Edge-based graph neural network for ranking critical road segments in a network
Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for pla...
Saved in:
| Published in: | PloS one Vol. 18; no. 12; p. e0296045 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Public Library of Science
21.12.2023
Public Library of Science (PLoS) |
| Subjects: | |
| ISSN: | 1932-6203, 1932-6203 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network’s efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network. |
|---|---|
| AbstractList | Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network's efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network. Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network's efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network.Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network's efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network. |
| Audience | Academic |
| Author | Jana, Debasish Malama, Sven Narasimhan, Sriram Taciroglu, Ertugrul |
| AuthorAffiliation | 2 Samueli Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America 1 Samueli Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California, United States of America TU Wien: Technische Universitat Wien, AUSTRIA |
| AuthorAffiliation_xml | – name: 1 Samueli Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California, United States of America – name: TU Wien: Technische Universitat Wien, AUSTRIA – name: 2 Samueli Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America |
| Author_xml | – sequence: 1 givenname: Debasish orcidid: 0000-0003-2368-6394 surname: Jana fullname: Jana, Debasish – sequence: 2 givenname: Sven orcidid: 0000-0003-2552-1147 surname: Malama fullname: Malama, Sven – sequence: 3 givenname: Sriram surname: Narasimhan fullname: Narasimhan, Sriram – sequence: 4 givenname: Ertugrul surname: Taciroglu fullname: Taciroglu, Ertugrul |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38127943$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk1uL1DAUx4usuBf9BqIFQfRhxlyamy-yLKsOLAx4ew2nadrJbqeZTVov396M05HpsojkIeHkd_4n50_OaXbU-c5m2VOM5pgK_ObaD6GDdr5J4TkiiqOCPchOsKJkxgmiRwfn4-w0xmuEGJWcP8qOqcREqIKeZMvLqrGzEqKt8ibAZpV3dgjQpq3_4cNNXvuQB-huXNfkJrjemXQZPFR5tM3adn3MXZfDnn-cPayhjfbJuJ9lX99ffrn4OLtaflhcnF_NDFe0nzHKqAFO61oKYsBKKVVREF4abrmpS4o4E1CXRDJJFbAKgMmaF9YSKQ3l9Cx7vtPdtD7q0YuoKRJEUVxQlYjFjqg8XOtNcGsIv7QHp_8EfGg0hNROazVYUZYgBOBaFUYohTEThKeqFUqvwknr3VhtKNe2Mqnt5NFEdHrTuZVu_HeNkaCFkiIpvBoVgr8dbOz12kVj2xY664eoiUKM4YIRltAXd9D72xupBlIHrqt9Kmy2ovpcCC6VZAwlan4PlVZl186kn1O7FJ8kvJ4kJKa3P_sGhhj14vOn_2eX36bsywN2ZaHtV9G3Q-98F6fgs0Or_3q8_7IJeLsDTPAxBltr43rY6qTWXJss19v52Jumt_Ohx_lIycWd5L3-P9N-A30HExI |
| CitedBy_id | crossref_primary_10_1016_j_aei_2024_102743 crossref_primary_10_1016_j_ress_2024_110095 crossref_primary_10_1016_j_trd_2025_104611 crossref_primary_10_1061_JCCEE5_CPENG_6100 crossref_primary_10_1109_ACCESS_2025_3580334 crossref_primary_10_14801_jkiit_2025_23_2_33 crossref_primary_10_3390_futuretransp5030097 crossref_primary_10_3390_su17083286 crossref_primary_10_1038_s41598_025_90839_x crossref_primary_10_1016_j_ress_2025_111429 |
| Cites_doi | 10.1371/journal.pone.0278064 10.1038/30918 10.1101/2022.08.14.503926 10.1080/0022250X.2001.9990249 10.1371/journal.pone.0040575 10.1371/journal.pone.0248764 10.1371/journal.pone.0268203 10.1016/j.aiopen.2021.01.001 10.1093/bioinformatics/btab202 10.1109/ITSC.2017.8317626 10.1109/ICDE55515.2023.00178 10.1504/IJCIS.2014.066356 10.3328/TL.2009.01.04.271-280 10.1155/2021/4832864 10.1155/2021/8871876 10.1080/15732479.2021.1961826 10.1609/aaai.v29i1.9277 10.1007/978-3-642-21934-4_44 10.1109/TNNLS.2020.2978386 10.1016/j.cie.2021.107927 10.1080/15427951.2014.982311 10.1061/(ASCE)IS.1943-555X.0000725 10.1061/(ASCE)CO.1943-7862.0000070 10.1371/journal.pone.0259680 10.1016/j.jtrangeo.2005.10.003 10.1016/j.trb.2021.09.007 10.1080/10911359.2018.1527739 10.1016/j.socnet.2007.11.001 10.1193/1.4000019 10.1109/TITS.2017.2700080 10.1016/j.cor.2008.07.002 10.1007/978-3-540-68056-7_3 10.1145/2939672.2939754 10.1145/321992.321993 10.1016/j.knosys.2022.110188 10.1209/0295-5075/80/68001 10.1016/j.ifacol.2017.08.1065 10.1155/2021/5513311 10.1145/3446217 10.1111/mice.12346 10.1201/9781315139111 10.1088/1742-5468/2006/04/P04006 10.1145/3292500.3330855 10.1287/trsc.1110.0376 10.1109/TNSE.2020.3035352 10.1080/01441647.2019.1703843 10.1177/0361198118792115 10.1061/(ASCE)IS.1943-555X.0000700 10.1371/journal.pone.0220061 10.3390/app12063076 10.1080/23789689.2019.1708180 10.1145/3357384.3358080 10.1109/IJCNN.2019.8852262 10.1002/0471667196.ess5050 10.1007/s11116-004-1139-y 10.1140/epjb/e2009-00291-3 10.1016/j.trc.2021.103549 10.1111/j.1467-9671.2008.01086.x 10.1145/3357384.3357979 10.1007/978-1-4614-0857-4_1 10.3390/w13111502 10.1080/15732479.2010.546415 10.1016/j.neunet.2024.106207 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Jana et al 2023 Jana et al 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Jana et al 2023 Jana et al – notice: 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pone.0296045 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Databases ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Agricultural Science Database MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | Edge-based GNN for ranking critical roads |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3072931439 oai_doaj_org_article_ae7bba77a1f94c7991157265dad04421 PMC10734987 A776898550 38127943 10_1371_journal_pone_0296045 |
| Genre | Journal Article |
| GeographicLocations | United States Iran |
| GeographicLocations_xml | – name: United States – name: Iran |
| GrantInformation_xml | – fundername: ; grantid: 20220480 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO ESTFP FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c693t-5353ca63ff872cae88894426bc6e6cfb30657afb285839a5daa58f64ee288c363 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153816100097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-6203 |
| IngestDate | Thu Aug 21 23:50:40 EDT 2025 Mon Nov 10 04:32:31 EST 2025 Tue Nov 04 02:06:10 EST 2025 Thu Oct 02 06:52:12 EDT 2025 Tue Oct 07 08:09:15 EDT 2025 Sat Nov 29 14:08:43 EST 2025 Sat Nov 29 10:48:12 EST 2025 Wed Nov 26 11:31:17 EST 2025 Wed Nov 26 11:06:44 EST 2025 Thu May 22 21:17:10 EDT 2025 Wed Feb 19 02:10:48 EST 2025 Sat Nov 29 05:43:37 EST 2025 Tue Nov 18 21:42:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Copyright: © 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c693t-5353ca63ff872cae88894426bc6e6cfb30657afb285839a5daa58f64ee288c363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-2552-1147 0000-0003-2368-6394 |
| OpenAccessLink | https://www.proquest.com/docview/3072931439?pq-origsite=%requestingapplication% |
| PMID | 38127943 |
| PQID | 3072931439 |
| PQPubID | 1436336 |
| PageCount | e0296045 |
| ParticipantIDs | plos_journals_3072931439 doaj_primary_oai_doaj_org_article_ae7bba77a1f94c7991157265dad04421 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10734987 proquest_miscellaneous_2905514525 proquest_journals_3072931439 gale_infotracmisc_A776898550 gale_infotracacademiconefile_A776898550 gale_incontextgauss_ISR_A776898550 gale_incontextgauss_IOV_A776898550 gale_healthsolutions_A776898550 pubmed_primary_38127943 crossref_citationtrail_10_1371_journal_pone_0296045 crossref_primary_10_1371_journal_pone_0296045 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-21 |
| PublicationDateYYYYMMDD | 2023-12-21 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | MR Mendonça (pone.0296045.ref053) 2020; 8 pone.0296045.ref064 DB Johnson (pone.0296045.ref077) 1977; 24 JuR Chughtai (pone.0296045.ref050) 2022; 17 pone.0296045.ref061 pone.0296045.ref062 U Demšar (pone.0296045.ref046) 2008; 12 S Yan (pone.0296045.ref021) 2009; 36 DJ Watts (pone.0296045.ref082) 1998; 393 I Goodfellow (pone.0296045.ref084) 2016 P Gauthier (pone.0296045.ref038) 2018; 2672 M Altaweel (pone.0296045.ref045) 2021; 16 U Brandes (pone.0296045.ref063) 2008; 30 S Henning (pone.0296045.ref047) 2017; 50 pone.0296045.ref068 J Zhou (pone.0296045.ref054) 2020; 1 pone.0296045.ref065 pone.0296045.ref027 X Mao (pone.0296045.ref019) 2021; 2021 T Mikolov (pone.0296045.ref066) 2013; 26 DM Scott (pone.0296045.ref017) 2006; 14 pone.0296045.ref069 pone.0296045.ref090 S Moghtadernejad (pone.0296045.ref025) 2022; 28 W Orabi (pone.0296045.ref026) 2009; 135 pone.0296045.ref091 