Edge-based graph neural network for ranking critical road segments in a network

Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for pla...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 18; no. 12; p. e0296045
Main Authors: Jana, Debasish, Malama, Sven, Narasimhan, Sriram, Taciroglu, Ertugrul
Format: Journal Article
Language:English
Published: United States Public Library of Science 21.12.2023
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network’s efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network.
AbstractList Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network's efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network.
Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network's efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network.Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for evacuations during catastrophes and natural disasters. Identifying the critical road segments in a large and complex network is essential for planners and emergency managers to enhance the network's efficiency, robustness, and resilience to such stressors. We propose a novel approach to rapidly identify critical and vital network components (road segments in a transportation network) for resilience improvement or post-disaster recovery. We pose the transportation network as a graph with roads as edges and intersections as nodes and deploy a Graph Neural Network (GNN) trained on a broad range of network parameter changes and disruption events to rank the importance of road segments. The trained GNN model can rapidly estimate the criticality rank of individual road segments in the modified network resulting from an interruption. We address two main limitations in the existing literature that can arise in capital planning or during emergencies: ranking a complete network after changes to components and addressing situations in post-disaster recovery sequencing where some critical segments cannot be recovered. Importantly, our approach overcomes the computational overhead associated with the repeated calculation of network performance metrics, which can limit its use in large networks. To highlight scenarios where our method can prove beneficial, we present examples of synthetic graphs and two real-world transportation networks. Through these examples, we show how our method can support planners and emergency managers in undertaking rapid decisions for planning infrastructure hardening measures in large networks or during emergencies, which otherwise would require repeated ranking calculations for the entire network.
Audience Academic
Author Jana, Debasish
Malama, Sven
Narasimhan, Sriram
Taciroglu, Ertugrul
AuthorAffiliation 2 Samueli Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America
1 Samueli Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California, United States of America
TU Wien: Technische Universitat Wien, AUSTRIA
AuthorAffiliation_xml – name: 1 Samueli Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, California, United States of America
– name: TU Wien: Technische Universitat Wien, AUSTRIA
– name: 2 Samueli Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America
Author_xml – sequence: 1
  givenname: Debasish
  orcidid: 0000-0003-2368-6394
  surname: Jana
  fullname: Jana, Debasish
– sequence: 2
  givenname: Sven
  orcidid: 0000-0003-2552-1147
  surname: Malama
  fullname: Malama, Sven
– sequence: 3
  givenname: Sriram
  surname: Narasimhan
  fullname: Narasimhan, Sriram
– sequence: 4
  givenname: Ertugrul
  surname: Taciroglu
  fullname: Taciroglu, Ertugrul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38127943$$D View this record in MEDLINE/PubMed
BookMark eNqNk1uL1DAUx4usuBf9BqIFQfRhxlyamy-yLKsOLAx4ew2nadrJbqeZTVov396M05HpsojkIeHkd_4n50_OaXbU-c5m2VOM5pgK_ObaD6GDdr5J4TkiiqOCPchOsKJkxgmiRwfn4-w0xmuEGJWcP8qOqcREqIKeZMvLqrGzEqKt8ibAZpV3dgjQpq3_4cNNXvuQB-huXNfkJrjemXQZPFR5tM3adn3MXZfDnn-cPayhjfbJuJ9lX99ffrn4OLtaflhcnF_NDFe0nzHKqAFO61oKYsBKKVVREF4abrmpS4o4E1CXRDJJFbAKgMmaF9YSKQ3l9Cx7vtPdtD7q0YuoKRJEUVxQlYjFjqg8XOtNcGsIv7QHp_8EfGg0hNROazVYUZYgBOBaFUYohTEThKeqFUqvwknr3VhtKNe2Mqnt5NFEdHrTuZVu_HeNkaCFkiIpvBoVgr8dbOz12kVj2xY664eoiUKM4YIRltAXd9D72xupBlIHrqt9Kmy2ovpcCC6VZAwlan4PlVZl186kn1O7FJ8kvJ4kJKa3P_sGhhj14vOn_2eX36bsywN2ZaHtV9G3Q-98F6fgs0Or_3q8_7IJeLsDTPAxBltr43rY6qTWXJss19v52Jumt_Ohx_lIycWd5L3-P9N-A30HExI
CitedBy_id crossref_primary_10_1016_j_aei_2024_102743
crossref_primary_10_1016_j_ress_2024_110095
crossref_primary_10_1016_j_trd_2025_104611
crossref_primary_10_1061_JCCEE5_CPENG_6100
crossref_primary_10_1109_ACCESS_2025_3580334
crossref_primary_10_14801_jkiit_2025_23_2_33
crossref_primary_10_3390_futuretransp5030097
crossref_primary_10_3390_su17083286
crossref_primary_10_1038_s41598_025_90839_x
crossref_primary_10_1016_j_ress_2025_111429
Cites_doi 10.1371/journal.pone.0278064
10.1038/30918
10.1101/2022.08.14.503926
10.1080/0022250X.2001.9990249
10.1371/journal.pone.0040575
10.1371/journal.pone.0248764
10.1371/journal.pone.0268203
10.1016/j.aiopen.2021.01.001
10.1093/bioinformatics/btab202
10.1109/ITSC.2017.8317626
10.1109/ICDE55515.2023.00178
10.1504/IJCIS.2014.066356
10.3328/TL.2009.01.04.271-280
10.1155/2021/4832864
10.1155/2021/8871876
10.1080/15732479.2021.1961826
10.1609/aaai.v29i1.9277
10.1007/978-3-642-21934-4_44
10.1109/TNNLS.2020.2978386
10.1016/j.cie.2021.107927
10.1080/15427951.2014.982311
10.1061/(ASCE)IS.1943-555X.0000725
10.1061/(ASCE)CO.1943-7862.0000070
10.1371/journal.pone.0259680
10.1016/j.jtrangeo.2005.10.003
10.1016/j.trb.2021.09.007
10.1080/10911359.2018.1527739
10.1016/j.socnet.2007.11.001
10.1193/1.4000019
10.1109/TITS.2017.2700080
10.1016/j.cor.2008.07.002
10.1007/978-3-540-68056-7_3
10.1145/2939672.2939754
10.1145/321992.321993
10.1016/j.knosys.2022.110188
10.1209/0295-5075/80/68001
10.1016/j.ifacol.2017.08.1065
10.1155/2021/5513311
10.1145/3446217
10.1111/mice.12346
10.1201/9781315139111
10.1088/1742-5468/2006/04/P04006
10.1145/3292500.3330855
10.1287/trsc.1110.0376
10.1109/TNSE.2020.3035352
10.1080/01441647.2019.1703843
10.1177/0361198118792115
10.1061/(ASCE)IS.1943-555X.0000700
10.1371/journal.pone.0220061
10.3390/app12063076
10.1080/23789689.2019.1708180
10.1145/3357384.3358080
10.1109/IJCNN.2019.8852262
10.1002/0471667196.ess5050
10.1007/s11116-004-1139-y
10.1140/epjb/e2009-00291-3
10.1016/j.trc.2021.103549
10.1111/j.1467-9671.2008.01086.x
10.1145/3357384.3357979
10.1007/978-1-4614-0857-4_1
10.3390/w13111502
10.1080/15732479.2010.546415
10.1016/j.neunet.2024.106207
ContentType Journal Article
Copyright Copyright: © 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Jana et al 2023 Jana et al
2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Jana et al 2023 Jana et al
– notice: 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0296045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Databases
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database
MEDLINE - Academic
CrossRef



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Edge-based GNN for ranking critical roads
EISSN 1932-6203
ExternalDocumentID 3072931439
oai_doaj_org_article_ae7bba77a1f94c7991157265dad04421
PMC10734987
A776898550
38127943
10_1371_journal_pone_0296045
Genre Journal Article
GeographicLocations United States
Iran
GeographicLocations_xml – name: United States
– name: Iran
GrantInformation_xml – fundername: ;
  grantid: 20220480
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c693t-5353ca63ff872cae88894426bc6e6cfb30657afb285839a5daa58f64ee288c363
IEDL.DBID P5Z
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001153816100097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Thu Aug 21 23:50:40 EDT 2025
Mon Nov 10 04:32:31 EST 2025
Tue Nov 04 02:06:10 EST 2025
Thu Oct 02 06:52:12 EDT 2025
Tue Oct 07 08:09:15 EDT 2025
Sat Nov 29 14:08:43 EST 2025
Sat Nov 29 10:48:12 EST 2025
Wed Nov 26 11:31:17 EST 2025
Wed Nov 26 11:06:44 EST 2025
Thu May 22 21:17:10 EDT 2025
Wed Feb 19 02:10:48 EST 2025
Sat Nov 29 05:43:37 EST 2025
Tue Nov 18 21:42:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Copyright: © 2023 Jana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-5353ca63ff872cae88894426bc6e6cfb30657afb285839a5daa58f64ee288c363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-2552-1147
0000-0003-2368-6394
OpenAccessLink https://www.proquest.com/docview/3072931439?pq-origsite=%requestingapplication%
PMID 38127943
PQID 3072931439
PQPubID 1436336
PageCount e0296045
ParticipantIDs plos_journals_3072931439
doaj_primary_oai_doaj_org_article_ae7bba77a1f94c7991157265dad04421
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10734987
proquest_miscellaneous_2905514525
proquest_journals_3072931439
gale_infotracmisc_A776898550
gale_infotracacademiconefile_A776898550
gale_incontextgauss_ISR_A776898550
gale_incontextgauss_IOV_A776898550
gale_healthsolutions_A776898550
pubmed_primary_38127943
crossref_citationtrail_10_1371_journal_pone_0296045
crossref_primary_10_1371_journal_pone_0296045
PublicationCentury 2000
PublicationDate 2023-12-21
PublicationDateYYYYMMDD 2023-12-21
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References MR Mendonça (pone.0296045.ref053) 2020; 8
pone.0296045.ref064
DB Johnson (pone.0296045.ref077) 1977; 24
JuR Chughtai (pone.0296045.ref050) 2022; 17
pone.0296045.ref061
pone.0296045.ref062
U Demšar (pone.0296045.ref046) 2008; 12
S Yan (pone.0296045.ref021) 2009; 36
DJ Watts (pone.0296045.ref082) 1998; 393
I Goodfellow (pone.0296045.ref084) 2016
P Gauthier (pone.0296045.ref038) 2018; 2672
M Altaweel (pone.0296045.ref045) 2021; 16
U Brandes (pone.0296045.ref063) 2008; 30
S Henning (pone.0296045.ref047) 2017; 50
pone.0296045.ref068
J Zhou (pone.0296045.ref054) 2020; 1
pone.0296045.ref065
pone.0296045.ref027
X Mao (pone.0296045.ref019) 2021; 2021
T Mikolov (pone.0296045.ref066) 2013; 26
DM Scott (pone.0296045.ref017) 2006; 14
pone.0296045.ref069
pone.0296045.ref090
S Moghtadernejad (pone.0296045.ref025) 2022; 28
W Orabi (pone.0296045.ref026) 2009; 135
pone.0296045.ref091
pone.0296045.ref051
J Sohn (pone.0296045.ref030) 2006; 40
R Liu (pone.0296045.ref067) 2021; 37
MA Benevolenza (pone.0296045.ref002) 2019; 29
MA Esfeh (pone.0296045.ref037) 2022; 136
MEJ Newman (pone.0296045.ref083) 2000; 101
S Banholzer (pone.0296045.ref001) 2014
ML Mouronte-López (pone.0296045.ref008) 2021; 2021
S Oldham (pone.0296045.ref043) 2019; 14
Z Zhang (pone.0296045.ref024) 2023; 19
pone.0296045.ref056
A Liu (pone.0296045.ref004) 2007
pone.0296045.ref055
L Myers (pone.0296045.ref079) 2004; 12
pone.0296045.ref014
pone.0296045.ref058
pone.0296045.ref015
pone.0296045.ref059
Y Zhou (pone.0296045.ref035) 2017; 19
A Nagurney (pone.0296045.ref034) 2007; 80
W Hamilton (pone.0296045.ref071) 2017; 30
pone.0296045.ref080
pone.0296045.ref085
ÅJ Holmgren (pone.0296045.ref033) 2007
L Dall’Asta (pone.0296045.ref010) 2006; 2006
YW Chen (pone.0296045.ref018) 1999; 1
X Wu (pone.0296045.ref048) 2022; 17
A Ponti (pone.0296045.ref075) 2021; 13
P Bocchini (pone.0296045.ref013) 2012; 28
SK Maurya (pone.0296045.ref057) 2021; 15
B Berche (pone.0296045.ref009) 2009; 71
Y Liu (pone.0296045.ref016) 2022; 7
X Kong (pone.0296045.ref052) 2023; 261
H Poorzahedy (pone.0296045.ref031) 2005; 32
E Jenelius (pone.0296045.ref032) 2006; 40
Z Wu (pone.0296045.ref060) 2020; 32
pone.0296045.ref089
pone.0296045.ref087
pone.0296045.ref088
L Chen (pone.0296045.ref023) 2012; 46
pone.0296045.ref049
pone.0296045.ref006
pone.0296045.ref003
RR Singh (pone.0296045.ref092) 2015; 11
U Brandes (pone.0296045.ref040) 2001; 25
pone.0296045.ref070
J Sullivan (pone.0296045.ref029) 2009; 1
EL de Oliveira (pone.0296045.ref036) 2016; 88
W Chen (pone.0296045.ref073) 2009; 22
pone.0296045.ref072
D Rivera-Royero (pone.0296045.ref028) 2022
C Gomez (pone.0296045.ref007) 2013; 9
FJ Shahdani (pone.0296045.ref086) 2022; 12
BA Jafino (pone.0296045.ref005) 2020; 40
ED Vugrin (pone.0296045.ref011) 2014; 10
SP Borgatti (pone.0296045.ref041) 1995; 18
LG Mattsson (pone.0296045.ref074) 2015; 81
S Moghtadernejad (pone.0296045.ref020) 2022; 28
P Erdős (pone.0296045.ref081) 1960; 5
QH Nguyen (pone.0296045.ref078) 2021; 2021
C Gokalp (pone.0296045.ref012) 2021; 153
S Derrible (pone.0296045.ref044) 2012; 7
pone.0296045.ref076
A Furno (pone.0296045.ref042) 2021; 16
J Hackl (pone.0296045.ref022) 2018; 33
pone.0296045.ref039
References_xml – volume: 17
  start-page: e0278064
  issue: 12
  year: 2022
  ident: pone.0296045.ref050
  article-title: An attention-based recurrent learning model for short-term travel time prediction
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0278064
– volume: 393
  start-page: 440
  issue: 6684
  year: 1998
  ident: pone.0296045.ref082
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– ident: pone.0296045.ref068
  doi: 10.1101/2022.08.14.503926
– ident: pone.0296045.ref080
– volume: 25
  start-page: 163
  issue: 2
  year: 2001
  ident: pone.0296045.ref040
  article-title: A faster algorithm for betweenness centrality
  publication-title: Journal of mathematical sociology
  doi: 10.1080/0022250X.2001.9990249
– volume: 7
  start-page: e40575
  issue: 7
  year: 2012
  ident: pone.0296045.ref044
  article-title: Network centrality of metro systems
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0040575
– ident: pone.0296045.ref061
– volume: 22
  year: 2009
  ident: pone.0296045.ref073
  article-title: Ranking measures and loss functions in learning to rank
  publication-title: dvances in Neural Information Processing Systems
– volume: 16
  start-page: e0248764
  issue: 3
  year: 2021
  ident: pone.0296045.ref042
  article-title: Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0248764
– ident: pone.0296045.ref088
– volume: 17
  start-page: e0268203
  issue: 5
  year: 2022
  ident: pone.0296045.ref048
  article-title: A spatial interaction incorporated betweenness centrality measure
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0268203
– volume: 40
  start-page: 537
  issue: 7
  year: 2006
  ident: pone.0296045.ref032
  article-title: Importance and exposure in road network vulnerability analysis
  publication-title: Transportation Research Part A: Policy and Practice
– volume: 1
  start-page: 57
  year: 2020
  ident: pone.0296045.ref054
  article-title: Graph neural networks: A review of methods and applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 37
  start-page: 3377
  issue: 19
  year: 2021
  ident: pone.0296045.ref067
  article-title: PecanPy: a fast, efficient and parallelized Python implementation of node2vec
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab202
– ident: pone.0296045.ref069
– ident: pone.0296045.ref049
  doi: 10.1109/ITSC.2017.8317626
– ident: pone.0296045.ref051
  doi: 10.1109/ICDE55515.2023.00178
– ident: pone.0296045.ref090
– volume: 10
  start-page: 218
  issue: 3-4
  year: 2014
  ident: pone.0296045.ref011
  article-title: Optimal recovery sequencing for enhanced resilience and service restoration in transportation networks
  publication-title: International Journal of Critical Infrastructures
  doi: 10.1504/IJCIS.2014.066356
– volume: 1
  start-page: 271
  issue: 4
  year: 2009
  ident: pone.0296045.ref029
  article-title: A review of current practice in network disruption analysis and an assessment of the ability to account for isolating links in transportation networks
  publication-title: Transportation Letters
  doi: 10.3328/TL.2009.01.04.271-280
– ident: pone.0296045.ref039
– volume: 2021
  year: 2021
  ident: pone.0296045.ref078
  article-title: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2021/4832864
– volume: 2021
  start-page: 1
  year: 2021
  ident: pone.0296045.ref019
  article-title: Resilience-based optimization of post-disaster restoration strategy for road networks
  publication-title: Journal of advanced transportation
  doi: 10.1155/2021/8871876
– volume: 19
  start-page: 589
  issue: 5
  year: 2023
  ident: pone.0296045.ref024
  article-title: A Assessment of post-earthquake resilience of highway–bridge networks by considering downtime due to interaction of parallel restoration actions
  publication-title: Structure and Infrastructure Engineering
  doi: 10.1080/15732479.2021.1961826
– ident: pone.0296045.ref089
  doi: 10.1609/aaai.v29i1.9277
– ident: pone.0296045.ref064
  doi: 10.1007/978-3-642-21934-4_44
– volume: 32
  start-page: 4
  issue: 1
  year: 2020
  ident: pone.0296045.ref060
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2020.2978386
– start-page: 107927
  year: 2022
  ident: pone.0296045.ref028
  article-title: Road network performance: A review on relevant concepts
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107927
– volume: 11
  start-page: 403
  issue: 4-5
  year: 2015
  ident: pone.0296045.ref092
  article-title: A faster algorithm to update betweenness centrality after node alteration
  publication-title: Internet Mathematics
  doi: 10.1080/15427951.2014.982311
– volume: 28
  start-page: 04022039
  issue: 4
  year: 2022
  ident: pone.0296045.ref025
  article-title: Prioritizing Road Network Restorative Interventions Using a Discrete Particle Swarm Optimization
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(ASCE)IS.1943-555X.0000725
– volume-title: Deep learning
  year: 2016
  ident: pone.0296045.ref084
– volume: 135
  start-page: 1039
  issue: 10
  year: 2009
  ident: pone.0296045.ref026
  article-title: Optimizing post-disaster reconstruction planning for damaged transportation networks
  publication-title: Journal of Construction Engineering and Management
  doi: 10.1061/(ASCE)CO.1943-7862.0000070
– volume: 16
  start-page: e0259680
  issue: 11
  year: 2021
  ident: pone.0296045.ref045
  article-title: The structure, centrality, and scale of urban street networks: Cases from Pre-Industrial Afro-Eurasia
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0259680
– volume: 14
  start-page: 215
  issue: 3
  year: 2006
  ident: pone.0296045.ref017
  article-title: Network robustness index: A new method for identifying critical links and evaluating the performance of transportation networks
  publication-title: Journal of Transport Geography
  doi: 10.1016/j.jtrangeo.2005.10.003
– volume: 153
  start-page: 228
  year: 2021
  ident: pone.0296045.ref012
  article-title: Post-disaster recovery sequencing strategy for road networks
  publication-title: Transportation research part B: methodological
  doi: 10.1016/j.trb.2021.09.007
– ident: pone.0296045.ref091
– volume: 29
  start-page: 266
  issue: 2
  year: 2019
  ident: pone.0296045.ref002
  article-title: The impact of climate change and natural disasters on vulnerable populations: A systematic review of literature
  publication-title: Journal of Human Behavior in the Social Environment
  doi: 10.1080/10911359.2018.1527739
– volume: 88
  start-page: 195
  year: 2016
  ident: pone.0296045.ref036
  article-title: Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system
  publication-title: Transportation Research Part A: Policy and Practice
– volume: 30
  start-page: 136
  issue: 2
  year: 2008
  ident: pone.0296045.ref063
  article-title: On variants of shortest-path betweenness centrality and their generic computation
  publication-title: Social networks
  doi: 10.1016/j.socnet.2007.11.001
– ident: pone.0296045.ref070
– volume: 28
  start-page: 427
  issue: 2
  year: 2012
  ident: pone.0296045.ref013
  article-title: Restoration of bridge networks after an earthquake: Multicriteria intervention optimization
  publication-title: Earthquake Spectra
  doi: 10.1193/1.4000019
– volume: 19
  start-page: 402
  issue: 2
  year: 2017
  ident: pone.0296045.ref035
  article-title: Critical link analysis for urban transportation systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2700080
– volume: 36
  start-page: 2049
  issue: 6
  year: 2009
  ident: pone.0296045.ref021
  article-title: Optimal scheduling of emergency roadway repair and subsequent relief distribution
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2008.07.002
– start-page: 31
  year: 2007
  ident: pone.0296045.ref033
  article-title: A framework for vulnerability assessment of electric power systems
  publication-title: Critical infrastructure: reliability and vulnerability
  doi: 10.1007/978-3-540-68056-7_3
– ident: pone.0296045.ref065
  doi: 10.1145/2939672.2939754
– volume: 26
  year: 2013
  ident: pone.0296045.ref066
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Advances in neural information processing systems
– volume: 101
  start-page: 819
  issue: 3
  year: 2000
  ident: pone.0296045.ref083
  publication-title: Models of the small world Journal of Statistical Physics
– volume: 24
  start-page: 1
  issue: 1
  year: 1977
  ident: pone.0296045.ref077
  article-title: Efficient algorithms for shortest paths in sparse networks
  publication-title: Journal of the ACM (JACM)
  doi: 10.1145/321992.321993
– volume: 261
  start-page: 110188
  year: 2023
  ident: pone.0296045.ref052
  article-title: Dynamic graph convolutional recurrent imputation network for spatiotemporal traffic missing data
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.110188
– volume: 80
  start-page: 68001
  issue: 6
  year: 2007
  ident: pone.0296045.ref034
  article-title: Robustness of transportation networks subject to degradable links
  publication-title: Europhysics Letters
  doi: 10.1209/0295-5075/80/68001
– volume: 50
  start-page: 7487
  issue: 1
  year: 2017
  ident: pone.0296045.ref047
  article-title: Methodology for determining critical locations in road networks based on graph theory
  publication-title: IFAC-Papers Online
  doi: 10.1016/j.ifacol.2017.08.1065
– volume: 81
  start-page: 16
  year: 2015
  ident: pone.0296045.ref074
  article-title: Vulnerability and resilience of transport systems–A discussion of recent research
  publication-title: Transportation research part A: policy and practice
– volume: 5
  start-page: 17
  issue: 1
  year: 1960
  ident: pone.0296045.ref081
  article-title: On the evolution of random graphs
  publication-title: Publ. Math. Inst. Hung. Acad. Sci
– volume: 2021
  start-page: 1
  year: 2021
  ident: pone.0296045.ref008
  article-title: Analysing the vulnerability of public transport networks
  publication-title: Journal of Advanced Transportation
  doi: 10.1155/2021/5513311
– volume: 15
  start-page: 1
  issue: 5
  year: 2021
  ident: pone.0296045.ref057
  article-title: Graph neural networks for fast node ranking approximation
  publication-title: ACM Transactions on Knowledge Discovery from Data (TKDD)
  doi: 10.1145/3446217
– ident: pone.0296045.ref015
– volume: 33
  start-page: 618
  issue: 8
  year: 2018
  ident: pone.0296045.ref022
  article-title: Determination of near-optimal restoration programs for transportation networks following natural hazard events using simulated annealing
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12346
– volume: 40
  start-page: 491
  issue: 6
  year: 2006
  ident: pone.0296045.ref030
  article-title: Evaluating the significance of highway network links under the flood damage: An accessibility approach
  publication-title: Transportation research part A: policy and practice
– ident: pone.0296045.ref062
  doi: 10.1201/9781315139111
– volume: 2006
  start-page: P04006
  issue: 04
  year: 2006
  ident: pone.0296045.ref010
  article-title: Vulnerability of weighted networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/2006/04/P04006
– volume: 1
  start-page: 85
  issue: 2
  year: 1999
  ident: pone.0296045.ref018
  article-title: A fuzzy multi-objective model for reconstructing the post-quake road-network by genetic algorithm
  publication-title: International Journal of Fuzzy Systems
– ident: pone.0296045.ref059
  doi: 10.1145/3292500.3330855
– volume: 46
  start-page: 109
  issue: 1
  year: 2012
  ident: pone.0296045.ref023
  article-title: Resilience: an indicator of recovery capability in intermodal freight transport
  publication-title: Transportation Science
  doi: 10.1287/trsc.1110.0376
– volume: 8
  start-page: 220
  issue: 1
  year: 2020
  ident: pone.0296045.ref053
  article-title: Approximating network centrality measures using node embedding and machine learning
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2020.3035352
– volume: 18
  start-page: 112
  issue: 1
  year: 1995
  ident: pone.0296045.ref041
  article-title: Centrality and AIDS
  publication-title: Connections
– volume: 40
  start-page: 241
  issue: 2
  year: 2020
  ident: pone.0296045.ref005
  article-title: Transport network criticality metrics: a comparative analysis and a guideline for selection
  publication-title: Transport Reviews
  doi: 10.1080/01441647.2019.1703843
– ident: pone.0296045.ref006
– ident: pone.0296045.ref027
– volume: 2672
  start-page: 54
  issue: 1
  year: 2018
  ident: pone.0296045.ref038
  article-title: Road network resilience: how to identify critical links subject to day-to-day disruptions
  publication-title: Transportation research record
  doi: 10.1177/0361198118792115
– ident: pone.0296045.ref014
– ident: pone.0296045.ref087
– volume: 28
  start-page: 04022025
  issue: 3
  year: 2022
  ident: pone.0296045.ref020
  article-title: Determination of postdisaster restoration programs for road networks using a double-stage optimization approach
  publication-title: Journal of Infrastructure Systems
  doi: 10.1061/(ASCE)IS.1943-555X.0000700
– volume: 14
  start-page: e0220061
  issue: 7
  year: 2019
  ident: pone.0296045.ref043
  article-title: Consistency and differences between centrality measures across distinct classes of networks
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0220061
– volume: 12
  start-page: 3076
  issue: 6
  year: 2022
  ident: pone.0296045.ref086
  article-title: Assessing Flood Indirect Impacts on Road Transport Networks Applying Mesoscopic Traffic Modelling: The Case Study of Santarém, Portugal
  publication-title: Applied Sciences
  doi: 10.3390/app12063076
– volume: 7
  start-page: 70
  issue: 1
  year: 2022
  ident: pone.0296045.ref016
  article-title: Prioritizing transportation network recovery using a resilience measure
  publication-title: Sustainable and Resilient Infrastructure
  doi: 10.1080/23789689.2019.1708180
– ident: pone.0296045.ref056
  doi: 10.1145/3357384.3358080
– ident: pone.0296045.ref085
  doi: 10.1109/IJCNN.2019.8852262
– start-page: 21
  year: 2014
  ident: pone.0296045.ref001
  article-title: The impact of climate change on natural disasters
  publication-title: Reducing disaster: Early warning systems for climate change
– ident: pone.0296045.ref072
– volume: 12
  year: 2004
  ident: pone.0296045.ref079
  article-title: Spearman correlation coefficients, differences between
  publication-title: Encyclopedia of statistical sciences
  doi: 10.1002/0471667196.ess5050
– volume: 32
  start-page: 65
  year: 2005
  ident: pone.0296045.ref031
  article-title: Network performance improvement under stochastic events with long-term effects
  publication-title: Transportation
  doi: 10.1007/s11116-004-1139-y
– volume: 71
  start-page: 125
  year: 2009
  ident: pone.0296045.ref009
  article-title: Resilience of public transport networks against attacks
  publication-title: The European Physical Journal B
  doi: 10.1140/epjb/e2009-00291-3
– volume: 136
  start-page: 103549
  year: 2022
  ident: pone.0296045.ref037
  article-title: Road network vulnerability analysis considering the probability and consequence of disruptive events: A spatio-temporal incident impact approach
  publication-title: Transportation research part C: emerging technologies
  doi: 10.1016/j.trc.2021.103549
– volume: 12
  start-page: 61
  issue: 1
  year: 2008
  ident: pone.0296045.ref046
  article-title: Identifying critical locations in a spatial network with graph theory
  publication-title: Transactions in GIS
  doi: 10.1111/j.1467-9671.2008.01086.x
– ident: pone.0296045.ref058
  doi: 10.1145/3357384.3357979
– volume-title: review of key indicators of recovery two years after Katrina
  year: 2007
  ident: pone.0296045.ref004
– ident: pone.0296045.ref076
  doi: 10.1007/978-1-4614-0857-4_1
– volume: 30
  year: 2017
  ident: pone.0296045.ref071
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in neural information processing systems
– volume: 13
  start-page: 1502
  issue: 11
  year: 2021
  ident: pone.0296045.ref075
  article-title: A novel graph-based vulnerability metric in urban network infrastructures: The case of water distribution networks
  publication-title: Water
  doi: 10.3390/w13111502
– ident: pone.0296045.ref003
– volume: 9
  start-page: 260
  issue: 3
  year: 2013
  ident: pone.0296045.ref007
  article-title: Hierarchical infrastructure network representation methods for risk-based decision-making
  publication-title: Structure and infrastructure engineering
  doi: 10.1080/15732479.2010.546415
– ident: pone.0296045.ref055
  doi: 10.1016/j.neunet.2024.106207
SSID ssj0053866
Score 2.5222538
Snippet Transportation networks play a crucial role in society by enabling the smooth movement of people and goods during regular times and acting as arteries for...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0296045
SubjectTerms Analysis
Approximation
Arteries
Biology and Life Sciences
Business metrics
Computer and Information Sciences
Computer software industry
Decision making
Deep learning
Disaster recovery
Disasters
Earthquakes
Emergencies
Emergency management
Emergency plans
Emergency preparedness
Engineering and Technology
Evacuation
Evaluation
Graph neural networks
Graph theory
Graphs
Heuristic
Humans
Hurricanes
Infrastructure (Economics)
Iran
Literature reviews
Management
Managers
Natural Disasters
Neural networks
Neural Networks, Computer
Optimization techniques
Performance measurement
Physical Sciences
Ranking
Rankings
Recovery
Research and Analysis Methods
Resilience
Roads & highways
Segments
Simulation
Transportation
Transportation networks
Transportation planning
United States
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1UMAgJOCQNrETP44FtYJLi3ipN8t2nO1KVbLa7PL7mUmcqEGVyoHrehxlvxnbn5WZbwh5mzklhFUhFZbVaVGxEvZBHdKgWGGZZhAyRd9sQp6dqYsL_fVaqy_MCRvkgQfgjmyQzlkpbV7rwkugM3kpmSgrW2VF0ZeQM2A942Vq2INhFQsRC-W4zI-iXw7XbRMOM4aCJOXsIOr1-qddebG-arubKOffmZPXjqLTB-R-5JD0eHj3PXInNA_JXlylHX0fpaQ_PCLnJ9UypHhSVbSXpqaoXwlzmyH7mwJlpdi2HQ4w6mPXA7ppbUW7sOyr3-iqoXa0f0x-np78-PQ5jS0UUi8036YlL7m3gte1kszbAPddDagJ50UQvnbYN17a2jFVAlOygKotVS2KEMBLngv-hCwaAG2fUFV55XKneFC2sMArdS0z5oWrpXRVphLCRzyNj_ri2ObiyvQfzSTcMwZ4DHrBRC8kJJ1mrQd9jVvsP6KrJltUx-5_gJgxMWbMbTGTkFfoaDOUmk5r3BxLuHxplHhLyJveAhUyGkzBWdpd15kv57_-wej7t5nRu2hUtwCHt7HsAf4TKm_NLA9mlrDO_Wx4H8NyRKUzHEXfOfBdDTPHUL15-PU0jA_FtLomtLvOMJ0hYy4Z4Pp0iOwJWaByDNUDE6JmMT-Dfj7SrC57gfIczo1CK_nsfzjrObnHgFhiChHLD8hiu9mFF-Su_71ddZuX_bL_A7lXXGA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZg4cAFKI82UMAgJOCQktiJH8eCugIJtRUv9WY5jrOsVCWrzS6_n5nECaRqBVzjcRSP5_FZGX9DyMukUEJY5WNhWRVnJcshDmofe8UyyzQDk8m6ZhPy-FidnenT3wfFC3_wuUzfBp0erJraHyQMyUTy6-QG40JgCdf89NMQecF3hQjX466aOUk_HUv_GItnq_OmvQxoXqyX_CMBze_876ffJbcD1KSHvW3skGu-vkd2gjO39HVgnH5zn5wclQsfY0IracdgTZHmEubWfZE4BWRLsbs75DnqQnMEum5sSVu_6C7J0WVN7SD_gHybH319_yEOnRZiJzTfxDnPubOCV5WSzFkPx2KdQe4unPDCVQW2l5e2KpjKAVDZvLQ2V5XIvIfNdFzwh2RWwyL3CFWlU0VaKO6VzSzAT13JhDlRVFIWZaIiwocNMC7QkGM3jHPT_VuTcBzp1WNQayZoLSLxOGvV03D8Rf4d7u0oiyTa3QPYHhN80lgvi8JKadNKZ04CUk5zyQSsrkxg9WlEnqFlmP5G6hgKzKGEM5pGJriIvOgkkEijxkqdhd22rfl48v0fhL58ngi9CkJVA-pwNtyOgDUhQddEcn8iCeHATYb30I4HrbSGIzc8B1isYeZg25cPPx-H8aVYfVf7ZtsaphME1jkDve72rjBqFhAfQ5LBiKiJk0xUPx2plz86HvMU0kumlXx09Sc_JrcYoEqsH2LpPplt1lv_hNx0PzfLdv208_5fMz9ZGA
  priority: 102
  providerName: Public Library of Science
Title Edge-based graph neural network for ranking critical road segments in a network
URI https://www.ncbi.nlm.nih.gov/pubmed/38127943
https://www.proquest.com/docview/3072931439
https://www.proquest.com/docview/2905514525
https://pubmed.ncbi.nlm.nih.gov/PMC10734987
https://doaj.org/article/ae7bba77a1f94c7991157265dad04421
http://dx.doi.org/10.1371/journal.pone.0296045
Volume 18
WOSCitedRecordID wos001153816100097&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYxwMvwPhaYZSAkICHdImT2M4TWqdWTGNd1MHU8RI5jlMqTUlpWv5-7hy3EDQBEi_3EJ-r-u58d07OvyPktZcJxqTQLpO0cMOcRuAHY-1qQUNJYwomE5pmE3w8FtNpnNgXbrUtq9z4ROOo80rhO_LDACGuA4ju8fvFNxe7RuHXVdtCY4fsIkoCbswk-rLxxLCXGbPX5QLuH1rt9BdVqfseRViSqBWODGr_1jd3FtdVfVPi-Xv95C8BaXTvf5dyn9y1qahz1NjOHrmlywdkz2722nlrEanfPSTnw3ymXQx4uWMQrh2EwYS5ZVNE7kDm62D3d4iDjrLNE5xlJXOn1jNzic6Zl47c8D8in0fDT8cfXNuJwVUsDlZuFESBkiwoCsGpkhqOzXEIsT1TTDNVZNh-nssioyKChEtGuZSRKFioNShbBSx4TDolSH2fOCJXIvMzEWghQwnpaVxwjyqWFZxnuSe6JNgoJFUWphy7ZVyn5tsbh-NKI54U1ZhaNXaJu521aGA6_sI_QF1veRFk2zyolrPU7tlUap5lknPpF3GoOGTSfsQpg9XlHqze75IXaClpc2N16yrSIw5nuBiR4rrkleFAoI0SK3lmcl3X6cn55T8wXUxaTG8sU1GBOJS0tydgTQjg1eI8aHGCu1Ct4X20641U6vSnNcLMjb3ePPxyO4w_itV5pa7WdUpjDxPviIJcnzRbYytZyAgpghB2iWhtmpbo2yPl_KvBOfch_ISx4E___L-ekTsUMk-sMaL-Aemslmv9nNxW31fzetkjO3xyiXTKDRVAxbHfI7uD4TiZ9MxLGKCj5CPQ00Ef6Jl3ipQnhl70jFeBGcnJWXL1AySrd2g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQXoLy6UKhBIOCQNnES2zkgVKBVVy0tgoL2ZhzHWVaqkmWzC-JP8RuZSZxAUAVceuAaj6N4Ms9k5htCHvqp5FxL63HNci_KWAx2MLGelSzSLGEgMlE9bEIcHsrxOHmzQr63vTBYVtnaxNpQZ6XBb-RbIUJch-Ddk-ezzx5OjcK_q-0IjUYs9u23r5CyVc9Gr-D9PmJsd-f45Z7npgp4hifhwovDODSah3kuBTPaQgqYROCnUsMtN3mKo9SFzlMmYwgedJxpHcucR9bCg5uQh3Dfc-Q82HGBJWRi3CV4YDs4d-15oQi2nDRszsrCbvoMYVDinvurpwR0vmAwOymr0wLd3-s1f3GAu1f-N9ZdJZddqE23G91YJSu2uEZWnTGr6BOHuP30OjnaySbWQ4ee0RrBmyLMJ-wtmiJ5CpE9xen24OepccMh6LzUGa3spG4SpNOC6pb-Bnl_Jge7SQYFvOU1QmVmZBqkMrRSRxrC7yQXPjM8zYVIM18OSdgKgDIOhh2ngZyo-t-igHSsYY9CsVFObIbE63bNGhiSv9C_QNnqaBFEvL5QzifK2SSlrUhTLYQO8iQyAjKFIBaMw-kyH04fDMkGSqZqOnI7U6i2BeSoCSLhDcmDmgKBRAqsVJroZVWp0dGHfyB697ZH9NgR5SWww2jXHQJnQoCyHuV6jxLMoektr6EetVyp1E_ph52tfpy-fL9bxpti9WFhy2WlWOJjYhEz4OutRhU7zkLEyxBkcUhkT0l7rO-vFNNPNY57AO41SqS4_efn2iAX945fH6iD0eH-HXKJQZSN9VQsWCeDxXxp75IL5stiWs3v1daIko9nrcM_AF_ox8k
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGQYgXYHytMJhBIOAha-IktvOA0GCbqIa6CgaaeDGO45RKU1KaFsS_xl_HXeIUgibgZQ-8xucovtxncvc7Qh76qeRcS-txzXIvylgMdjCxnpUs0ixhIDJRPWxCjEby-DgZr5HvbS8MllW2NrE21Flp8Bv5IESI6xC8ezLIXVnEeHf_-eyzhxOk8E9rO06jEZED--0rpG_Vs-EuvOtHjO3vHb185bkJA57hSbjw4jAOjeZhnkvBjLaQDiYR-KzUcMtNnuJYdaHzlMkYAgkdZ1rHMueRtXAIE_IQ7nuOnBeQY2LiN44_tF4A7AjnrlUvFMHAScb2rCzsts8QEiXuuMJ6YsDKL_RmJ2V1WtD7e-3mL85w_8r_zMar5LILwelOozPrZM0W18i6M3IVfeKQuJ9eJ4d72cR66OgzWiN7U4T_hL1FUzxPIeKnOPUe_D81bmgEnZc6o5Wd1M2DdFpQ3dLfIO_O5GA3Sa-AN75BqMyMTINUhlbqSENYnuTCZ4anuRBp5ss-CVthUMbBs-OUkBNV_3MUkKY17FEoQsqJUJ94q12zBp7kL_QvUM5WtAguXl8o5xPlbJXSVqSpFkIHeRIZARlEEAvG4XSZD6cP-mQLpVQ1nborE6l2BOSuCSLk9cmDmgIBRgqUsYleVpUaHr7_B6K3bzpEjx1RXgI7jHZdI3AmBC7rUG52KMFMms7yBupUy5VK_dQE2NnqyunL91fLeFOsSixsuawUS3xMOGIGfL3VqOWKsxAJMwRf7BPZUdgO67srxfRTje8egNuNEilu__m5tshFUF31ejg6uEMuMQi-scyKBZukt5gv7V1ywXxZTKv5vdowUfLxrFX4B85T0Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-based+graph+neural+network+for+ranking+critical+road+segments+in+a+network&rft.jtitle=PloS+one&rft.au=Jana%2C+Debasish&rft.au=Malama%2C+Sven&rft.au=Narasimhan%2C+Sriram&rft.au=Taciroglu%2C+Ertugrul&rft.date=2023-12-21&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=18&rft.issue=12&rft.spage=e0296045&rft_id=info:doi/10.1371%2Fjournal.pone.0296045&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon