Modulation pattern recognition method of wireless communication automatic system based on IABLN algorithm in intelligent system

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition....

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 20; no. 1; p. e0317355
Main Authors: Xie, Ting, Han, Xing
Format: Journal Article
Language:English
Published: United States Public Library of Science 13.01.2025
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed. A two-way interactive temporal network is designed on the basis of the long and short-term memory network with the objective of enhancing the contextual connection of the temporal network. The output of the temporal network is attentively weighted using the soft attention mechanism. The proposed algorithm exhibited enhanced overall, average, and maximum recognition rates at varying signal-to-noise ratios, with an increase of 10.34%, 8.33%, and 3.33%, respectively, in comparison to other algorithms within the Radio Machine Learning (RML) 2016.10b dataset. Furthermore, the modulated signal recognition accuracy was as high as 92.84%, with an average increase in the Kappa coefficient of 12.28%. The Kappa coefficient in the Communication Signal Processing Benchmark for Machine Learning (CSPB.ML2018) 2018 dataset was 0.62, representing an average increase of 10.32% over other algorithms. The results demonstrate that the proposed recognition method can enhance the network’s accuracy in recognizing modulated signals. Moreover, it has potential applications in modulation pattern recognition in automatic systems for wireless communications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0317355