pone.0296045.ref051 J Sohn (pone.0296045.ref030) 2006; 40 R Liu (pone.0296045.ref067) 2021; 37 MA Benevolenza (pone.0296045.ref002) 2019; 29 MA Esfeh (pone.0296045.ref037) 2022; 136 MEJ Newman (pone.0296045.ref083) 2000; 101 S Banholzer (pone.0296045.ref001) 2014 ML Mouronte-López (pone.0296045.ref008) 2021; 2021 S Oldham (pone.0296045.ref043) 2019; 14 Z Zhang (pone.0296045.ref024) 2023; 19 pone.0296045.ref056 A Liu (pone.0296045.ref004) 2007 pone.0296045.ref055 L Myers (pone.0296045.ref079) 2004; 12 pone.0296045.ref014 pone.0296045.ref058 pone.0296045.ref015 pone.0296045.ref059 Y Zhou (pone.0296045.ref035) 2017; 19 A Nagurney (pone.0296045.ref034) 2007; 80 W Hamilton (pone.0296045.ref071) 2017; 30 pone.0296045.ref080 pone.0296045.ref085 ÅJ Holmgren (pone.0296045.ref033) 2007 L Dall’Asta (pone.0296045.ref010) 2006; 2006 YW Chen (pone.0296045.ref018) 1999; 1 X Wu (pone.0296045.ref048) 2022; 17 A Ponti (pone.0296045.ref075) 2021; 13 P Bocchini (pone.0296045.ref013) 2012; 28 SK Maurya (pone.0296045.ref057) 2021; 15 B Berche (pone.0296045.ref009) 2009; 71 Y Liu (pone.0296045.ref016) 2022; 7 X Kong (pone.0296045.ref052) 2023; 261 H Poorzahedy (pone.0296045.ref031) 2005; 32 E Jenelius (pone.0296045.ref032) 2006; 40 Z Wu (pone.0296045.ref060) 2020; 32 pone.0296045.ref089 pone.0296045.ref087 pone.0296045.ref088 L Chen (pone.0296045.ref023) 2012; 46 pone.0296045.ref049 pone.0296045.ref006 pone.0296045.ref003 RR Singh (pone.0296045.ref092) 2015; 11 U Brandes (pone.0296045.ref040) 2001; 25 pone.0296045.ref070 J Sullivan (pone.0296045.ref029) 2009; 1 EL de Oliveira (pone.0296045.ref036) 2016; 88 W Chen (pone.0296045.ref073) 2009; 22 pone.0296045.ref072 D Rivera-Royero (pone.0296045.ref028) 2022 C Gomez (pone.0296045.ref007) 2013; 9 FJ Shahdani (pone.0296045.ref086) 2022; 12 BA Jafino (pone.0296045.ref005) 2020; 40 ED Vugrin (pone.0296045.ref011) 2014; 10 SP Borgatti (pone.0296045.ref041) 1995; 18 LG Mattsson (pone.0296045.ref074) 2015; 81 S Moghtadernejad (pone.0296045.ref020) 2022; 28 P Erdős (pone.0296045.ref081) 1960; 5 QH Nguyen (pone.0296045.ref078) 2021; 2021 C Gokalp (pone.0296045.ref012) 2021; 153 S Derrible (pone.0296045.ref044) 2012; 7 pone.0296045.ref076 A Furno (pone.0296045.ref042) 2021; 16 J Hackl (pone.0296045.ref022) 2018; 33 pone.0296045.ref039 |
| References_xml | – volume: 17 start-page: e0278064 issue: 12 year: 2022 ident: pone.0296045.ref050 article-title: An attention-based recurrent learning model for short-term travel time prediction publication-title: PLOS One doi: 10.1371/journal.pone.0278064 – volume: 393 start-page: 440 issue: 6684 year: 1998 ident: pone.0296045.ref082 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 – ident: pone.0296045.ref068 doi: 10.1101/2022.08.14.503926 – ident: pone.0296045.ref080 – volume: 25 start-page: 163 issue: 2 year: 2001 ident: pone.0296045.ref040 article-title: A faster algorithm for betweenness centrality publication-title: Journal of mathematical sociology doi: 10.1080/0022250X.2001.9990249 – volume: 7 start-page: e40575 issue: 7 year: 2012 ident: pone.0296045.ref044 article-title: Network centrality of metro systems publication-title: PLOS One doi: 10.1371/journal.pone.0040575 – ident: pone.0296045.ref061 – volume: 22 year: 2009 ident: pone.0296045.ref073 article-title: Ranking measures and loss functions in learning to rank publication-title: dvances in Neural Information Processing Systems – volume: 16 start-page: e0248764 issue: 3 year: 2021 ident: pone.0296045.ref042 article-title: Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks publication-title: PLOS One doi: 10.1371/journal.pone.0248764 – ident: pone.0296045.ref088 – volume: 17 start-page: e0268203 issue: 5 year: 2022 ident: pone.0296045.ref048 article-title: A spatial interaction incorporated betweenness centrality measure publication-title: PLOS One doi: 10.1371/journal.pone.0268203 – volume: 40 start-page: 537 issue: 7 year: 2006 ident: pone.0296045.ref032 article-title: Importance and exposure in road network vulnerability analysis publication-title: Transportation Research Part A: Policy and Practice – volume: 1 start-page: 57 year: 2020 ident: pone.0296045.ref054 article-title: Graph neural networks: A review of methods and applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – volume: 37 start-page: 3377 issue: 19 year: 2021 ident: pone.0296045.ref067 article-title: PecanPy: a fast, efficient and parallelized Python implementation of node2vec publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab202 – ident: pone.0296045.ref069 – ident: pone.0296045.ref049 doi: 10.1109/ITSC.2017.8317626 – ident: pone.0296045.ref051 doi: 10.1109/ICDE55515.2023.00178 – ident: pone.0296045.ref090 – volume: 10 start-page: 218 issue: 3-4 year: 2014 ident: pone.0296045.ref011 article-title: Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks publication-title: International Journal of Critical Infrastructures doi: 10.1504/IJCIS.2014.066356 – volume: 1 start-page: 271 issue: 4 year: 2009 ident: pone.0296045.ref029 article-title: A review of current practice in network disruption analysis and an assessment of the ability to account for isolating links in transportation networks publication-title: Transportation Letters doi: 10.3328/TL.2009.01.04.271-280 – ident: pone.0296045.ref039 – volume: 2021 year: 2021 ident: pone.0296045.ref078 article-title: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil publication-title: Mathematical Problems in Engineering doi: 10.1155/2021/4832864 – volume: 2021 start-page: 1 year: 2021 ident: pone.0296045.ref019 article-title: Resilience-based optimization of post-disaster restoration strategy for road networks publication-title: Journal of advanced transportation doi: 10.1155/2021/8871876 – volume: 19 start-page: 589 issue: 5 year: 2023 ident: pone.0296045.ref024 article-title: A Assessment of post-earthquake resilience of highway–bridge networks by considering downtime due to interaction of parallel restoration actions publication-title: Structure and Infrastructure Engineering doi: 10.1080/15732479.2021.1961826 – ident: pone.0296045.ref089 doi: 10.1609/aaai.v29i1.9277 – ident: pone.0296045.ref064 doi: 10.1007/978-3-642-21934-4_44 – volume: 32 start-page: 4 issue: 1 year: 2020 ident: pone.0296045.ref060 article-title: A comprehensive survey on graph neural networks publication-title: IEEE transactions on neural networks and learning systems doi: 10.1109/TNNLS.2020.2978386 – start-page: 107927 year: 2022 ident: pone.0296045.ref028 article-title: Road network performance: A review on relevant concepts publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107927 – volume: 11 start-page: 403 issue: 4-5 year: 2015 ident: pone.0296045.ref092 article-title: A faster algorithm to update betweenness centrality after node alteration publication-title: Internet Mathematics doi: 10.1080/15427951.2014.982311 – volume: 28 start-page: 04022039 issue: 4 year: 2022 ident: pone.0296045.ref025 article-title: Prioritizing Road Network Restorative Interventions Using a Discrete Particle Swarm Optimization publication-title: Journal of Infrastructure Systems doi: 10.1061/(ASCE)IS.1943-555X.0000725 – volume-title: Deep learning year: 2016 ident: pone.0296045.ref084 – volume: 135 start-page: 1039 issue: 10 year: 2009 ident: pone.0296045.ref026 article-title: Optimizing post-disaster reconstruction planning for damaged transportation networks publication-title: Journal of Construction Engineering and Management doi: 10.1061/(ASCE)CO.1943-7862.0000070 – volume: 16 start-page: e0259680 issue: 11 year: 2021 ident: pone.0296045.ref045 article-title: The structure, centrality, and scale of urban street networks: Cases from Pre-Industrial Afro-Eurasia publication-title: PLOS One doi: 10.1371/journal.pone.0259680 – volume: 14 start-page: 215 issue: 3 year: 2006 ident: pone.0296045.ref017 article-title: Network robustness index: A new method for identifying critical links and evaluating the performance of transportation networks publication-title: Journal of Transport Geography doi: 10.1016/j.jtrangeo.2005.10.003 – volume: 153 start-page: 228 year: 2021 ident: pone.0296045.ref012 article-title: Post-disaster recovery sequencing strategy for road networks publication-title: Transportation research part B: methodological doi: 10.1016/j.trb.2021.09.007 – ident: pone.0296045.ref091 – volume: 29 start-page: 266 issue: 2 year: 2019 ident: pone.0296045.ref002 article-title: The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature publication-title: Journal of Human Behavior in the Social Environment doi: 10.1080/10911359.2018.1527739 – volume: 88 start-page: 195 year: 2016 ident: pone.0296045.ref036 article-title: Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system publication-title: Transportation Research Part A: Policy and Practice – volume: 30 start-page: 136 issue: 2 year: 2008 ident: pone.0296045.ref063 article-title: On variants of shortest-path betweenness centrality and their generic computation publication-title: Social networks doi: 10.1016/j.socnet.2007.11.001 – ident: pone.0296045.ref070 – volume: 28 start-page: 427 issue: 2 year: 2012 ident: pone.0296045.ref013 article-title: Restoration of bridge networks after an earthquake: Multicriteria intervention optimization publication-title: Earthquake Spectra doi: 10.1193/1.4000019 – volume: 19 start-page: 402 issue: 2 year: 2017 ident: pone.0296045.ref035 article-title: Critical link analysis for urban transportation systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2017.2700080 – volume: 36 start-page: 2049 issue: 6 year: 2009 ident: pone.0296045.ref021 article-title: Optimal scheduling of emergency roadway repair and subsequent relief distribution publication-title: Computers & Operations Research doi: 10.1016/j.cor.2008.07.002 – start-page: 31 year: 2007 ident: pone.0296045.ref033 article-title: A framework for vulnerability assessment of electric power systems publication-title: Critical infrastructure: reliability and vulnerability doi: 10.1007/978-3-540-68056-7_3 – ident: pone.0296045.ref065 doi: 10.1145/2939672.2939754 – volume: 26 year: 2013 ident: pone.0296045.ref066 article-title: Distributed representations of words and phrases and their compositionality publication-title: Advances in neural information processing systems – volume: 101 start-page: 819 issue: 3 year: 2000 ident: pone.0296045.ref083 publication-title: Models of the small world Journal of Statistical Physics – volume: 24 start-page: 1 issue: 1 year: 1977 ident: pone.0296045.ref077 article-title: Efficient algorithms for shortest paths in sparse networks publication-title: Journal of the ACM (JACM) doi: 10.1145/321992.321993 – volume: 261 start-page: 110188 year: 2023 ident: pone.0296045.ref052 article-title: Dynamic graph convolutional recurrent imputation network for spatiotemporal traffic missing data publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.110188 – volume: 80 start-page: 68001 issue: 6 year: 2007 ident: pone.0296045.ref034 article-title: Robustness of transportation networks subject to degradable links publication-title: Europhysics Letters doi: 10.1209/0295-5075/80/68001 – volume: 50 start-page: 7487 issue: 1 year: 2017 ident: pone.0296045.ref047 article-title: Methodology for determining critical locations in road networks based on graph theory publication-title: IFAC-Papers Online doi: 10.1016/j.ifacol.2017.08.1065 – volume: 81 start-page: 16 year: 2015 ident: pone.0296045.ref074 article-title: Vulnerability and resilience of transport systems–A discussion of recent research publication-title: Transportation research part A: policy and practice – volume: 5 start-page: 17 issue: 1 year: 1960 ident: pone.0296045.ref081 article-title: On the evolution of random graphs publication-title: Publ. Math. Inst. Hung. Acad. Sci – volume: 2021 start-page: 1 year: 2021 ident: pone.0296045.ref008 article-title: Analysing the vulnerability of public transport networks publication-title: Journal of Advanced Transportation doi: 10.1155/2021/5513311 – volume: 15 start-page: 1 issue: 5 year: 2021 ident: pone.0296045.ref057 article-title: Graph neural networks for fast node ranking approximation publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD) doi: 10.1145/3446217 – ident: pone.0296045.ref015 – volume: 33 start-page: 618 issue: 8 year: 2018 ident: pone.0296045.ref022 article-title: Determination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealing publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12346 – volume: 40 start-page: 491 issue: 6 year: 2006 ident: pone.0296045.ref030 article-title: Evaluating the significance of highway network links under the flood damage: An accessibility approach publication-title: Transportation research part A: policy and practice – ident: pone.0296045.ref062 doi: 10.1201/9781315139111 – volume: 2006 start-page: P04006 issue: 04 year: 2006 ident: pone.0296045.ref010 article-title: Vulnerability of weighted networks publication-title: Journal of Statistical Mechanics: Theory and Experiment doi: 10.1088/1742-5468/2006/04/P04006 – volume: 1 start-page: 85 issue: 2 year: 1999 ident: pone.0296045.ref018 article-title: A fuzzy multi-objective model for reconstructing the post-quake road-network by genetic algorithm publication-title: International Journal of Fuzzy Systems – ident: pone.0296045.ref059 doi: 10.1145/3292500.3330855 – volume: 46 start-page: 109 issue: 1 year: 2012 ident: pone.0296045.ref023 article-title: Resilience: an indicator of recovery capability in intermodal freight transport publication-title: Transportation Science doi: 10.1287/trsc.1110.0376 – volume: 8 start-page: 220 issue: 1 year: 2020 ident: pone.0296045.ref053 article-title: Approximating network centrality measures using node embedding and machine learning publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2020.3035352 – volume: 18 start-page: 112 issue: 1 year: 1995 ident: pone.0296045.ref041 article-title: Centrality and AIDS publication-title: Connections – volume: 40 start-page: 241 issue: 2 year: 2020 ident: pone.0296045.ref005 article-title: Transport network criticality metrics: a comparative analysis and a guideline for selection publication-title: Transport Reviews doi: 10.1080/01441647.2019.1703843 – ident: pone.0296045.ref006 – ident: pone.0296045.ref027 – volume: 2672 start-page: 54 issue: 1 year: 2018 ident: pone.0296045.ref038 article-title: Road network resilience: how to identify critical links subject to day-to-day disruptions publication-title: Transportation research record doi: 10.1177/0361198118792115 – ident: pone.0296045.ref014 – ident: pone.0296045.ref087 – volume: 28 start-page: 04022025 issue: 3 year: 2022 ident: pone.0296045.ref020 article-title: Determination of postdisaster restoration programs for road networks using a double-stage optimization approach publication-title: Journal of Infrastructure Systems doi: 10.1061/(ASCE)IS.1943-555X.0000700 – volume: 14 start-page: e0220061 issue: 7 year: 2019 ident: pone.0296045.ref043 article-title: Consistency and differences between centrality measures across distinct classes of networks publication-title: PLOS One doi: 10.1371/journal.pone.0220061 – volume: 12 start-page: 3076 issue: 6 year: 2022 ident: pone.0296045.ref086 article-title: Assessing Flood Indirect Impacts on Road Transport Networks Applying Mesoscopic Traffic Modelling: The Case Study of Santarém, Portugal publication-title: Applied Sciences doi: 10.3390/app12063076 – volume: 7 start-page: 70 issue: 1 year: 2022 ident: pone.0296045.ref016 article-title: Prioritizing transportation network recovery using a resilience measure publication-title: Sustainable and Resilient Infrastructure doi: 10.1080/23789689.2019.1708180 – ident: pone.0296045.ref056 doi: 10.1145/3357384.3358080 – ident: pone.0296045.ref085 doi: 10.1109/IJCNN.2019.8852262 – start-page: 21 year: 2014 ident: pone.0296045.ref001 article-title: The impact of climate change on natural disasters publication-title: Reducing disaster: Early warning systems for climate change – ident: pone.0296045.ref072 – volume: 12 year: 2004 ident: pone.0296045.ref079 article-title: Spearman correlation coefficients, differences between publication-title: Encyclopedia of statistical sciences doi: 10.1002/0471667196.ess5050 – volume: 32 start-page: 65 year: 2005 ident: pone.0296045.ref031 article-title: Network performance improvement under stochastic events with long-term effects publication-title: Transportation doi: 10.1007/s11116-004-1139-y – volume: 71 start-page: 125 year: 2009 ident: pone.0296045.ref009 article-title: Resilience of public transport networks against attacks publication-title: The European Physical Journal B doi: 10.1140/epjb/e2009-00291-3 – volume: 136 start-page: 103549 year: 2022 ident: pone.0296045.ref037 article-title: Road network vulnerability analysis considering the probability and consequence of disruptive events: A spatio-temporal incident impact approach publication-title: Transportation research part C: emerging technologies doi: 10.1016/j.trc.2021.103549 – volume: 12 start-page: 61 issue: 1 year: 2008 ident: pone.0296045.ref046 article-title: Identifying critical locations in a spatial network with graph theory publication-title: Transactions in GIS doi: 10.1111/j.1467-9671.2008.01086.x – ident: pone.0296045.ref058 doi: 10.1145/3357384.3357979 – volume-title: review of key indicators of recovery two years after Katrina year: 2007 ident: pone.0296045.ref004 – ident: pone.0296045.ref076 doi: 10.1007/978-1-4614-0857-4_1 – volume: 30 year: 2017 ident: pone.0296045.ref071 article-title: Inductive representation learning on large graphs publication-title: Advances in neural information processing systems – volume: 13 start-page: 1502 issue: 11 year: 2021 ident: pone.0296045.ref075 article-title: A novel graph-based vulnerability metric in urban network infrastructures: The case of water distribution networks publication-title: Water doi: 10.3390/w13111502 – ident: pone.0296045.ref003 – volume: 9 start-page: 260 issue: 3 year: 2013 ident: pone.0296045.ref007 article-title: Hierarchical infrastructure network representation methods for risk-based decision-making publication-title: Structure and infrastructure engineering doi: 10.1080/15732479.2010.546415 – ident: pone.0296045.ref055 doi: 10.1016/j.neunet.2024.106207 |
| SSID | ssj0053866 |
| Score | 2.5222538 |
| Snippet | Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0296045 |
| SubjectTerms | Analysis Approximation Arteries Biology and Life Sciences Business metrics Computer and Information Sciences Computer software industry Decision making Deep learning Disaster recovery Disasters Earthquakes Emergencies Emergency management Emergency plans Emergency preparedness Engineering and Technology Evacuation Evaluation Graph neural networks Graph theory Graphs Heuristic Humans Hurricanes Infrastructure (Economics) Iran Literature reviews Management Managers Natural Disasters Neural networks Neural Networks, Computer Optimization techniques Performance measurement Physical Sciences Ranking Rankings Recovery Research and Analysis Methods Resilience Roads & highways Segments Simulation Transportation Transportation networks Transportation planning United States |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOCQNrETP44FtYJLi3ipN8t2nO1KVbLa7PL7mUmcqEGVyoHrehxlvxnbn5WZbwh5mzklhFUhFZbVaVGxEvZBHdKgWGGZZhAyRd9sQp6dqYsL_fVaqy_MCRvkgQfgjmyQzlkpbV7rwkugM3kpmSgrW2VF0ZeQM2A942Vq2INhFQsRC-W4zI-iXw7XbRMOM4aCJOXsIOr1-qddebG-arubKOffmZPXjqLTB-R-5JD0eHj3PXInNA_JXlylHX0fpaQ_PCLnJ9UypHhSVbSXpqaoXwlzmyH7mwJlpdi2HQ4w6mPXA7ppbUW7sOyr3-iqoXa0f0x-np78-PQ5jS0UUi8036YlL7m3gte1kszbAPddDagJ50UQvnbYN17a2jFVAlOygKotVS2KEMBLngv-hCwaAG2fUFV55XKneFC2sMArdS0z5oWrpXRVphLCRzyNj_ri2ObiyvQfzSTcMwZ4DHrBRC8kJJ1mrQd9jVvsP6KrJltUx-5_gJgxMWbMbTGTkFfoaDOUmk5r3BxLuHxplHhLyJveAhUyGkzBWdpd15kv57_-wej7t5nRu2hUtwCHt7HsAf4TKm_NLA9mlrDO_Wx4H8NyRKUzHEXfOfBdDTPHUL15-PU0jA_FtLomtLvOMJ0hYy4Z4Pp0iOwJWaByDNUDE6JmMT-Dfj7SrC57gfIczo1CK_nsfzjrObnHgFhiChHLD8hiu9mFF-Su_71ddZuX_bL_A7lXXGA priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Library of Science (PLoS) Journals Open Access dbid: FPL link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cAFKI82UMAgJOCQktiJH8eCugIJtRUv9WY5jrOsVCWrzS6_n5nECaRqBVzjcRSP5_FZGX9DyMukUEJY5WNhWRVnJcshDmofe8UyyzQDk8m6ZhPy-FidnenT3wfFC3_wuUzfBp0erJraHyQMyUTy6-QG40JgCdf89NMQecF3hQjX466aOUk_HUv_GItnq_OmvQxoXqyX_CMBze_876ffJbcD1KSHvW3skGu-vkd2gjO39HVgnH5zn5wclQsfY0IracdgTZHmEubWfZE4BWRLsbs75DnqQnMEum5sSVu_6C7J0WVN7SD_gHybH319_yEOnRZiJzTfxDnPubOCV5WSzFkPx2KdQe4unPDCVQW2l5e2KpjKAVDZvLQ2V5XIvIfNdFzwh2RWwyL3CFWlU0VaKO6VzSzAT13JhDlRVFIWZaIiwocNMC7QkGM3jHPT_VuTcBzp1WNQayZoLSLxOGvV03D8Rf4d7u0oiyTa3QPYHhN80lgvi8JKadNKZ04CUk5zyQSsrkxg9WlEnqFlmP5G6hgKzKGEM5pGJriIvOgkkEijxkqdhd22rfl48v0fhL58ngi9CkJVA-pwNtyOgDUhQddEcn8iCeHATYb30I4HrbSGIzc8B1isYeZg25cPPx-H8aVYfVf7ZtsaphME1jkDve72rjBqFhAfQ5LBiKiJk0xUPx2plz86HvMU0kumlXx09Sc_JrcYoEqsH2LpPplt1lv_hNx0PzfLdv208_5fMz9ZGA priority: 102 providerName: Public Library of Science |
| Title | Edge-based graph neural network for ranking critical road segments in a network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38127943 https://www.proquest.com/docview/3072931439 https://www.proquest.com/docview/2905514525 https://pubmed.ncbi.nlm.nih.gov/PMC10734987 https://doaj.org/article/ae7bba77a1f94c7991157265dad04421 http://dx.doi.org/10.1371/journal.pone.0296045 |
| Volume | 18 |
| WOSCitedRecordID | wos001153816100097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: P5Z dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M0K dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7P dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M7S dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PATMY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KB. dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7RV dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: PIMPY dateStart: 20061201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: FPL dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvwPhaYZSAkICHdImT2M4TWqdWTGNd1MHU8RI5jlMqTUlpWv5-7hy3EDQBEi_3EJ-r-u58d07OvyPktZcJxqTQLpO0cMOcRuAHY-1qQUNJYwomE5pmE3w8FtNpnNgXbrUtq9z4ROOo80rhO_LDACGuA4ju8fvFNxe7RuHXVdtCY4fsIkoCbswk-rLxxLCXGbPX5QLuH1rt9BdVqfseRViSqBWODGr_1jd3FtdVfVPi-Xv95C8BaXTvf5dyn9y1qahz1NjOHrmlywdkz2722nlrEanfPSTnw3ymXQx4uWMQrh2EwYS5ZVNE7kDm62D3d4iDjrLNE5xlJXOn1jNzic6Zl47c8D8in0fDT8cfXNuJwVUsDlZuFESBkiwoCsGpkhqOzXEIsT1TTDNVZNh-nssioyKChEtGuZSRKFioNShbBSx4TDolSH2fOCJXIvMzEWghQwnpaVxwjyqWFZxnuSe6JNgoJFUWphy7ZVyn5tsbh-NKI54U1ZhaNXaJu521aGA6_sI_QF1veRFk2zyolrPU7tlUap5lknPpF3GoOGTSfsQpg9XlHqze75IXaClpc2N16yrSIw5nuBiR4rrkleFAoI0SK3lmcl3X6cn55T8wXUxaTG8sU1GBOJS0tydgTQjg1eI8aHGCu1Ct4X20641U6vSnNcLMjb3ePPxyO4w_itV5pa7WdUpjDxPviIJcnzRbYytZyAgpghB2iWhtmpbo2yPl_KvBOfch_ISx4E___L-ekTsUMk-sMaL-Aemslmv9nNxW31fzetkjO3xyiXTKDRVAxbHfI7uD4TiZ9MxLGKCj5CPQ00Ef6Jl3ipQnhl70jFeBGcnJWXL1AySrd2g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UKhBIOCQNnES2zkgVKBVVy0tgoL2ZhzHWVaqkmWzC-JP8RuZSZxAUAVceuAaj6N4Ms9k5htCHvqp5FxL63HNci_KWAx2MLGelSzSLGEgMlE9bEIcHsrxOHmzQr63vTBYVtnaxNpQZ6XBb-RbIUJch-Ddk-ezzx5OjcK_q-0IjUYs9u23r5CyVc9Gr-D9PmJsd-f45Z7npgp4hifhwovDODSah3kuBTPaQgqYROCnUsMtN3mKo9SFzlMmYwgedJxpHcucR9bCg5uQh3Dfc-Q82HGBJWRi3CV4YDs4d-15oQi2nDRszsrCbvoMYVDinvurpwR0vmAwOymr0wLd3-s1f3GAu1f-N9ZdJZddqE23G91YJSu2uEZWnTGr6BOHuP30OjnaySbWQ4ee0RrBmyLMJ-wtmiJ5CpE9xen24OepccMh6LzUGa3spG4SpNOC6pb-Bnl_Jge7SQYFvOU1QmVmZBqkMrRSRxrC7yQXPjM8zYVIM18OSdgKgDIOhh2ngZyo-t-igHSsYY9CsVFObIbE63bNGhiSv9C_QNnqaBFEvL5QzifK2SSlrUhTLYQO8iQyAjKFIBaMw-kyH04fDMkGSqZqOnI7U6i2BeSoCSLhDcmDmgKBRAqsVJroZVWp0dGHfyB697ZH9NgR5SWww2jXHQJnQoCyHuV6jxLMoektr6EetVyp1E_ph52tfpy-fL9bxpti9WFhy2WlWOJjYhEz4OutRhU7zkLEyxBkcUhkT0l7rO-vFNNPNY57AO41SqS4_efn2iAX945fH6iD0eH-HXKJQZSN9VQsWCeDxXxp75IL5stiWs3v1daIko9nrcM_AF_ox8k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQYgXYHytMJhBIOAha-IktvOA0GCbqIa6CgaaeDGO45RKU1KaFsS_xl_HXeIUgibgZQ-8xucovtxncvc7Qh76qeRcS-txzXIvylgMdjCxnpUs0ixhIDJRPWxCjEby-DgZr5HvbS8MllW2NrE21Flp8Bv5IESI6xC8ezLIXVnEeHf_-eyzhxOk8E9rO06jEZED--0rpG_Vs-EuvOtHjO3vHb185bkJA57hSbjw4jAOjeZhnkvBjLaQDiYR-KzUcMtNnuJYdaHzlMkYAgkdZ1rHMueRtXAIE_IQ7nuOnBeQY2LiN44_tF4A7AjnrlUvFMHAScb2rCzsts8QEiXuuMJ6YsDKL_RmJ2V1WtD7e-3mL85w_8r_zMar5LILwelOozPrZM0W18i6M3IVfeKQuJ9eJ4d72cR66OgzWiN7U4T_hL1FUzxPIeKnOPUe_D81bmgEnZc6o5Wd1M2DdFpQ3dLfIO_O5GA3Sa-AN75BqMyMTINUhlbqSENYnuTCZ4anuRBp5ss-CVthUMbBs-OUkBNV_3MUkKY17FEoQsqJUJ94q12zBp7kL_QvUM5WtAguXl8o5xPlbJXSVqSpFkIHeRIZARlEEAvG4XSZD6cP-mQLpVQ1nborE6l2BOSuCSLk9cmDmgIBRgqUsYleVpUaHr7_B6K3bzpEjx1RXgI7jHZdI3AmBC7rUG52KMFMms7yBupUy5VK_dQE2NnqyunL91fLeFOsSixsuawUS3xMOGIGfL3VqOWKsxAJMwRf7BPZUdgO67srxfRTje8egNuNEilu__m5tshFUF31ejg6uEMuMQi-scyKBZukt5gv7V1ywXxZTKv5vdowUfLxrFX4B85T0Lw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-based+graph+neural+network+for+ranking+critical+road+segments+in+a+network&rft.jtitle=PloS+one&rft.au=Jana%2C+Debasish&rft.au=Malama%2C+Sven&rft.au=Narasimhan%2C+Sriram&rft.au=Taciroglu%2C+Ertugrul&rft.date=2023-12-21&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=12&rft.spage=e0296045&rft_id=info:doi/10.1371%2Fjournal.pone.0296045&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |