Yield prediction for crops by gradient-based algorithms

A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one Jg. 19; H. 8; S. e0291928
Hauptverfasser: Mahesh, Pavithra, Soundrapandiyan, Rajkumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 26.08.2024
Public Library of Science (PLoS)
Schlagworte:
ISSN:1932-6203, 1932-6203
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R 2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.
AbstractList A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.
A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R 2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.
A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R 2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.
A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R.sup.2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.
A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.
Audience Academic
Author Mahesh, Pavithra
Soundrapandiyan, Rajkumar
AuthorAffiliation Univerzitet Singidunum, SERBIA
School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
AuthorAffiliation_xml – name: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India
– name: Univerzitet Singidunum, SERBIA
Author_xml – sequence: 1
  givenname: Pavithra
  surname: Mahesh
  fullname: Mahesh, Pavithra
– sequence: 2
  givenname: Rajkumar
  orcidid: 0000-0001-5701-9325
  surname: Soundrapandiyan
  fullname: Soundrapandiyan, Rajkumar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39186769$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5TWUAjthbc6WbJ6U0LoYSEQ6Al6JWRZ8mqRrY1kl-Ttq-16yzqEUnRhMf7mH_3DzGl21PteZ9lzCBYQM_h27cfQS7fYpPACIA45qh5lJ5BjVFAE8NHB_Tg7jXENQIkrSp9kx5jDijLKTzL202rX5JugG6sG6_vc-JCr4Dcxr-_yNsjG6n4oahl1k0vX-mCHVRefZo-NdFE_m75n2fePH75dfi6urj8tLy-uCkU5HgqoWc0ZM0ZBTCWpAEYYKQRxQ0ktTVUyRJkyNZeKKVBhrTVj0hApWY0Rpfgse7nT3TgfxeQ5Cgw4IyVBJUzEckc0Xq7FJthOhjvhpRV_Aj60QobBKqcFYgQYwAhRBBBAUSpBSqAbiGua6tVJ6_1Ubaw73ajkPEg3E53_6e1KtP6XgBATykuQFF5PCsHfjDoOorNRaedkr_04PZwjTFFCX91DH7Y3Ua1MDmxvfCqstqLiogIU8AoAlqjFA1Q6je6sShNibIrPEt7MEhIz6NuhlWOMYvn1y_-z1z_m7PkBu9LSDavo3bgdrTgHXxy2-m-P96OZgHc7IA1jjEEboewgtzrJmnUCArHdg33TxHYPxLQHKZncS97r_zPtN5XKCak
CitedBy_id crossref_primary_10_3390_su17031067
crossref_primary_10_1016_j_nexres_2025_100653
crossref_primary_10_1038_s41598_025_03334_8
crossref_primary_10_1109_ACCESS_2025_3573324
crossref_primary_10_1016_j_atech_2025_100992
crossref_primary_10_62943_rig_v4n2_2025_320
crossref_primary_10_1016_j_eja_2025_127743
crossref_primary_10_1371_journal_pone_0315493
crossref_primary_10_3390_rs17111860
crossref_primary_10_3390_electronics14122466
crossref_primary_10_3390_s25185652
Cites_doi 10.1198/073500102753410444
10.1371/journal.pone.0270553
10.1109/JSTARS.2020.3019046
10.3390/agriculture13010099
10.3390/technologies10010013
10.3390/en7074185
10.3390/agriculture13020397
10.1007/s10668-022-02360-0
10.3390/app12126202
10.1007/s00521-022-07856-4
10.1016/j.agsy.2020.103016
10.1016/j.jobe.2022.105046
10.3390/toxics11040394
10.1371/journal.pone.0252402
10.1007/s10462-020-09896-5
10.1038/s41598-020-80820-1
10.1049/cje.2016.11.016
10.1049/iet-com.2019.0537
10.7717/peerj-cs.956
10.3390/land11111918
10.1371/journal.pone.0156571
10.3390/su15065341
10.1016/j.gltp.2021.08.008
ContentType Journal Article
Copyright Copyright: © 2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2024 Public Library of Science
2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 Mahesh, Soundrapandiyan 2024 Mahesh, Soundrapandiyan
2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2024 Public Library of Science
– notice: 2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 Mahesh, Soundrapandiyan 2024 Mahesh, Soundrapandiyan
– notice: 2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0291928
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef



MEDLINE - Academic
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
DocumentTitleAlternate Yield prediction for crops
EISSN 1932-6203
ExternalDocumentID 3097454251
oai_doaj_org_article_2740f0744c404062b32450ed13b67b3b
PMC11346950
A806098007
39186769
10_1371_journal_pone_0291928
Genre Journal Article
GeographicLocations India
Australia
GeographicLocations_xml – name: India
– name: Australia
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c693t-1e7b977ffc136a4803232c213d64baf857267cfb9ac7c083eee77af4aa7b32663
IEDL.DBID FPL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304516700067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:33 EDT 2025
Tue Oct 14 18:56:42 EDT 2025
Tue Nov 04 02:05:53 EST 2025
Thu Oct 02 06:59:47 EDT 2025
Tue Oct 07 09:21:49 EDT 2025
Sat Nov 29 13:56:22 EST 2025
Sat Nov 29 10:35:00 EST 2025
Wed Nov 26 11:14:47 EST 2025
Wed Nov 26 11:27:29 EST 2025
Thu May 22 21:24:23 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Sat Nov 29 03:53:48 EST 2025
Tue Nov 18 20:45:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright: © 2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c693t-1e7b977ffc136a4803232c213d64baf857267cfb9ac7c083eee77af4aa7b32663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5701-9325
OpenAccessLink http://dx.doi.org/10.1371/journal.pone.0291928
PMID 39186769
PQID 3097454251
PQPubID 1436336
PageCount e0291928
ParticipantIDs plos_journals_3097454251
doaj_primary_oai_doaj_org_article_2740f0744c404062b32450ed13b67b3b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11346950
proquest_miscellaneous_3097492362
proquest_journals_3097454251
gale_infotracmisc_A806098007
gale_infotracacademiconefile_A806098007
gale_incontextgauss_ISR_A806098007
gale_incontextgauss_IOV_A806098007
gale_healthsolutions_A806098007
pubmed_primary_39186769
crossref_citationtrail_10_1371_journal_pone_0291928
crossref_primary_10_1371_journal_pone_0291928
PublicationCentury 2000
PublicationDate 2024-08-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2024
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AV Dorogush (pone.0291928.ref027) 2018
M Nazari Jahantigh (pone.0291928.ref001) 2020; 14
pone.0291928.ref024
C Bentéjac (pone.0291928.ref028) 2021; 54
K Teeda (pone.0291928.ref006) 2018
M Zivkovic (pone.0291928.ref013) 2022; 8
H Chen (pone.0291928.ref031) 2014; 7
D Paudel (pone.0291928.ref020) 2021; 187
K Bakthavatchalam (pone.0291928.ref029) 2022; 10
T Chen (pone.0291928.ref025) 2016
TM Lei (pone.0291928.ref016) 2023; 15
Y Zhang (pone.0291928.ref002) 2017; 26
J Sun (pone.0291928.ref021) 2020; 13
J Shook (pone.0291928.ref023) 2021; 16
JS Chou (pone.0291928.ref011) 2022; 61
J You (pone.0291928.ref019) 2017; 31
M Poudel (pone.0291928.ref003) 2022; 12
S Roy (pone.0291928.ref008) 2023; 25
M Shahhosseini (pone.0291928.ref022) 2021; 11
NS Chandrahas (pone.0291928.ref012) 2023; 19
A Petrovic (pone.0291928.ref018) 2023; 104
FX Diebold (pone.0291928.ref032) 2002; 20
P Kamath (pone.0291928.ref005) 2021; 2
JH Jeong (pone.0291928.ref009) 2016; 11
Y Zhao (pone.0291928.ref014) 2023; 13
L Prokhorenkova (pone.0291928.ref026) 2018
G Jovanovic (pone.0291928.ref010) 2023; 11
S Demir (pone.0291928.ref015) 2023; 35
L Jovanovic (pone.0291928.ref017) 2023; 2022
RK Paul (pone.0291928.ref030) 2022; 17
A Ali (pone.0291928.ref004) 2023; 13
C Li (pone.0291928.ref007) 2022; 11
References_xml – volume: 20
  start-page: 134
  issue: 1
  year: 2002
  ident: pone.0291928.ref032
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & economic statistics
  doi: 10.1198/073500102753410444
– volume: 17
  start-page: e0270553
  issue: 7
  year: 2022
  ident: pone.0291928.ref030
  article-title: Machine learning techniques for forecasting agricultural prices: A case of brinjal in Odisha, India.
  publication-title: Plos one.
  doi: 10.1371/journal.pone.0270553
– volume: 13
  start-page: 5048
  year: 2020
  ident: pone.0291928.ref021
  article-title: Multilevel deep learning network for county-level corn yield estimation in the us corn belt
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2020.3019046
– volume: 13
  start-page: 99
  issue: 1
  year: 2023
  ident: pone.0291928.ref014
  article-title: The prediction of wheat yield in the North China plain by coupling crop model with machine learning algorithms.
  publication-title: Agriculture
  doi: 10.3390/agriculture13010099
– volume: 31
  year: 2017
  ident: pone.0291928.ref019
  article-title: Deep gaussian process for crop yield prediction based on remote sensing data
  publication-title: InProceedings of the AAAI conference on artificial intelligence
– volume: 10
  start-page: 13
  issue: 1
  year: 2022
  ident: pone.0291928.ref029
  article-title: IoT framework for measurement and precision agriculture: predicting the crop using machine learning algorithms.
  publication-title: Technologies.
  doi: 10.3390/technologies10010013
– volume: 7
  start-page: 4185
  issue: 7
  year: 2014
  ident: pone.0291928.ref031
  article-title: Refined Diebold-Mariano test methods for the evaluation of wind power forecasting models.
  publication-title: Energies
  doi: 10.3390/en7074185
– volume: 13
  start-page: 397
  issue: 2
  year: 2023
  ident: pone.0291928.ref004
  article-title: Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production.
  publication-title: Agriculture
  doi: 10.3390/agriculture13020397
– volume: 25
  start-page: 7101
  issue: 7
  year: 2023
  ident: pone.0291928.ref008
  article-title: Multi-influencing factor (MIF) and RS–GIS-based determination of agriculture site suitability for achieving sustainable development of Sub-Himalayan region, India.
  publication-title: Environment, Development and Sustainability.
  doi: 10.1007/s10668-022-02360-0
– volume: 19
  start-page: 1
  year: 2023
  ident: pone.0291928.ref012
  article-title: Competitive algorithm to balance and predict blasting outcomes using measured field data sets.
  publication-title: Computational Geosciences.
– start-page: 785
  year: 2016
  ident: pone.0291928.ref025
  article-title: Xgboost: A scalable tree boosting system.
  publication-title: InProceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
– volume: 2022
  start-page: 787
  year: 2023
  ident: pone.0291928.ref017
  article-title: Tuning XGBoost by Planet Optimization Algorithm: An Application for Diabetes Classification.
  publication-title: InProceedings of Fourth International Conference on Communication, Computing and Electronics Systems: ICCCES
– volume: 12
  start-page: 6202
  issue: 12
  year: 2022
  ident: pone.0291928.ref003
  article-title: A survey of big data archives in time-domain astronomy
  publication-title: Applied Sciences.
  doi: 10.3390/app12126202
– volume: 35
  start-page: 3173
  issue: 4
  year: 2023
  ident: pone.0291928.ref015
  article-title: An investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07856-4
– volume: 187
  start-page: 103016
  year: 2021
  ident: pone.0291928.ref020
  article-title: Machine learning for large-scale crop yield forecasting
  publication-title: Agricultural Systems
  doi: 10.1016/j.agsy.2020.103016
– volume: 61
  start-page: 105046
  year: 2022
  ident: pone.0291928.ref011
  article-title: Predicting nominal shear capacity of reinforced concrete wall in building by metaheuristics-optimized machine learning
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2022.105046
– volume: 11
  start-page: 394
  issue: 4
  year: 2023
  ident: pone.0291928.ref010
  article-title: Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate.
  publication-title: Toxics.
  doi: 10.3390/toxics11040394
– volume: 16
  start-page: e0252402
  issue: 6
  year: 2021
  ident: pone.0291928.ref023
  article-title: Crop yield prediction integrating genotype and weather variables using deep learning.
  publication-title: Plos one.
  doi: 10.1371/journal.pone.0252402
– volume: 54
  start-page: 1937
  year: 2021
  ident: pone.0291928.ref028
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-020-09896-5
– volume: 11
  start-page: 1606
  issue: 1
  year: 2021
  ident: pone.0291928.ref022
  article-title: Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt.
  publication-title: Scientific reports.
  doi: 10.1038/s41598-020-80820-1
– volume: 26
  start-page: 1
  issue: 1
  year: 2017
  ident: pone.0291928.ref002
  article-title: A survey on emerging computing paradigms for big data
  publication-title: Chinese Journal of Electronics
  doi: 10.1049/cje.2016.11.016
– volume: 14
  start-page: 165
  issue: 2
  year: 2020
  ident: pone.0291928.ref001
  article-title: Integration of internet of things and cloud computing: a systematic survey
  publication-title: IET Communications
  doi: 10.1049/iet-com.2019.0537
– volume: 8
  start-page: e956
  year: 2022
  ident: pone.0291928.ref013
  article-title: Novel hybrid firefly algorithm: An application to enhance XGBoost tuning for intrusion detection classification.
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.956
– volume: 11
  start-page: 1918
  issue: 11
  year: 2022
  ident: pone.0291928.ref007
  article-title: Evaluating Whether Farmland Consolidation Is a Feasible Way to Achieve a Balance of Potential Crop Production in Southeastern Coastal China.
  publication-title: Land
  doi: 10.3390/land11111918
– volume: 11
  start-page: e0156571
  issue: 6
  year: 2016
  ident: pone.0291928.ref009
  article-title: Random forests for global and regional crop yield predictions.
  publication-title: PloS one.
  doi: 10.1371/journal.pone.0156571
– volume: 15
  start-page: 5341
  issue: 6
  year: 2023
  ident: pone.0291928.ref016
  article-title: Application of ANN, XGBoost, and Other ML Methods to Forecast Air Quality in Macau.
  publication-title: Sustainability
  doi: 10.3390/su15065341
– volume: 104
  start-page: 219
  year: 2023
  ident: pone.0291928.ref018
  article-title: The XGBoost Approach Tuned by TLB Metaheuristics for Fraud Detection.
  publication-title: InProceedings of the 1st International Conference on Innovation in Information Technology and Business (ICIITB 2022)
– start-page: 31
  year: 2018
  ident: pone.0291928.ref026
  article-title: CatBoost: unbiased boosting with categorical features
  publication-title: Advances in neural information processing systems
– start-page: 1176
  year: 2018
  ident: pone.0291928.ref006
  article-title: Comparative analysis of data mining models for crop yield by using rainfall and soil attributes.
  publication-title: In2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)
– ident: pone.0291928.ref024
– year: 2018
  ident: pone.0291928.ref027
  article-title: CatBoost: gradient boosting with categorical features support.
  publication-title: arXiv preprint arXiv:1810.11363
– volume: 2
  start-page: 402
  issue: 2
  year: 2021
  ident: pone.0291928.ref005
  article-title: Crop yield forecasting using data mining.
  publication-title: Global Transitions Proceedings.
  doi: 10.1016/j.gltp.2021.08.008
SSID ssj0053866
Score 2.5316458
Snippet A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0291928
SubjectTerms Agricultural commodities
Agricultural economics
Agricultural equipment
Agricultural industry
Agricultural production
Agriculture
Agriculture - methods
Algorithms
Analysis
Artificial intelligence
Crop yield
Crop yield forecasting
Crop yields
Crops
Crops, Agricultural - growth & development
Data mining
Decision making
Environmental factors
Forecasts and trends
International trade
Learning algorithms
Machine Learning
Management
Oryza - growth & development
Pesticides
Rainfall
Seasonal variations
Soil fertility
Soil temperature
Soil water
Strategic planning (Business)
Technology application
Temperature
Water availability
Water quality
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQigMXRHk1pUBASMAhrR0ndnwsiAouBfFSOUW2Y29XWpJVkkXi3zOTeKMGVSoHrutJtPvN6_N6PEPIC14I542F6Jczl2Qi1YlKPUsMqwpeKe1yaodhE_LsrDg_V58ujfrCmrCxPfAI3DHsmqiHPJfZDOxNpAYYQE5dxbgR0nCD0ZdKtdtMjTEYvFiIcFGOS3Yc9HK0aWp3RFMFtKaYJaKhX_8UlRebddNdRTn_rpy8lIpO75DbgUPGJ-N33yM3XH2X7AUv7eJXoZX063tE_sACtXjT4nEMqiAGjhrj1K4uNr_jZTsUfPUJ5rIq1utl0676i5_dffLt9N3Xt--TMCohsULxPmFOGmBy3lvGhc4KyoEp2ZTxSmRG-yKXqZDWG6WttMC6nHNSap9pDRhCjuYPyKIGcPZJnEtjHfd5BRu3TGZeMYeHmwxewyovRUT4DrfShj7iOM5iXQ6HYxL2EyMMJaJdBrQjkkxPbcY-GtfIv0GVTLLYBXv4AGyjDLZRXmcbEXmKCi3HK6WTL5cnBRVUAVWWEXk-SGAnjBpLbZZ623Xlh4_f_0Hoy-eZ0Msg5BuAw-pwvQF-E3bYmkkeziTBn-1seR_Nb4dKV3IKe74cYiuDJ3cmefXys2kZX4rlc7VrtkEGqLxII_JwtOAJWa6wp6FQESlmtj2Dfr5Sry6GRuSM8UyonB78D2U9IrdSIIz4f30qDsmib7fuMblpf_Wrrn0yuPcfk9lSIg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVg4QAHoOWjgQIBIQGHtHGc2PEJLYgKLgUVqMopchw7rbQkIcki8e-ZSbyBoAqQuK4nyXpmPH62x28IecJSbmyuIfol1AQxj1QgI0uDnBYpK6QySaiHYhPi8DA9OZHv3YZb59IqNzFxCNRFrXGPfJ-FgHwT8DD6ovkaYNUoPF11JTQukksUsTH4szg63kRiGMucu-tyTNB9Z529pq7MXhhJADfpbDoaWPun2LxoVnV3HvD8PX_ylwnp4Pr_duUGueagqL8cfWeLXDDVNrm6LFtHx2G2yZYb-p3_zPFTP79JxGfMevObFs940K4-AF8fS4F1fv7dL9shi6wPcIIsfLUq4dv96ZfuFvl08PrjqzeBq78QaC5ZH1AjcoCH1mrKuIrTkAH80hFlBY9zZdNERFxom0ulhQYoZ4wRQtlYKZEDKuTsNllUoOsd4ici14bZpIDVYCxiK6nBE1MKr6GFFdwjbGOGTDtycqyRscqGEzcBi5RRKRkaL3PG80gwPdWM5Bx_kX-JFp5kkVp7-KFuy8yN1AyW6aEFYBXrGAIcj6ArcRKagrKcQ79yjzxE_8jGe6pTgMiWachDCfhbeOTxIIH0GhXm75Rq3XXZ23fH_yD04Wgm9NQJ2RrUoZW7MwF9QtqumeTuTBKChJ4176A3b7TSZT99EJ7ceOn5zY-mZnwp5uRVpl47GVgf8Mgjd8YBMWmWSSRK5NIj6WyozFQ_b6nOTgd2c0pZzGUS3v3z_7pHrkSAL3F7P-K7ZNG3a3OfXNbf-rOufTDEgR-EvmaO
  priority: 102
  providerName: ProQuest
Title Yield prediction for crops by gradient-based algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/39186769
https://www.proquest.com/docview/3097454251
https://www.proquest.com/docview/3097492362
https://pubmed.ncbi.nlm.nih.gov/PMC11346950
https://doaj.org/article/2740f0744c404062b32450ed13b67b3b
http://dx.doi.org/10.1371/journal.pone.0291928
Volume 19
WOSCitedRecordID wos001304516700067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYxwM8ABsfC4wSEBLsISWOEzt5bKdVTGMl2mDqeIkcx-4qlbRKWiT-e86uG8i0CXi5h_gcxWff-Xfx-Q6htySmUuUCrF-EpRfSgHtJoLCX4yImRcJl5AtTbIKNRvF4nKS_HcVrJ_iE4Q9Wpr3FvJQ9P0gAksRbaDsglOpSDcP008bygu5Saq_H3daztf2YLP2NLe4sZvP6JqB5PV7yjw1o-PB_P_0RemChpttfr40ddEeWu-h-f1LZdBtyF-1Y1a7d9zb_9MFjxC51VJu7qPQZjp43F4Ctq0t91W7-051UJkps6ekNsHD5bDKvpsur7_UT9HV49OXwo2frK3iCJmTpYclygH9KCUwoD2OfALwSASYFDXOu4ogFlAmVJ1wwAVBNSskYVyHnLAfUR8lT1ClhaHvIjVguJFFRAd5eyEKVYKlPRDG8BheKUQeRjdgzYZOP6xoYs8ycqDFwQtZCybSsMisrB3lNr8U6-cZf-Ad6RhtenTrbPIBJyawmZuCG-wqAUyhCMGA0gKGEkS8LTHIK48od9Eqvh2x9D7UxAFk_9qmfAL5mDnpjOHT6jFLH50z4qq6z488X_8B0ftZiemeZ1BzEIbi9EwFj0mm5Wpz7LU4wAqLVvKdX70YqdUZ8cBQjMMgYem5W9M3Nr5tm_VIdc1fK-cryAP6ngYOerRWgkSxJdCJEmjgobqlGS_TtlnJ6ZbKXY0xCmkT-89s_-QW6FwB21L_uA7qPOstqJV-iu-LHclpXXbTFzi40HTNDY6DxIe6i7cHRKD3rmt8qXWMZgJ4MekBP_RNNWWroOdA0-gY90uPT9PIXerNhVw
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKggQcgJZHA4UGBAIOaeNH7OSA0FKoumpZUCmonELi2NtKS7Iku6D-KX4j48QJBFXApQeu67G1Hs-Mv8mMZxB6SEOudCrB-gVYeYyTxIuIxl6Ks5BmUaICX9bNJsR4HB4eRm-X0Pf2LYxJq2xtYm2os0Kab-Sb1AfkG4CE4eezL57pGmWiq20LjUYsdtXJN3DZqmejl3C-jwjZfnWwtePZrgKe5BGde1iJFECP1hJTnrDQpwAqJME04yxNdBgIwoXUaZRIIQGgKKWESDRLEpEC1uEU1j2HzjOYZrQo3OpSSsB2cG6f51GBN600bMyKXG34JAIwFfauv7pLQHcXDGbTojoN6P6er_nLBbh99X9j3TV0xUJtd9joxjJaUvkKujyclLbciFpBy9a0Ve4TW3_76XUkPpqsPndWmhiWkVsXgL1rWp1VbnriTso6S27uGQCQucl0AnudH32ubqD3Z7Kdm2iQw9muIjcQqVRUBxl4u0wwHWFlIsIYlsGZFtxBtD32WNri66YHyDSuI4oCnLCGKbERltgKi4O8btasKT7yF_oXRqI6WlM6vP6hKCextUQxEczXAByZZGDAOYGtsMBXGaYph32lDlo38hg373A7AxgPQ5_7EfgXwkEPagpTPiQ3-UmTZFFV8ejNh38gerffI3psiXQB7JCJfRMCezJlyXqUaz1KMIKyN7xqtKflShX_lHmY2WrF6cP3u2GzqMk5zFWxsDTg_3DioFuNAnacpZEpBMkjB4U91eyxvj-SHx_V1dsxpoxHgX_7z_9rHV3cOXi9F--Nxrt30CUCWNqEMghfQ4N5uVB30QX5dX5clfdqG-SiT2etuT8AMPnDcQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKghAcgJZHA4UGBAIO6caP2MkBoYVSsSpaVrxUTiFx7G2lJVmSXVD_Gr-OceIEgirg0gPX9cRaT74Zf86MZxC6T0OudCrB-wVYeYyTxIuIxl6Ks5BmUaICX9bNJsRkEh4cRNM19L29C2PSKlufWDvqrJDmG_mQ-sB8A0AYHmqbFjHd3Xu6-OKZDlIm0tq202ggsq-Ov8HxrXoy3oV3_YCQvRfvnr_0bIcBT_KILj2sRAoESGuJKU9Y6FMgGJJgmnGWJjoMBOFC6jRKpJBAVpRSQiSaJYlIgfdwCvOeQWcF4z6p0wan7S4AfoRze1WPCjy0yNhZFLna8UkExCrsbYV1x4BuXxgs5kV1Eun9PXfzl81w7_L_rMYr6JKl4O6osZl1tKbyDXRxNCttGRK1gdaty6vcR7Yu9-OrSHw02X7uojSxLYNnFwi_a1qgVW567M7KOntu6RlikLnJfAZrXR5-rq6h96eynOtokMN73kRuIFKpqA4yOAUzwXSElYkUY5gGZ1pwB9EWArG0RdlNb5B5XEcaBRzOGqXEBjixBY6DvO6pRVOU5C_yzwy6OllTUrz-oShnsfVQMRHM10AomWTg2DmBpbDAVxmmKYd1pQ7aNtiMm_u5nWOMR6HP_QjOHcJB92oJU1YkN8iaJauqisevP_yD0Ns3PaGHVkgXoA6Z2LsisCZTrqwnudWTBOcoe8ObxpJarVTxT_zDk62FnDx8txs2k5pcxFwVKysD5yJOHHSjMcZOszQyBSJ55KCwZ6Y91fdH8qPDuqo7xpTxKPBv_vl_baPzYLDxq_Fk_xa6QIBimwgH4VtosCxX6jY6J78uj6ryTu2OXPTptA33B4_MzH0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Yield+prediction+for+crops+by+gradient-based+algorithms&rft.jtitle=PloS+one&rft.au=Mahesh%2C+Pavithra&rft.au=Soundrapandiyan%2C+Rajkumar&rft.date=2024-08-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=19&rft.issue=8&rft.spage=e0291928&rft_id=info:doi/10.1371%2Fjournal.pone.0291928&rft.externalDBID=ISR&rft.externalDocID=A806098007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon