014
  ident: pgen.1011242.ref086
  article-title: Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.21847
– volume: 2
  start-page: e190
  issue: 12
  year: 2006
  ident: pgen.1011242.ref039
  article-title: Population structure and eigenanalysis
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0020190
– volume: 41
  start-page: 145
  issue: 2
  year: 2017
  ident: pgen.1011242.ref091
  article-title: Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.22032
– volume: 98
  start-page: 127
  issue: 1
  year: 2016
  ident: pgen.1011242.ref083
  article-title: Model-free estimation of recent genetic relatedness
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2015.11.022
– volume: 4
  start-page: 317
  issue: 3
  year: 2011
  ident: pgen.1011242.ref048
  article-title: Controlling population structure in human genetic association studies with samples of unrelated individuals
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2011.v4.n3.a6
– volume: 25
  start-page: 489
  issue: 11
  year: 2009
  ident: pgen.1011242.ref010
  article-title: Next generation disparities in human genomics: concerns and remedies
  publication-title: Trends in Genetics
  doi: 10.1016/j.tig.2009.09.012
– volume: 265
  start-page: 2037
  issue: 5181
  year: 1994
  ident: pgen.1011242.ref015
  article-title: Genetic dissection of complex traits
  publication-title: Science
  doi: 10.1126/science.8091226
– year: 2021
  ident: pgen.1011242.ref036
  article-title: A scalable pipeline for local ancestry inference using tens of thousands of reference haplotypes
  publication-title: bioRxiv
– volume: 70
  start-page: 9
  issue: 1
  year: 2010
  ident: pgen.1011242.ref053
  article-title: Quantification of population structure using correlated SNPs by shrinkage principal components
  publication-title: Human Heredity
  doi: 10.1159/000288706
– volume: 105
  start-page: 233
  issue: 2
  year: 2019
  ident: pgen.1011242.ref014
  article-title: Using the data we have: improving diversity in genomic research
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2019.07.008
– volume: 53
  start-page: 65
  issue: 1
  year: 2021
  ident: pgen.1011242.ref028
  article-title: Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  publication-title: Nature Genetics
  doi: 10.1038/s41588-020-00748-0
– volume: 98
  start-page: 456
  issue: 3
  year: 2016
  ident: pgen.1011242.ref058
  article-title: Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2015.12.022
– volume: 93
  start-page: 278
  issue: 2
  year: 2013
  ident: pgen.1011242.ref032
  article-title: RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2013.06.020
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  ident: pgen.1011242.ref063
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/519795
– volume: 11
  start-page: 513
  issue: 6
  year: 2002
  ident: pgen.1011242.ref067
  article-title: Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer
  publication-title: Cancer Epidemiology Biomarkers & Prevention
– volume: 104
  start-page: 454
  issue: 3
  year: 2019
  ident: pgen.1011242.ref082
  article-title: Genome-wide significance thresholds for admixture mapping studies
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2019.01.008
– volume: 63
  start-page: 1839
  issue: 6
  year: 1998
  ident: pgen.1011242.ref001
  article-title: Estimating African American admixture proportions by use of population-specific alleles
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/302148
– volume: 3
  start-page: e2551
  issue: 7
  year: 2008
  ident: pgen.1011242.ref059
  article-title: Population substructure and control selection in genome-wide association studies
  publication-title: PloS One
  doi: 10.1371/journal.pone.0002551
– volume: 83
  start-page: 347
  issue: 3
  year: 2008
  ident: pgen.1011242.ref064
  article-title: The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2008.08.005
– volume: 135
  start-page: 1502
  issue: 6
  year: 2015
  ident: pgen.1011242.ref026
  article-title: Genome-wide association study and admixture mapping reveal new loci associated with total IgE levels in Latinos
  publication-title: Journal of Allergy and Clinical Immunology
  doi: 10.1016/j.jaci.2014.10.033
– volume: 36
  start-page: 4449
  issue: 16
  year: 2020
  ident: pgen.1011242.ref055
  article-title: Efficient toolkit implementing best practices for principal component analysis of population genetic data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa520
– volume: 37
  start-page: 99
  issue: 1
  year: 2013
  ident: pgen.1011242.ref062
  article-title: Adjustment for population stratification via principal components in association analysis of rare variants
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.21691
– volume: 46
  start-page: 100
  issue: 2
  year: 2014
  ident: pgen.1011242.ref019
  article-title: Advantages and pitfalls in the application of mixed-model association methods
  publication-title: Nature Genetics
  doi: 10.1038/ng.2876
– volume: 98
  start-page: 392
  issue: 2
  year: 2016
  ident: pgen.1011242.ref071
  article-title: A robust example of collider bias in a genetic association study
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2015.12.019
– volume: 12
  start-page: 14683
  issue: 1
  year: 2022
  ident: pgen.1011242.ref080
  article-title: Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-14395-4
– volume: 211
  start-page: 1179
  issue: 4
  year: 2019
  ident: pgen.1011242.ref074
  article-title: Adjusting for principal components of molecular phenotypes induces replicating false positives
  publication-title: Genetics
  doi: 10.1534/genetics.118.301768
– volume: 67
  start-page: 170
  issue: 1
  year: 2000
  ident: pgen.1011242.ref020
  article-title: Association mapping in structured populations
  publication-title: The American Journal of Human Genetics
  doi: 10.1086/302959
– volume: 107
  start-page: 8954
  issue: Supplement 2
  year: 2010
  ident: pgen.1011242.ref004
  article-title: Genome-wide patterns of population structure and admixture among Hispanic/Latino populations
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0914618107
– volume: 5
  start-page: 1
  issue: 9
  year: 2011
  ident: pgen.1011242.ref075
  article-title: Power of association tests in the presence of multiple causal variants
  publication-title: BMC Proceedings
– volume: 28
  start-page: 289
  issue: 4
  year: 2005
  ident: pgen.1011242.ref029
  article-title: Estimation of individual admixture: analytical and study design considerations
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.20064
– volume: 38
  start-page: 3477
  issue: 13
  year: 2022
  ident: pgen.1011242.ref037
  article-title: Using the UK Biobank as a global reference of worldwide populations: application to measuring ancestry diversity from GWAS summary statistics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac348
– volume: 164
  start-page: 1567
  issue: 4
  year: 2003
  ident: pgen.1011242.ref030
  article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies
  publication-title: Genetics
  doi: 10.1093/genetics/164.4.1567
– volume: 46
  start-page: 213
  issue: 3–4
  year: 2022
  ident: pgen.1011242.ref073
  article-title: Collider bias from selecting disease samples distorts causal inferences
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.22443
– volume: 91
  start-page: 502
  issue: 3
  year: 2012
  ident: pgen.1011242.ref024
  article-title: Genome-wide association and population genetic analysis of C-reactive protein in African American and Hispanic American women
  publication-title: The American Journal of Human Genetics
  doi: 10.1016/j.ajhg.2012.07.023
– volume: 52
  start-page: 506
  issue: 3
  year: 1993
  ident: pgen.1011242.ref016
  article-title: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM)
  publication-title: American Journal of Human Genetics
– volume: 19
  start-page: 175
  issue: 3
  year: 2018
  ident: pgen.1011242.ref013
  article-title: Prioritizing diversity in human genomics research
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg.2017.89
– volume: 46
  start-page: 303
  issue: 5-6
  year: 2022
  ident: pgen.1011242.ref072
  article-title: Adjusting for collider bias in genetic association studies using instrumental variable methods
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.22455
– volume: 590
  start-page: 290
  issue: 7845
  year: 2021
  ident: pgen.1011242.ref084
  article-title: Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program
  publication-title: Nature
  doi: 10.1038/s41586-021-03205-y
– volume: 312
  start-page: 1614
  issue: 5780
  year: 2006
  ident: pgen.1011242.ref057
  article-title: Positive natural selection in the human lineage
  publication-title: Science
  doi: 10.1126/science.1124309
– volume: 212
  start-page: 869
  issue: 3
  year: 2019
  ident: pgen.1011242.ref035
  article-title: Fine-scale inference of ancestry segments without prior knowledge of admixing groups
  publication-title: Genetics
  doi: 10.1534/genetics.119.302139
– volume: 475
  start-page: 163
  issue: 7355
  year: 2011
  ident: pgen.1011242.ref011
  article-title: Genomics for the world
  publication-title: Nature
  doi: 10.1038/475163a
– ident: pgen.1011242.ref038
– volume: 5
  start-page: e1000686
  issue: 10
  year: 2009
  ident: pgen.1011242.ref040
  article-title: A genealogical interpretation of principal components analysis
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1000686
– volume: 21
  start-page: 1277
  issue: 11
  year: 2013
  ident: pgen.1011242.ref049
  article-title: Population structure, migration, and diversifying selection in the Netherlands
  publication-title: European Journal of Human Genetics
  doi: 10.1038/ejhg.2013.48
– volume: 20
  start-page: 2200
  issue: 6
  year: 2019
  ident: pgen.1011242.ref046
  article-title: Principals about principal components in statistical genetics
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bby081
– volume: 28
  start-page: 3326
  issue: 24
  year: 2012
  ident: pgen.1011242.ref087
  article-title: A high-performance computing toolset for relatedness and principal component analysis of SNP data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts606
– volume: 317
  start-page: 944
  issue: 5840
  year: 2007
  ident: pgen.1011242.ref022
  article-title: A whole-genome association study of major determinants for host control of HIV-1
  publication-title: Science
  doi: 10.1126/science.1143767
– volume: 4
  start-page: e4
  issue: 1
  year: 2008
  ident: pgen.1011242.ref051
  article-title: Analysis and application of European genetic substructure using 300 K SNP information
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0040004
– reference: 38617337 - bioRxiv. 2024 Apr 03:2024.04.02.587682. doi: 10.1101/2024.04.02.587682.
SSID ssj0035897
Score 2.492438
Snippet Principal component analysis (PCA) is widely used to control for population structure in genome-wide association studies (GWAS). Top principal components (PCs)...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1011242
SubjectTerms Bias
Bias (Statistics)
Biology and Life Sciences
Black or African American - genetics
Chronic obstructive pulmonary disease
Data collection
Epidemiology
Female
Genetic diversity
Genetic research
Genome, Human
Genome-wide association studies
Genome-Wide Association Study - methods
Genomes
Genomics
Genotype & phenotype
Heart
Humans
Linkage Disequilibrium
Lung diseases
Methods
People and places
Physical Sciences
Polymorphism, Single Nucleotide
Population structure
Population studies
Precision medicine
Principal Component Analysis
Principal components analysis
Pruning
Pulmonary Disease, Chronic Obstructive - genetics
Research and Analysis Methods
Scholarships & fellowships
Single-nucleotide polymorphism
Software packages
Whole genome sequencing
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZgAYkXbuhCgYCQeEq7jq_4CS2ICiRUKi71icjxsWzVJstmF8S_ZybxpgRVgMSrPc4xMx7P2ONvCHnCJ6WUNnMpLGYh5VxlqeG8xDN470snnDEtZP4btb-fHx7qg7jh1sS0yo1NbA21qy3uke-yTMFaLQTTzxZfU6wahaersYTGeXIBURKyNnXvYGOJmci74iowKlUQ3Merc0zR3SipnQWICSNYWOaywdLUIvj3dnq0OK6bs5zQ33Mpf1mc9q7-729dI1eiW5pMOz26Ts756ga51BWq_HGTfJ66Iyz7Vc0ScHKTRbdDDwMwI72uMBkjARklEOCDqiSoXHi9LynnpoHGBJFgT3z6HRoTc6oQSdNlMd4iH_defnjxKo2VGVIrNVulItCgYKpb7rQQttROWm9YcMxmlgYI6ShzUgaRg44Yr8xEemqoU1J5qkVgt8mogq_bIokMYRJKbbPAIbJhTJcQw4Uy6AlzgRkzJmwjlMJG2HKsnnFctGdxCsKXjkUFirKIohyTtB-16GA7_kL_HOXd0yLodttQL2dFnMNFzlnIhdF5LiynXpZGluhgK-4ztGVj8hC1pehusPamo5hiUXkECoTXPG4pEHijwsyemVk3TfH67ad_IHr_bkD0NBKFGthhTbxNAUxFQK8B5faAEsyHHXRvoW5vuNIUpxoJIzc6e3b3o74bH4rZepWv10BDcdNFyxxYcqebHj1nGTQjBtCY5IOJM2D9sKeaf2lxzymV4EtJfvfP33WPXM7A88ScIyq3yWi1XPv75KL9tpo3ywethfgJqStwEA
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQAIlLedNAAYOQOC3E69f6GBARSFWpeKknLK8fJajdRN0ExL9nZnezZatWwNUeJ9Y39nhmPf6GkGdiUirl85DBYZYyIXSeOSFKvIOPsQwyONdQ5u_qvb3i4MDsnwaKZ27wuWYvO0xfLAFQjDXhQAKTeznnSmGwNdvf3VheLguju-dxF40cHD8NS39vi0fLo0V9nqN5Nl_yjwNodv1_p36DbHWuJp22a-MmuRSrW-RqW3zy123ydRq-Yymv6pCC40qX7Vd3GIBZ5osKEywo4E4haAf1U1ww-GSPlnNXQyNFdtfjmP2ERupOlUzrNjPxDvk8e_Pp9dusq7aQeWX4KpOJJQ3b14tgpPSlCcpHx1PgPvcsQZjGeFAqyQL07qJ2ExWZY0ErHZmRid8lowpmt02oSmmSSuPzJCBa4dyUEJelMpkJD4k7NyZ8owTrOypyrIhxZJv7NQ0hSQuRReRsh9yYZP2oZUvF8Rf5V6jfXhaJtJsGUJHt9qUtBE-FdKYopBcsqtKpEp1mLWKO9mlMHuPqsO2r1N4c2CkWikfyP_ibp40EkmlUmK1z6NZ1bd-9__IPQh8_DISed0JpAXB4172QAFCRpGsguTOQBJPgB93buJY3qNSW5xocXSm5gZGb9X1-95O-G38UM_CquFiDDMMPKUYVAMm9djv0yHJoRl6fMSkGG2UA_bCnmn9ruMwZU-AfKXH_4ik_INdy8CQxh4ipHTJanazjQ3LF_1jN65NHjQX4DcT4XFM
  priority: 102
  providerName: Public Library of Science
Title Adjusting for principal components can induce collider bias in genome-wide association studies
URI https://www.ncbi.nlm.nih.gov/pubmed/39680601
https://www.proquest.com/docview/3270565539
https://www.proquest.com/docview/3146909681
https://pubmed.ncbi.nlm.nih.gov/PMC11684764
https://doaj.org/article/843f85a9885c41e6ba6b099974e20531
http://dx.doi.org/10.1371/journal.pgen.1011242
Volume 20
WOSCitedRecordID wos001379153000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M7P
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: PIMPY
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: FPL
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELeggMQL4nuFUQJC4imsjr_ixw6tYtIo0fhQeSFyHHsUjbRaWhD_PXdxGhY0aTzwkgf7nLR3P9t3yfl3hLzg40JKm5QxbGY-5lwlseG8wG_wzhWlKI1pKPOP1GyWzuc6O1fqC3PCAj1wUNxeyplPhdFpKiynThZGFujVKO4SBBCuvmOlt8FUWIOZSENZFSFYrCCsbw_NMUX3Whu9WoGBMHaFDS7pbUoNd3-3Qg9Wp8v6Ivfz7yzKc9vS9Da51fqT0ST8jzvkiqvukhuhwuSve-TLpPyG9bqqkwi802gVXq3DAEwlX1aYRRGBciOIzMHGEaICz-VFxcLU0Bghhet3F_-Exsj8sWRUh_TD--Tj9ODD6zdxW1IhtlKzdSw89QrmqOWlFsIWupTWGeZLZhNLPcRilJVSepGCcY1TZiwdNbRUUjmqhWcPyKCCX7dDIun92BfaJp5DSMKYLiD48oXXY1Z6ZsyQsK1Oc9vyjWPZi9O8-YimIO4IKsrREnlriSGJu1GrwLdxifw-mquTRbbspgEwlLcYyi_D0JA8RWPn4ehpN-fzCVaDR4Y_eMzzRgIZMypMyTkxm7rOD999-geh98c9oZetkF-COqxpj0GAUpGJqye525OEeW973TsIza1W6pwlCrxZQLyGkVu4Xtz9rOvGm2KaXeWWG5Ch-LZEyxRU8jCgu9Msg2Yk7xmStIf7nur7PdXia0NYTqkEJ0jyR__DWI_JzQQcS0wponKXDNZnG_eEXLc_1ov6bESuqrlqrumIXNs_mGXHo2ZpgOs0Oxphbm8GPdnh2-zzb-NcZ8g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUFAYuvKGBQgUDw8k0tmTZOjBMeHSaaRoy0DLlgpFlKYQpdogTOv1T_EZ2_SpmOsClB67SypE33-5qrX0Q8oj3YiG0lzhgzKzDeeA5ivMY7-CNiRM_UaoomT8MRqPw4ECOV8iPOhcGwyprnVgo6iTT-I18k3kB2GrfZ_L57JuDXaPwdrVuoVHCYsccH4HLlj8bvIL_97Hnbb3ee7ntVF0FHC0kWzi-dW0AMNU8kb6vY5kIbRSzCdOedi24Iy5LhLB-CO-nTKB6wrjKTQIRGFf6lsFzz5FVjmDvkNXxYHf8odb9zA_Ldi6wTydgslcl67HA3ayw8XQGwECfGQyr1zKGRc-AxjJ0ZodZftqx9_fozV_M4daV_42RV8nl6uBN-6WkXCMrJr1OLpStOI9vkI_95As2NksnFI7xdFbeQcACjLnPUgw3oYBCOk0TEAaK4oMJjDSeqhwGKda6_WqcIxik6gTyNC_jNG-S_TN5uVukk8Lu1ggV1vZsLLVnOfhujMkYvFQbW9ljiWVKdQmrQRDpqjA79gc5jIrbxgActJJFEUInqqDTJU6zalYWJvkL_QvEV0OLZcWLgWw-iSotFYWc2dBXMgx9zV0jYiVidCECbjzU1l2ygeiMyhzdRjlG_dBjmIsr4WceFhRYWiTF2KWJWuZ5NHjz_h-I3r1tET2piGwG7NCqyhcBpmLJshbleosSFKRuTa-hLNVcyaMTCYCVtYycPv2gmcaHYjxiarIl0Lj4WUmKEFhyuxTHhrMMhrHKUZeELUFtsb49k04_F5XdXVfAaVHwO3_e1wa5uL23O4yGg9HOXXLJg3M2Rli5Yp10FvOluUfO6--LaT6_X-knSj6dtST_BHQ60Mg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGB4gXvmGFwQwC8RTa2IkTPyBUGBXVRqlgoPFCcBy7FI2kNC3T_jX-Ou7yNYIm4GUPvNrn1Ln-7s4X3wchD7x-LIRmiQPGzDqeFzBHeV6Md_DGxImfKFWUzN8NxuNwf19O1siPOhcGwyprnVgo6iTT-I28x1kAttr3uezZKixisj18Ov_mYAcpvGmt22mUENkxR4fgvuVPRtvwXz9kbPhi7_lLp-ow4Ggh-dLxrWsDgKz2Eun7OpaJ0EZxm3DNtGvBNXF5IoT1Q3hXZQLVF8ZVbhKIwLjStxyee4asw5HcYx2yPhm9mnyo7QD3w7K1C-zZCbjsV4l7PHB7FU4ezwEk6D-DkWUtw1j0D2isRGd-kOUnHYF_j-T8xTQOL_3PTL1MLlYHcjooJegKWTPpVXKubNF5dI18HCRfsOFZOqVwvKfz8m4CFmAsfpZiGAoFdNJZmoCQUBQrTGyk8UzlMEixBu5X4xzCIFXHokDzMn7zOnl3Ki93g3RS2N0GocLavo2lZhbgE3AuY_BebWxlnyeWK9UlvAZEpKuC7dg35CAqbiEDcNxKFkUIo6iCUZc4zap5WbDkL_TPEGsNLZYbLwayxTSqtFcUetyGvpJh6GvPNSJWIkbXIvAMQy3eJVuI1KjM3W2UZjQIGcccXQk_c7-gwJIjKeJsqlZ5Ho1ev_8HordvWkSPKiKbATu0qvJIgKlYyqxFudmiBMWpW9MbKFc1V_LoWBpgZS0vJ0_fa6bxoRinmJpsBTQufm6SIgSW3CxFs-Esh2GsftQlYUtoW6xvz6Szz0XFd9cVcIoU3q0_72uLnAfxjXZH453b5AKD4zcGXrlik3SWi5W5Q87q78tZvrhbqSpKPp22IP8E_IfZiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjusting+for+principal+components+can+induce+collider+bias+in+genome-wide+association+studies&rft.jtitle=PLoS+genetics&rft.au=Grinde%2C+Kelsey+E.&rft.au=Browning%2C+Brian+L.&rft.au=Reiner%2C+Alexander+P.&rft.au=Thornton%2C+Timothy+A.&rft.date=2024-12-16&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=20&rft.issue=12&rft.spage=e1011242&rft_id=info:doi/10.1371%2Fjournal.pgen.1011242&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1011242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon